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Abstract

In this paper, an averaging principle for multidimensional, time dependent, stochastic differential equations
(SDEs) driven by fractional Brownian motion and standard Brownian motion was established. We combined
the pathwise approach with the Itô stochastic calculus to handle both types of integrals involved and proved
that the original SDEs can be approximated by averaged SDEs in the manner of mean square convergence
and of convergence in probability, respectively.
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1. Introduction

The fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1) is a zero mean Gaussian process
{BHt , t ≥ 0} with covariance function RH(s, t) = 1

2 (s2H + t2H − |t − s|2H), s, t ∈ (0,∞). This process was
introduced by Kolmogorov [1] and later studied by Mandelbrot and Van Ness [2]. Its self-similarity and
long-range dependence H > 1

2 properties make this process a very useful driving noise in modelings arising
in physics, finance and many other fields [10].

The present paper focuses on the following stochastic differential equations (SDEs) driven by fBm and
standard Brownian motion (Bm) on Rd:

Xt = X0 +

∫ t

0

f(s,Xs)ds+

∫ t

0

σW (s,Xs)dWs +

∫ t

0

σH(s,Xs)dB
H
s , (1.1)

where X0 is a d-dimensional random variable independent of W and BH with E|X0|2 <∞, BH = {BHt , t ∈
[0,∞)} is an m-dimensional fBm with Hurst parameter H ∈ ( 1

2 , 1), and W = {Wt, t ∈ [0,∞)} is an r-
dimensional standard Bm, independent of BH . The integral

∫
· dW should be interpreted as an Itô stochastic

integral, and the integral
∫
· dBH as a pathwise Riemann-Stieltjes integral in the sense of Zähle [3, 4, 5]. The

coefficients are jointly measurable functions f i, σi,kW , σi,jH : [0,∞)× Rd → R, 1 ≤ i ≤ d, 1 ≤ k ≤ r, 1 ≤ j ≤ m.
For arbitrarily fixed T > 0, we will make use of the following assumptions on the coefficients of Eq.(1.1).

• (H1) The function σH(t, x) is continuously differentiable in the variable x ∈ Rd, for each t ∈ [0, T ].
Moreover, there exist constants Li, i = 1, 2, 3, 4, such that |σH(t, x)−σH(t, y)| ≤ L1|x−y|, |∂xiσH(t, x)−
∂xiσH(t, y)| ≤ L2|x− y|δ, |∂xiσH(t, x)−∂xiσH(s, x)|+ |σH(t, x)−σH(s, x)| ≤ L3|t− s|β , |∂xiσH(t, x)| ≤
L4, for all x, y ∈ Rd, t ∈ [0, T ], and for some constants 0 ≤ β, δ ≤ 1.

• (H2) The functions f(t, x) and σW (t, x) are Lipschitz continuous in the variable x and have linear
growth in the same variable, uniformly in t ∈ [0, T ]. Moreover, there exist constants Li, i = 5, 6, such
that |f(t, x)− f(t, y)|+ |σW (t, x)− σW (t, y)| ≤ L5|x− y|, |f(t, x))|+ |σW (t, x)| ≤ L6(1 + |x|).
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Note that Assumption (H1) implies the linear growth property, i.e., there exists a constant L7 such that
|σH(t, x)| ≤ L7(1 + |x|).

Lyons [6] solved the equations driven only by a fBm with Hurst parameter H > 1
2 by a pathwise approach

using the p-variation norm in the framework of rough path theory. Nualart and Răşcanu [4] studied the
differential equations driven by fBm using the tools of fractional calculus in the sense of Zähle [3]. Kubilius
[7] studied one dimensional SDEs driven by both fBm and standard Bm, with σW , σH independent of the
time variable and with no drift term (f ≡ 0). Guerra and Nualart [5] established an existence and uniqueness
theorem for solutions of multidimensional, time dependent, SDEs driven by fBm with Hurst parameter H > 1

2
and standard Bm.

Stochastic averaging, which is usually used to approximate dynamical systems under random fluctuations,
has a long and rich history in multiscale problems, see e.g. [11, 14, 16, 17, 12, 13] and references therein. Xu
et al. [8, 15] developed a stochastic averaging technique for SDEs with fBm (σW = 0 in Eq.(1.1)) and proved
that the original SDEs can be approximated by averaged SDEs in the sense of mean square convergence and
of convergence in probability. The main difficulties here are how to deal with both fBm and standard Bm.
In order to overcome these difficulties, our approach is completely different from Xu’s previous work [8, 15]
in the sense that we combine the pathwise approach with the Itô stochastic calculus to handle both types of
integrals and we established an averaging principle for multidimensional, time dependent, SDEs (1.1) with
fBm H > 1

2 and standard Bm.
The rest of the paper is arranged as follows. Section 2 presents preliminary results that are needed in

the subsequent section. In Section 3, we obtained stochastic averaging for SDEs driven by fBm (H > 1
2 ) and

standard Bm.

2. Preliminaries

Let (Ω,F ,P) be a complete probability space . For each t ∈ [0, T ], we denote by Ft the σ-field generated
by the random variables {X0, B

H
s ,Ws, s ∈ [0, t]} and all P -null sets. In addition to the natural filtration

Ft, t ∈ [0, T ], we will consider a larger filtration Gt, t ∈ [0, T ] such that {Gt} is right-continuous and {G0}
contains the P -null sets, so that X0, B

H are G0-measurable, and W is a Gt-Brownian motion. Notice that
F̂t ⊂ Gt, where F̂t is the σ-field generated by the random variable {X0, B

H ,Ws, s ∈ [0, t]} and the P -null
sets.

For H ∈ ( 1
2 , 1), let 1 − H < α < 1

2 , then, denote by Wα,∞
0 the space of measurable functions f(t) :

[0, T ]→ Rd such that ‖f‖α,∞ := supt∈[0,T ] ‖f(t)‖α <∞, where

‖f(t)‖α := |f(t)|+
∫ t

0

|f(t)− f(s)|
(t− s)α+1

ds.

For µ ∈ (0, 1], let Cµ be the space of µ-Hölder continuous functions f : [0, T ] → Rd, equipped with the
the norm

‖f‖µ := ‖f‖∞ + sup
0≤s<t≤T

|f(t)− f(s)|
(t− s)µ

, ‖f‖∞ = sup
0≤t≤T

|f(t)|.

Given any ε such that 0 < ε < α, we have the following inclusions Cα+ε ⊂ Wα,∞
0 ⊂ Cα−ε. Now, fix the

parameter α such that 0 < α < 1
2 , denote by W 1−α,∞

T the space of measurable functions g(t) : [0, T ] → Rm
such that

‖g‖1−α,∞,T := sup
0<s<t<T

(
|g(t)− g(s)|
(t− s)1−α

+

∫ t

s

|g(y)− g(s)|
(y − s)2−α

dy

)
<∞.

And denote by Wα,1
0 the space of measurable functions f(t) : [0, T ]→ Rd such that

‖f‖α,1 :=

∫ T

0

|f(s)|
sα

ds+

∫ T

0

∫ s

0

|f(s)− f(y)|
(s− y)α+1

dyds <∞.

It is easy to prove that C1−α+ε ⊂W 1−α,∞
T ⊂ C1−α. For g ∈W 1−α,∞

T , we have that

Λα(g) :=
1

Γ(1− α)
sup

0<s<t<T
|(D1−α

t− gt−)(s)| ≤ 1

Γ(1− α)Γ(α)
‖g‖1−α,∞,T <∞,

where Γ(·) is the Gamma function and D1−α
t− stands for the Weyl derivative [4, 17]. Moreover, if f ∈ Wα,1

0

and g ∈W 1−α,∞
T then

∫ t
0
fdg exists for all t ∈ [0, T ] and

∣∣∣∣ ∫ t0 fdg∣∣∣∣ ≤ Λα(g)‖f‖α,1.
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We denote by E the condition expectation given F̂0, that is, given X0 and BH . We now define the space
of processes where we will search for solutions of (1.1).

Remark 2.1. The trajectories of BH are almost surely locally α-Hölder continuous for all α ∈ (0, H). Then,
the trajectories of BH belong to the space W 1−α,∞

T . Consequently, the pathwise Riemann-Stieltjes integral∫ T
0
vsdB

H
s exists if {vt, t ∈ [0, T ]} is a stochastic process whose trajectories belong to the space Wα,1

0 with

1−H < α < 1
2 . And we have the following estimate∣∣∣∣ ∫ t

0

vsdB
H
s

∣∣∣∣ ≤ Λα(BH)‖v‖α,1, (2.1)

where Λα(BH) has moments of all orders, see Lemma 7.5 in Nualart and Răşcanu [4].

Definition 2.2. Let WG be the space of d-dimensional Gt-adapted stochastic process X = {Xt, t ∈ [0, T ]}
such that almost surely the trajectories of X belong to Wα,∞

0 and
∫ T
0
E‖Xs‖2αds <∞. A strong solution of

the SDE (1.1) is a stochastic process X in the space WG which satisfies Eq. (1.1).

Next, according to Theorem 2.2 in [5], we have the following lemma.

Lemma 2.3. Suppose that Eq. (1.1) satisfies the conditions (H1)-(H2), then, for 1−H < α < min{ 12 , β,
δ
2}, H ∈

( 1
2 , 1), the Eq. (1.1) has a unique strong solution Xt.

3. The Stochastic Averaging Principle

Fix ε0 > 0, we set, for each ε ∈ (0, ε0], the following standard SDE á la Eq.(1.1):

Xε
t = X0 + ε

∫ t

0

f(s,Xε
s )ds+

√
ε

∫ t

0

σW (s,Xε
s )dWs + εH

∫ t

0

σH(s,Xε
s )dBHs . (3.1)

The coefficients of Eq (3.1) fulfill the same conditions as in (1.1). Besides, let functions f̄ : Rd → Rd, σ̄W :
Rd → Rd×r, σ̄H : Rd → Rd×m be continuous and they satisfy the same condition as with f, σW , σH , respec-

tively. Also assume that the following additional inequalities are satisfied: (C1) 1
T1

∫ T1

0
|f(s, x) − f̄(x)|ds ≤

ϕ1(T1)(1 + |x|); (C2) 1
T1

∫ T1

0
|σW (s, x) − σ̄W (x)|2ds ≤ ϕ2(T1)(1 + |x|2); (C3) 1

T1

∫ T1

0
|σH(s, x) − σ̄H(x)|2ds ≤

ϕ3(T1)(1+|x|2), where T1 ∈ [0, T ], ϕi(T1) are positive bounded functions with limT1→∞ ϕi(T1) = 0, i = 1, 2, 3.
Then, we can obtain the averaged SDEs by the averaging principle:

Zεt = X0 + ε

∫ t

0

f̄(Zεs )ds+
√
ε

∫ t

0

σ̄W (Zεs )dWs + εH
∫ t

0

σ̄H(Zεs )dBHs . (3.2)

Under the similar conditions such as Xε
t in (3.1), this equation has a unique strong solution Zεt .

Lemma 3.1. Suppose that the averaged Eq. (3.2) satisfies the conditions (H1)-(H2). Then, for t ∈ [0, T ],
we have, supt∈[0,T ] E[‖Zεt ‖2α] ≤ C.

Proof: From (3.2) and by elementary inequalities, we have

E‖Zεt ‖2α ≤ 4E|X0|2 + 4ε2E
∥∥∥∥∫ t

0

f̄(Zεs )ds

∥∥∥∥2
α

+ 4εE
∥∥∥∥ ∫ t

0

σ̄W (Zεs )dWs

∥∥∥∥2
α

+ 4ε2HE
∥∥∥∥∫ t

0

σ̄H(Zεs )dBHs

∥∥∥∥2
α

=: 4E|X0|2 + 4I1t + 4I2t + 4I3t .

Firstly, by the growth conditon (H2) and Proposition 3.3 in Guerra and Nualart [5], it is not hard to obtain

I1t = ε2E
(∣∣∣∣ ∫ t

0

f̄(Zεs )ds

∣∣∣∣+

∫ t

0

∣∣∣∣ ∫ t

s

f̄(Zεr )dr

∣∣∣∣(t− s)−α−1ds)2

≤ Cε2E
(∫ t

0

|f̄(Zεs )|ds
)2

+ Cε2E
(∫ t

0

(t− r)−α|f̄(Zεr )|dr
)2

≤ Cε20

∫ t

0

(t− s)−2αE|Zεs |2ds+ Cα,T ε
2
0.

Then, for I2t , by the growth condition (H2) and Proposition 3.8 in Guerra and Nualart [5], we have

I2t ≤ CεE
∣∣∣∣ ∫ t

0

σ̄W (Zεs )dWs

∣∣∣∣2 + CεE
(∫ t

0

|
∫ t
s
σ̄W (Zεr )dWr|
(t− s)α+1

ds

)2
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≤ CεE
∫ t

0

(1 + |Zεs |2)ds+ CεE
∫ t

0

(t− s)− 3
2−α

∫ t

s

|σ̄W (Xε
r )|2drds

≤ Cε0

∫ t

0

(t− s)− 1
2−αE|Zεs |2ds+ Cα,T ε0.

For I3t , by (2.1) and Proposition 3.5 in Guerra and Nualart [5], we have

I3t ≤ Cε2H
( ∣∣∣∣∫ t

0

σ̄H(Zεs )dBHs

∣∣∣∣+

∫ t

0

∣∣∣∣∫ t

s

σ̄H(Zεr )dBHr

∣∣∣∣ (t− s)−α−1ds)2

≤ Cε2H0 Λα(BH)2
∫ t

0

((t− s)−2α + s−α)(1 + ‖Zεs‖2α)ds.

Finally, we obtain that

sup
0≤s≤t

E[‖Zεs‖2α] ≤ C + C

∫ t

0

(
(
t

s
)α+

1
2 (t− s)−α− 1

2 + (
t

t− s
)α+

1
2 (
t

s
)

1
2 s−α

)
sup

0≤r≤s
E‖Zεr‖2αds

≤ C + Ctα+
1
2

∫ t

0

((t− s)−α− 1
2 s−α−

1
2 ) sup

0≤r≤s
E‖Zεr‖2αds.

As a consequence, by the Gronwall-type lemma (Lemma 7.6 in Nualart and Răşcanu [4]), we derive the
desired estimate. Similarly, we can also show that supt∈[0,T ] E[‖Xε

t ‖2α] ≤ C. �

Lemma 3.2. Suppose that the averaged Eq. (3.2) satisfies the conditions (H1)-(H2). Then, for 0 ≤ s < t ≤
T , we have E[|Zεt − Zεs |2] ≤ C|t− s|.

Proof: From (3.2), by conditions (H1-H2), we have

E[|Zεt − Zεs |2] ≤ 3ε2E
∣∣∣∣ ∫ t

s

f̄(Zεr )dr

∣∣∣∣2 + 3εE
∣∣∣∣ ∫ t

s

σ̄W (Zεr )dWr

∣∣∣∣2 + 3ε2HE
∣∣∣∣ ∫ t

s

σ̄H(Zεr )dBHs

∣∣∣∣2
≤ 3ε20E

∣∣∣∣ ∫ t

s

f̄(Zεr )dr

∣∣∣∣2 + 3ε0E
∫ t

s

|σ̄W (Zεr )|2dr + J3(t, s)

≤ C|t− s|2 + C|t− s|+ J3(t, s).

Then, by Lemma 3.1 and (2.1) and Proposition 4.1 in Nualart and Răşcanu [4], we have

J3(t, s) := 3ε2H0 E
∣∣∣∣ ∫ t

s

σ̄H(Zεr )dBHs

∣∣∣∣2 ≤ Cα,TΛ2(BH)|t− s|2(1−α) sup
0≤r≤T

E‖Zεr‖2α ≤ C|t− s|2(1−α).

Thus, we obtain the desired estimate. Similarly, we can also verify that E[|Xε
t −Xε

s |2] ≤ C|t− s|. �
Now, we claim the main theorem showing the relationship between solution processes Xε

t to the original
Eq. (3.1) and Zεt to the averaged Eq. (3.2). It shows that the solution of averaged Eq. (3.2) converges to
that of the original Eq. (3.1) in mean square sense and in convergence in probability, respectively.

Theorem 3.3. Suppose that orignal Eq. (3.1) and averaged Eq. (3.2) both satisfy the assumptions (H1)-(H2)
and (C1)-(C3). For a given arbitrarily small number δ1 > 0, there exist L > 0, ε1 ∈ (0, ε0], such that for any
ε ∈ (0, ε1] , each t ∈ [0, Lε−γ ], 0 < γ ≤ min{ 2H−1

2β+2H−1 ,
2H−1
2H } < 1, we have supt∈[0,Lε−γ ] E|Xε

t − Zεt |2 ≤ δ1.

Corollary 3.4. Suppose that all assumptions (H1)-(H2) and (C1)-(C3) are satisfied. Then for any number

δ2 > 0, each t ∈ [0, Lε−γ ], we have limε→0 P
[

supt∈[0,Lε−γ ] |Xε
t − Zεt | > δ2

]
= 0, where L and γ are the same

to Theorem 3.3.

The Proof of Theorem 3.3: From (3.1) and (3.2), we have

E|Xε
t − Zεt |2 ≤ 3ε2E

∣∣∣∣ ∫ t

0

(f(s,Xε
s )− f̄(Zεs ))ds

∣∣∣∣2 + 3εE
∣∣∣∣ ∫ t

0

(σW (s,Xε
s )− σ̄W (Zεs ))dWs

∣∣∣∣2
+3ε2HE

∣∣∣∣ ∫ t

0

(σH(s,Xε
s )− σ̄H(Zεs ))dBHs

∣∣∣∣2 =: 3J1(t) + 3J2(t) + 3J3(t),

where [0, t] ⊂ [0, u] ⊂ [0, T ]. So, for the first term, we have

J1(t) = ε2E
∣∣∣∣ ∫ t

0

(f(s,Xε
s )− f̄(Zεs ))ds

∣∣∣∣2 ≤ Cε2E(∫ t

0

|f(s,Xε
s )− f̄(Zεs )|ds

)2
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and for the second term, we have

J2(t) = εE
∣∣∣∣ ∫ t

0

(σW (s,Xε
s )− σ̄W (Zεs ))dWs

∣∣∣∣2 ≤ CεE∫ t

0

|σW (s,Xε
s )− σ̄W (Zεs )|2ds.

For the last term, by Lemma 3.2, (2.1) and (H1), we have

J3(t) ≤ ε2HE
∣∣∣∣ ∫ t

0

(σH(s,Xε
s )− σ̄W (Zεs ))s−αds

∣∣∣∣2 + ε2HE
∣∣∣∣ ∫ t

0

Σ(s)ds

∣∣∣∣2,
where

Σ(s) =

∫ s

0

E|σH(s,Xε
s )− σ̄H(Zεs )− σH(r,Xε

r ) + σ̄H(Zεr )|(s− r)−1−αdr

≤
∫ s

0

E|σH(s,Xε
s )− σH(r,Xε

r )|(s− r)−1−αdr +

∫ s

0

E|σ̄H(Zεs )− σ̄H(Zεr )|(s− r)−1−αdr

≤ C
∫ s

0

[(s− r)β + (s− r) 1
2 ](s− r)−1−αdr

≤ Csβ−α + Cs
1
2−α.

Thus, we have

J3(t) ≤ ε2Hu1−2αE
∫ t

0

|σH(s,Xε
s )− σ̄H(Zεs )|2ds+ Cε2Hu2(1+β−α) + Cε2Hu3−2α.

Finally, using conditions (H1-H2), we have

E|Xε
t − Zεt |2 ≤ Cε2E

(∫ t

0

|f(s,Xε
s )− f̄(Zεs )|ds

)2

+ CεE
∫ t

0

|σW (s,Xε
s )− σ̄W (Zεs )|2ds

+ε2Hu1−2αE
∫ t

0

|σH(s,Xε
s )− σ̄H(Zεs )|2ds+ Cε2H(u2(1+β−α) + u(3−2α))

≤ C(ε2u+ ε+ ε2Hu1−2α)E
∫ t

0

|Xε
s − Zεs |2ds+ Cε2H(u2(1+β−α) + u3−2α)

+Cε2u2J1 + CεuJ2 + ε2Hu2−2αJ3.

According to conditions (C1-C3), Lemma 3.1 and the boundedness of ϕi(T1), T1 ∈ [0, T ], we can obtain

J1 = E
(

1

t

∫ t

0

|f(s, Zεs )− f̄(Zεs )|ds
)2

≤ C sup
0≤t≤u

[ϕ2
1(t)](1 + sup

0≤t≤u
E|Zεt |2),

J2 = E
1

t

∫ t

0

|σW (s, Zεs )− σ̄W (Zεs )|2ds ≤ C sup
0≤t≤u

[ϕ2(t)](1 + sup
0≤t≤u

E|Zεt |2),

J3 = E
1

t

∫ t

0

|σH(s, Zεs )− σ̄H(Zεs )|2ds ≤ C sup
0≤t≤u

[ϕ3(t)](1 + sup
0≤t≤u

E|Zεt |2).

Thus, we have

sup
0≤t≤u

E|Xε
t − Zεt |2 ≤ C(ε2u+ ε+ ε2Hu1−2α)E

∫ u

0

sup
0≤r≤s

|Xε
r − Zεr |2ds

+Cε2H(u2(1+β−α) + u3−2α) + C(ε2u+ ε+ ε2Hu1−2α)u.

Then, for each t ∈ [0, Lε−γ ], we have

sup
0≤t≤Lε−γ

E|Xε
t − Zεt |2 ≤ Qε1−γ ,

where Q = C[ε2H−1(ε−γ(1+2β−2α) + ε−γ(2−2α) + ε−γ(1−2α)) + ε1−γ + 1]× exp(C(ε2−2γ + ε1−γ + ε2H−γ(2−2α))
is a constant if γ ≤ min{ 2H−1

2β+2H−1 ,
2H−1
2H } < 1. �

The Proof of Corollary 3.4: By the Chebyshev-Markov inequality and Theorem 3.3, for any given number
δ2 > 0, let ε→ 0, one can find

P
[

sup
t∈[0,Lε−γ ]

|Xε
t − Zεt | > δ2

]
≤ 1

δ22
sup

t∈[0,Lε−γ ]
E|Xε

t − Zεt |2 ≤
Q

δ22
ε1−γ ,

and the required result will be obtained. �

Remark 3.5. If we consider SDEs driven by only a fBm (σW = 0) , the equation (1.1) can be rewrited as a
deterministic differential equation, then, use the pathwise approach, for a given arbitrarily small number δ3 >
0, there exist L > 0, ε1 ∈ (0, ε0], such that for any ε ∈ (0, ε1] , each t ∈ [0, Lε−γ ], γ ≤ min{ H

4H−1 ,
H

2β+2H−1},
we have, supt∈[0,Lε−γ ] |Xε

t − Zεt | ≤ δ3, δ3 = Qε
H−γ

2 , Q is a constant. Here, we omit the proof.

5



Remark 3.6. Moreover, in this paper, instead of fBm one can take any process, which is almost surely
Hölder continuous with Hölder exponent greater than 1

2 . The results will be effective.
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[9] L. Young. An inequality of Hölder type, connected with Stieljes integration. Acta Mathematica, 67:251–
282, 1936.
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