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Abstract
Purpose of Review We provide a comprehensive review of the empirical and modelling approaches used to quantify the radiation–
vegetation interactions related to vegetation temperature, leaf optical properties linked to pigment absorption and chlorophyll fluores-
cence emission, and of their capability to monitor vegetation health. Part 1 provides an overview of the main physiological indicators
(PIs) applied in remote sensing to detect alterations in plant functioning linked to vegetation diseases and decline processes. Part 2
reviews the recent advances in the development of quantitative methods to assess PI through hyperspectral and thermal images.
Recent Findings In recent years, the availability of high-resolution hyperspectral and thermal images has increased due to the
extraordinary progress made in sensor technology, including the miniaturization of advanced cameras designed for unmanned
aerial vehicle (UAV) systems and lightweight aircrafts. This technological revolution has contributed to the wider use of
hyperspectral imaging sensors by the scientific community and industry; it has led to better modelling and understanding of
the sensitivity of different ranges of the electromagnetic spectrum to detect biophysical alterations used as early warning
indicators of vegetation health.
Summary The review deals with the capability of PIs such as vegetation temperature, chlorophyll fluorescence, photosynthetic
energy downregulation and photosynthetic pigments detected through remote sensing to monitor the early responses of plants to
different stressors. Various methods for the detection of PI alterations have recently been proposed and validated to monitor
vegetation health. The greatest challenges for the remote sensing community today are (i) the availability of high spatial, spectral
and temporal resolution image data; (ii) the empirical validation of radiation–vegetation interactions; (iii) the upscaling of
physiological alterations from the leaf to the canopy, mainly in complex heterogeneous vegetation landscapes; and (iv) the
temporal dynamics of the PIs and the interaction between physiological changes.
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Introduction

This review focuses on the recent progress in remote sens-
ing detection of early responses of plants to biotic and
abiotic stresses. One of the main challenges for the re-
search community is to develop viable detection methods
to anticipate long-term irreversible damage to stressed veg-
etation before symptoms are visible so that action can be
taken [1]. At an early stage of stress, alterations in the
photosynthetic rate and stomatal conductance affect sun
radiation–vegetation interactions, including the energy dis-
sipated as heat or emitted at longer wavelengths as chloro-
phyll fluorescence, and the gradual effects on the photo-
synthetic pigment concentration in plant leaves. Recent
studies have demonstrated the capability of spectral data
to detect physiological alterations and anticipate vegetation
diseases such as Phytophthora [2], Xylella fastidiosa [3••],
Verticillium wilt [4] and almond red leaf blotch [5], as well
as environmental stressors such as water stress [6]. These
achievements represent a major step forward in the moni-
toring of vegetation health from airborne remote sensing
imagery and its potential application to satellite scales.
Therefore, this review focuses on recent developments in
the early detection of biotic- and abiotic-induced symp-
toms using hyperspectral and thermal images. It describes
four groups of physiological indicators (PIs) of critical im-
portance in plant functioning for improving vegetation
monitoring: (i) vegetation temperature, (ii) chlorophyll
fluorescence, (iii) photoprotective pigments or the xantho-
phyll cycle and (iv) photosynthetic pigments (Fig. 1).

Part 1: Physiological Indicators of Vegetation
Health

New strategies using the radiation pathways of the photon–
vegetation interaction have recently been proposed as a way to
detect plant physiological status through remote sensing.
Light energy absorbed by vegetation can be used for photo-
synthesis, re-emitted as sun-induced fluorescence (SIF) or dis-
sipated as heat. Any alteration in the efficiency of one of the
components will affect the other two. Light re-emitted as SIF
is produced by the pigment–protein complex photosystems I
(PSI) and II (PSII) involved in photosynthesis. Although SIF
is a small emission (2–3% of the incoming radiation), it is a
strong proxy for plant photosynthesis. Plant responses to en-
vironmental stress (e.g. light, nutrients, water availability, ex-
treme temperatures) affect the photosynthetic rate and there-
fore fluorescence emission. For this reason, SIF has been used
for decades as a powerful non-invasive marker to track the
status, resilience and recovery of vegetation [7].

Additionally, vegetation temperature is related to stomatal
conductance and transpiration-associated evaporative cooling.
Specifically, when stomatal conductance decreases due to sto-
ma closure under water stress conditions, vegetation temper-
ature increases and the transpiration rate decreases according-
ly. Consequently, vegetation temperature has been used to
derive information about transpiration and as an indicator of
vegetation health. The first study using this approach was
conducted in 1964 onQuercus macrocarpa and demonstrated
the suitability of temperature to monitor transpiration [8].
Since this pioneering research, vegetation temperature has

Fig. 1 Physiological indicators used to quantify early-stage vegetation
health from hyperspectral and thermal data. Retrieval methods for four
physiological-based groups used as indicators in remote sensing include
(i) the difference between crown temperature and air temperature (Tc –
Ta), the crop water stress index (CWSI) and the water deficit index

(WDI); (ii) the Fraunhofer line depth principle (FLD); (iii) the photo-
chemical reflectance index (PRI); and (iv) the chlorophyll (Cab), carot-
enoid (Cxc) and anthocyanin (Anth) vegetation indices (VI), and radiative
transfer models (RTM)
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been used to determine water status [9, 10], irrigation require-
ments in agriculture [11] and pest and disease incidence [3••,
12••, 13] and forest decline [14]. Compared to point ground-
based measurements, the ability to remotely detect temporal
and spatial variations in vegetation temperature as an indicator
of water stress is considered a major advantage. Moreover, the
relation between transpiration and vegetation temperature is
underpinned by the energy balance equation [15], which im-
plies the balance between incoming energy and energy loss
and provides a theoretical basis for modelling methods and
applications.

Various mechanisms overcome the excessive reduction of
the light energy transferred when photosynthesis is reduced
by stress or limited resources. These mechanisms downregulate
the rate of electron transport in plant cells and dissipate excess
energy controlling the facultative pool of xanthophyll pigments
in plants known as facultative changes. The dissipation of ex-
cess energy by facultative non-photochemical quenching
(NPQ) through the xanthophyll cycle is one of these mecha-
nisms. NPQ is particularly interesting because it can provide an
optical signal of excess of reducing power, increased NADPH/
NADP ratios and reduced light-use efficiency (LUE).
Therefore, NPQ is linked to stress, caused by limited resources,
and to the plant photosynthetic activity through associated
changes in reflectance in the blue and green regions of the
spectrum [16]. When excess excitation energy accumulates in
the leaf, the chloroplast thylakoid pH gradient builds up and the
xanthophyll cycle is activated: violaxanthin is de-epoxidized to
zeaxanthin via antheraxanthin. These chemical changes affect
the spectrally selective absorption of light, the relative absorp-
tion by each pigment and hence the leaf spectral reflectance and
transmittance factors. These changes in reflectance result from
changes in the de-epoxidation state of the xanthophylls, with
increases in the concentration of zeaxanthin and consequent
decreases in reflectance around 531 nm.

Increasing levels of vegetation stress over time can
ultimately cause variations among leaf photosynthetic pig-
ment pools known as consti tut ive changes. The
discolouration produced by the variation in pigment con-
tent has also been used as an indicator of vegetation
health [17•]. The three main pigment groups are com-
posed of chlorophylls, carotenoids and anthocyanins.
Chlorophyll occurs in the form of chlorophyll a (Chla)
as the major pigment and chlorophyll b (Chlb) as the
accessory pigment. Both are genuine components of the
photosynthetic membrane and occur in a ratio a/b value
between 1 and 4 reflecting growth and stress [18, 19].
Drought stress led to a decrease in Chla and Chlb and
increase in the Chl a/b ratio due to greater reduction in
Chlb compared to Chla. Carotenoids provide structure to
the photosynthetic membrane, and play a role in light
harvesting processes, energy transfer and NPQ through
the xanthophyll cycle [20]. Anthocyanins are water-

soluble flavonoids involved in plant protection against
drought and stress [21] and photooxidative processes [2,
22] with an exponential decay with increases in Chlab
content. Their assessment has typically been conducted
in the context of senescence and fruit-ripening processes
[23–25].

Part 2: Retrieval Methods and Applications
to Vegetation Health

Given the importance that vegetation functioning plays in the
monitoring of vegetation health, great efforts have been direct-
ed towards non-destructive retrieval methods at different spa-
tial scales using various sensors and analytical methods.
Figure 2 shows an example of the main PIs used for monitor-
ing vegetation health that can be quantified with hyperspectral
and thermal images using a broad range of approaches de-
scribed below.

Vegetation Temperature

Vegetation temperature (VT) is a key indicator for vegetation
health monitoring and several related applications have been
identified [27]. However, accurate retrieval of VT from remote
sensing data requires an accurate atmospheric correction. The
main problem in obtaining accurate VT retrieval is the coupling
between land surface temperature (LST) and land surface emis-
sivity (LSE). Retrieval of vegetation emissivity is also of inter-
est because the emissivity spectrum of vegetation provides in-
formation about leaf composition and health status [28].

Several LST (and LSE) retrieval methods have been pub-
lished in recent decades (see a review by Li et al. [29]). These
methods can be classified according to the spectral configura-
tion of the thermal infrared (TIR) sensor. Hence, single-
channel (SC) algorithms have been developed for LST retriev-
al from a single TIR band, such as the previous Landsat series
[30]. However, these methods are typically very sensitive to
uncertainties in the atmospheric correction (e.g. in humid at-
mospheres). This problem of atmospheric correction in SC
algorithms can partly be solved when two TIR bands are
available. This is the case of the two-channel (TC) or split-
window (SW) algorithms. These algorithms perform the at-
mospheric correction based on the differential absorption be-
tween two TIR bands located in atmospheric windows and
usually provide robust retrievals in all types of conditions.
An example is LST products generated from TIR data ac-
quired by polar-orbiting or geostationary meteorological sat-
ellites (e.g. MetOp, Meteosat, GOES) and the recent Sentinel-
3. Both SC and TC algorithms require a priori knowledge of
surface emissivity, which can be retrieved from vegetation
indices and/or data measured in other parts of the electromag-
netic spectrum [31].
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The innovation of multispectral TIR sensors (with three or
more TIR bands in atmospheric windows) has encouraged the
development of temperature and emissivity separation (TES)
methods for simultaneous retrieval of LST and band emissiv-
ities. This is the case of the TES algorithm developed for
ASTER [32] and also adapted to other satellite sensors such
as MSG/SEVIRI [33] and Terra&Aqua/MODIS [34]. In prin-
ciple, TES methods are preferred for emissivity retrieval be-
cause they are extracted from TIR data, thus reflecting the
actual conditions of the surface [35]. TES methods have also
been applied to hyperspectral TIR data, usually acquired from
airborne sensors or ground-based instruments based on
Fourier transform infrared (FTIR) spectroscopy. Some of
these techniques are based on spectral smoothness [36].
Emissivity spectrum retrieval from hyperspectral TIR imaging
or FTIR laboratory spectroscopy has led to the use of emis-
sivity spectral features for identification of plant species [28]
and changes in canopy leaf area index [37].

In the 1980s, Idso and Jackson’s group demonstrated the
need to normalize vegetation temperature according to envi-
ronmental conditions. Air temperature, relative humidity and
solar radiation strongly influence the absolute value of vege-
tation temperature and should, therefore, be considered in de-
riving any information about vegetation health. The final for-
mulation developed by Idso et al. [38] to account for the in-
fluence of environmental conditions on vegetation tempera-
ture was termed crop water stress index (CWSI). This index is
derived from the energy balance and relies on normalization
according to air temperature and two bounding limits (Eq. 1):

CWSI ¼ Tc−Tað Þ− Tc−Tað ÞLL
Tc−Tað ÞUL− Tc−Tað ÞLL

ð1Þ

where (Tc − Ta)LL is the lower limit of the differential be-
tween vegetation and air temperature and corresponds to
the Tc−Ta value of the vegetation transpiring at the

Fig. 2 Pre-visual physiological indicators based on hyperspectral and
thermal data: a leaf reflectance alterations in the visible and infrared
ranges produced by the variation in chlorophyll content (10–60 μg/
cm−2) [6]; b reflectance difference after light excitation showing the
non-photochemical quenching and chlorophyll fluorescence emission

on vegetation [26]; c relationship between the crop water stress index
(CWSI) measured with infrared thermal sensors (IRT) sensors and the
ratio between daily values of actual to potential transpiration (E/Ep) in
mandarin trees in deficit-irrigated (DI) and well-irrigated (control trees)
conditions; d high-resolution hyperspectral and thermal images
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potential rate. (Tc − Ta)UL is the vegetation differential
when transpiration is completely halted.

The CWSI can be determined empirically by assessing the
value of the lower and upper limits or by modelling the energy
balance at the canopy level [39]. In the empirical approach, the
lower limit is computed using the non-water stress baseline
(NWSB), which accounts for the relationship between the
vapour pressure deficit (VPD) and the Tc−Ta value of the
vegetation transpiring at the potential rate. It is species-
specific and is affected by climatic conditions; thus, the ex-
trapolation is restricted by the environment. For some species,
it also varies according to plant phenology [40]. It can be
determined by the continuous monitoring of temperature in
plants that are not limited by water availability. The upper
limit can be calculated by solving the NWSB equation for
VPD = 0, and subsequently correcting for the difference in
vapour pressure induced by the difference in temperature
Tc – Ta [38]. The required inputs are limited to vegetation
and air temperature and the VPD. However, this method has
several limitations. First, the NWSB should be determined
before the practical application of the CWSI is implemented.
When the NWSB is not available for a specific species/
environment combination, the Tc value of plants transpiring
at the potential rate must be known, ideally by determining the
NWSB during the season. Moreover, as the CWSI is not nor-
malized by the solar radiation, the measurement must be ac-
quired under cloudless conditions and at midday to minimize
this effect and obtain more robust estimates [41]. This can be a
significant drawback in humid or temperate regions [39].

In its simplest form, the CWSI can also be determined
directly by measuring the temperature of a wet (Twet) or dry
surface [42]. These surfaces are included in the image and can
be leaves either sprayed with water (Twet) or covered with
petroleum jelly (Tdry), or an artificial surface with a thermal
behaviour similar to that of the canopy. Although this method
is very appealing because it does not require meteorological
measurements, its accuracy is strongly affected by the refer-
ences used, as Twet is often lower than potential T [39].
Moreover, there is a scale issue, as the surface references usu-
ally have the size of a leaf and are thus used at the plant level,
making the upscaling to airborne imagery difficult [43].

The CWSI can also be determined theoretically by deriving
it from the energy balance (Eq. (2)), as proposed by Jackson
et al. [44]:

CWSI ¼ 1−E=Ep ¼ γ � 1þ rc=rað Þ−γ*
Δþ γ � 1þ rc=rað Þ ð2Þ

where E and Ep are actual and potential transpiration, respec-
tively, Δ is the slope of the saturated vapour pressure–
temperature relationship, γ is the psychrometric constant, ra
is the aerodynamic resistance and rc is the canopy resistance to
vapour transport. The complex data requirement is the main

limitation on use of this approach. Compared with the empir-
ical approach, it can be applied under a wider range of weather
conditions, as the net radiation is incorporated into the formu-
lation. It is especially relevant for humid environments.

In open canopies, the surface temperature is a composite of
soil and vegetation, which makes the CWSI not reliable, ham-
pering its application on local and regional scales. This prob-
lem was explored by Moran et al. [45], who introduced the
water deficit index (WDI). The WDI is based on the vegeta-
tion index/temperature trapezoid. It combines spectral vegeta-
tion indices with surface temperature measurements to allow
application of the CWSI theory to partially vegetated fields
without data on foliage temperature. Nevertheless, this ap-
proach does not always work well when the goal is to detect
subtle temperature changes associated with vegetation stress.

Chlorophyll Fluorescence Emission

Research carried out over the last 20 years has provided the-
oretical and experimental evidences that SIF can be retrieved
from imaging spectroscopy and used as an indicator of plant
photosynthetic activity. The SIF emission spectrum is maxi-
mum at 682 nm for the PSII and 700 to 750 nm for PSI. There
are many different parameters retrieved from SIF. For in-
stance, the integral of the spectral fluorescence radiance in
the observation direction (F) over the full retrieval range
(e.g. 670–780 nm, 650–850 nm) (FINT), the maximum value
ofF in the red region (maxFR), themaximum value of F in the
far-red region (maxFFR),F value at 687 nm (F687), F value at
740 nm (F740) or F value at 760 nm (F760). However, the
retrieval of SIF from images is extremely challenging due to
the small contribution of the emission to total radiance.
Several methods have been developed to quantify SIF at the
leaf and canopy levels. The most common approaches to re-
trieve SIF from reflected radiance under field conditions are (i)
the Fraunhofer line depth principle or discriminator (FLD)
[46] using radiance spectra from the O2 absorption bands;
(ii) radiative transfer modelling (RTM); (iii) spectral fitting
methods (SFM) and singular vector decomposition (SVD).

Initial attempts to track the effects of fluorescence emission
on reflectance signatures were based on computing a combi-
nation of spectral reflectance bands: a band near the two max-
imum fluorescence emissions (about 685 and 740 nm) and a
reference band that is less affected. Some of the formulations
have been validated in vegetation at the canopy level [26]:
R680/R630, R685/R630, R686/R630, R690/R630, D730/D706, DλP/
D703, R683

2/(R675 × R691) and R685/R655, D705/D722 and D730/
D706, R690/R600 and R740/R800.

The FLD method initially proposed for the H absorption
calculates SIF using the sun’s irradiance and canopy radiance
inside and outside the O2 absorption bands (such as the O2-A
band at 760.5 nm). The main limitation of this formulation is
to assume that reflectance and fluorescence inside and outside
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the O2-A band are the same. Several methods have been used
to improve the formulation and linearly correlate reflectance
with fluorescence. Some examples using airborne image data
are 3FLD [47], corrected FLD (cFLD) [48] and improved
FLD (iFLD) [49] reviewed by [50]. By contrast, SFM and
SVD use all available hyperspectral bands to quantify the
contribution of fluorescence and reflectance [51].

One of the first attempts to model the effects of fluores-
cence emission on the radiance and reflectance signatures was
made by the European Space Agency (ESA). ESA developed
the FluorMOD leaf [52] and the canopy FluorSAIL [53]
models, including the fluorescence excitation–emission ma-
trix to simulate the fluorescence effects at the canopy level.
FluorMODleaf was based on the widely used and validated
PROSPECT leaf optical properties model. It required the in-
put of the σII/σI ratio, referring to the relative absorption
cross-section of PSI and PSII, and the fluorescence quantum
efficiency of PSI and PSII, τI and τII. This model was recently
computationally improvedwith FLUSPECT [54]. The canopy
model was based on the turbid medium SAIL model
(FluorSAIL), modified to internally compute the illumination
levels through the canopy.

Extensive work has been conducted with FluorSAIL in ho-
mogeneous canopies. Yet, progress has been made in the de-
velopment of modelling methods to retrieve pure vegetation
fluorescence from aggregated pixels with FluorFLIM using
the linked FluorMODleaf-FluorSAIL with the geometric forest
light interaction model (FLIM) [55]. Further strategies to quan-
tify SIF from heterogeneous natural ecosystems have been lim-
ited by difficulties in simulating canopy structure, crown over-
lapping, mutual shading and multiple scattering between
crowns. The development of the model SCOPE (Soil Canopy
Observation, Photochemistry and Energy fluxes) model [56]
improved the effect of the environment (e.g. sun position and
biochemical composition of the vegetation). Nevertheless,
SCOPE is still a 1-D model and therefore ignores the vertical
and horizontal variations in surface characteristics. This limits
its range of applications in heterogeneous ecosystems. To fill
this gap, a 3-D canopy FluorFLIGHT RTM was proposed by
Hernández-Clemente et al. [12••] to properly parameterize the
heterogeneous canopy structure. This model proposes a novel
approach by linking the FLUSPECT model to the 3-D ray-
tracingmodel (FLIGHT) to estimate F signals in heterogeneous
forest canopies. Forest canopies are characterized by high hor-
izontal and vertical heterogeneities.

Consequently, the radiative transfer within a forest canopy
depends on the spatial distribution of the canopy elements
relative to each other and the subsequent complex radiative
processes such as multiple scattering, mutual shading of the
crowns and shading of the background. The model has been
validated for detecting oak trees infected by Phytophthora in
[12••] and olives trees infected by Xylella fastidiosa [3••].
Additionally, the DART RTM [57] has recently incorporated

fluorescence emission in the radiative transfer of 3-D scenes.
DART is able to simulate more complex 3-D scenes with
different types of elements and distributions. Yet, models
using a large set of input parameters could also increase the
errors, so that further of this complex model validation over
different types of ecosystems is still a delicate task.

Energy Dissipated During Photosynthetic
Downregulation

A common way to quantify stress-related spectral changes is
to use the photochemical reflectance index (PRI) calculated
from the leaf spectral reflectance factor R(λ), where λ is the
wavelength given in nanometers, as indicated in Eq. 3:

PRI ¼ R 531ð Þ−R 570ð Þ
R 531ð Þ þ R 570ð Þ ð3Þ

The two wavelengths are located on different sides of the
green absorption minimum (λ = 550 nm), where λ = 531 nm
is the wavelength that is most affected by reversible changes
[3••] and λ = 570 nm is a reference wavelength where the
typical absorption of other pigments of a green leaf is the same
as at 531 nm. The diurnal variation of the PRI is mainly driven
by the mentioned changes in the xanthophyll cycle [58, 59]
which are considered facultative changes in pigments. The
PRI is also proportional to the chlorophyll and carotenoid ratio
relative to the energy status and photosynthetic activities as-
sociated with changes in chlorophyll/carotenoid ratios
throughout foliar development, ageing or stress [60]. In sea-
sonal time scales (i.e. over weeks and months), the PRI vari-
ation thus combines changes in the xanthophyll cycle and
changes in the pools of carotenoids and chlorophylls
[60–62], which are considered constitutive changes in pig-
ments. Recent studies have shown that these constitutive
changes in pigment pool size have a dominant influence on
the chlorophyll/carotenoid index (CCI, a modified PRI calcu-
lated using the chlorophyll absorption band as reference) over
long periods [63, 64].

The tracking of LUE and photosynthetic performance via
the PRI has been extensively explored over the last two de-
cades. The PRI is a good predictor of photosynthetic efficien-
cy and the connection between this index and dynamic
photoprotection is well established at leaf level across species,
functional types and nutrient treatments. The PRI accounted
for about 60% of the variability of LUE at the leaf, canopy and
ecosystem levels in unique exponential relationships for all
the vegetation types studied [65, 66]. It tracks the rapid phys-
iological changes that are usually difficult to follow in ever-
green species using indices of greenness and canopy structure,
such as the normalized difference vegetation index (NDVI)
[58, 59, 65–67]. Furthermore, the PRI is a good indicator of
the photosynthetic apparatus across functional types and
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spatiotemporal scales [65, 68••] and has detected the reactiva-
tion of photosynthesis from winter stress in evergreen species
[63, 64, 69]. The effects of seasonal drought on the photosyn-
thetic apparatus have also been detected by satellite-based PRI
[70, 71]. Maximum CO2 assimilation has been efficiently es-
timated by the PRI under severe drought conditions [72]. In
addition, Rossini et al. [73] demonstrated that changes in the
PRI were correlated with water stress in maize. Photosynthetic
variability induced by heat and drought is simultaneously ac-
companied by complex physiological and biochemical pro-
cesses that could, however, constrain the PRI-based estima-
tion of the photosynthetic apparatus.

However, scaling of the PRI from leaf to canopy level
requires considering numerous factors other than leaf bio-
chemistry. While generally referred to as canopy structural
effects, they also include the influence of measurement direc-
tionality, mixing of the spectra of the various canopy compo-
nents and complex illumination conditions. This refers to ef-
fects caused by the shift from measuring a well-characterized,
uniform target to working under natural illumination with a
target composed of a large number of individual and direc-
tional scatterers. Indeed, multiple scattering in vegetation can
be calculated using basic canopy structural information and
the harmonic mean of leaf spectral reflectance at the two
wavelengths used in the index. Unfortunately, the other factors
are more difficult to quantify, may co-vary with changes in
view or sun angle (e.g. visibility of soil background, a fraction
of shaded leaves in sensor field of view and blue sky irradi-
ance on the visible leaves) and are difficult to separate in
empirical data.

To address this major research gap, various studies have
proposed different methods for minimizing background and
illumination effects on the PRI. An option is to use the
illumination-corrected PRI (DeltaPRI) proposed by Takala
and Mõttus [74] using the relationship between the PRI and
the shadow fraction. According to this study, illumination-
induced effects are nearly half of the observed dynamic range
of canopy PRI calculated using high spatial resolution air-
borne imaging spectroscopy data (less than 2-m resolution).
Some authors have demonstrated the need to consider modi-
fied PRI formulations (such as the PRI512 index) that are less
affected by structural components to detect vegetation stress
in forest canopies [14]. Others have focused on improving the
PRI to decrease the influence of these physiological and phys-
ical factors that hamper the detection of photosynthetic activ-
ity [68••]. The differential PRI is one of these corrections
obtained by subtracting dark-state PRI from light-exposed
PRI [75, 76], by subtracting predawn PRI from midday PRI
[77], or by subtracting the actual PRI from the theoretical PRI
calculated by RTM inversion techniques [78]. The DeltaPRI
can eliminate the impacts of canopy structure and foliar pig-
ments on PRI interpretations. In addition to dynamic photo-
synthetic downregulation, the PRI also reflects long-term

photoprotective mechanisms apparent as changes in leaf pig-
ment pools, which cannot be neglected since they affect the
reference band at 570 nm. To correct for this and detect
photoprotection, the unstressed (i.e. predawn) PRI value
needs to be subtracted from leaf measurements, which can
be further elaborated to deconvolving daily and seasonal
changes [79]. Unfortunately, this task requires multiple suc-
cessful image acquisitions in a single day, which may not
always be feasible. The consistency of the relationships be-
tween PRI, LUE and ecosystemic CO2 uptake [66] suggests a
surprising degree of ‘functional convergence’ of biochemical,
physiological and structural components that affect plant and
carbon fluxes. As an alternative to the PRI, it has been pro-
posed to integrate the whole spectral area affected by the
downregulation (the 507–556-nm region) [80]. The xantho-
phyll cycle status can also be retrieved by inverting the recent
modifications of the PROSPECT leaf optical model
(PROSPECT-D [81] and Fluspect-CX [82]. These methods,
which are computationally more complex, have shown prom-
ising results, but are nevertheless hindered by the canopy
structural effects.

Spectral Alterations Associated with Pigment Content
Variation

The main spectral regions sensitive to pigment absorption are
located between 400 and 700 nm where the light spectrum
useful for plant is largest [18, 83]. This determines the absorp-
tion of natural light by vegetation. The red edge region has
also been demonstrated to change with chlorophyll concentra-
tion and quick photosynthetic rate changes [84, 85]. Hence,
the main difficulty of remote pigment assessment is to disen-
tangle the signals related to individual pigment and structural
changes in plant canopies. Retrieval methods need to account
for this overlap, especially when differentiating between chlo-
rophyll and other pigment groups [86, 87].

Traditional remote sensing approaches to assess pigment
concentration in heterogeneous forest areas have mainly fo-
cused on establishing empirical relationships between pig-
ment concentration values measured in the field and vegeta-
tion index results of the combination of spectral bands. The
use of vegetation indices is a popular choice to reduce unwant-
ed structural, atmospheric and background effects at the can-
opy level [59, 88]. The development of indices for quantifying
pigment concentration is based on the known location of spec-
tral features related to specific absorptions [89]. While these
indices are based on the leaf spectral signal as a result of
pigment concentration, their performance can decrease when
applied to canopy image data where the mixed-pixel signal is
affected by woody elements, canopy structure, crown archi-
tecture, the understory and soil background [90]. Croft et al.
[88] reviewed the performance of indices used at both the leaf
and canopy scales for both conifer and broadleaf species.
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Several studies have attempted to estimate pigment con-
centration through empirical approaches correlating broad-
band vegetation indices calculated from multispectral satellite
imagery with field data [88]. Although these methods are ap-
propriate for assessing large areas, the use of narrowband
spectral information, typically provided by hyperspectral sen-
sors, is suggested as the best procedure for pigment estimation
where spectral responses are provided as narrow signal fea-
tures [91]. Another limitation of traditional empirical methods
based on vegetation indices is their poor performance in forest
areas with high structural complexity. Croft et al. [88] demon-
strated that the performance of broad and narrowband indices
varies significantly for different forest structures. The effect of
canopy structure and soil background on the performance of
methods relying on vegetation indices has also been demon-
strated through RTM [92, 93]. To minimize the level of un-
certainty in the predictions based on only a few spectral bands,
methods using the full information acquired by hyperspectral
systems in numerous continuous narrow bands have been de-
veloped [94]. They make it possible to conduct an extended
analysis over multiple spectral regions and to quantify spectral
peaks affected by both biochemistry and structure through
continuum removal analysis and band depth normalizations
[95–97].

Some statistical approaches that have been applied to
hyperspectral imagery do not require previous knowledge of
the location of spectral features. They range in complexity level
from simple models such as linear discriminant analysis to
complex machine learning techniques and neural networks.
Although statistical models are very accurate locally, they can
only be applied to the areas they were developed for and are not
readily applicable to other sites and vegetation types [88, 98].

In search of more synoptic approaches, several authors
have used RTM with various degrees of success. Model de-
velopments since the early 1990s opened the possibility of
integrating structural and biophysical data into the radiative
transfer scheme, thereby providing the means to understand
the effects of the different components on the overall reflec-
tance signal. The development of leaf models, simulating the
leaf spectral response as a function of its main structural com-
ponents including chlorophyll content and later carotenoids,
provided a tool to explore more universally applicable
methods [99, 100]. Leaf spectrum simulations can be used
as input in canopy models that consider the vegetation struc-
ture and background properties at different degrees of com-
plexity [87]. Models can be either inverted to derive input
values from image spectra [101] or used as a tool to develop
robust algorithms based on vegetation indices. Although there
is extensive literature documenting pigment absorption spec-
tra and indices to use with leaf spectral data, methods devel-
oped at the leaf level are not ready to be used with canopy
reflectance [6]. The effect of viewing and illumination geom-
etry and the arrangement of the different elements on the

ground and their spectral signal need to be considered [14,
92, 93, 102]. Models simulate canopy reflectance with vary-
ing levels of detail. They range from 1-D models where the
canopy layer is considered a continuous medium with a ho-
mogeneous composition to three-dimensional models that al-
low the representation of heterogenous discontinuous cano-
pies with a very high level of detail [103]. The selection of
the model to use is a compromise among the level of detail
needed to properly describe the study area, input data avail-
ability and computational requirements needed to conduct the
simulations or the model inversion. Homogeneous and con-
tinuous canopies composed of a single species can be assessed
using 1-D models [93, 104, 105]. Discontinuous canopies and
areas where specific vegetative components impart an impor-
tant effect on overall reflectance (e.g. woody material) require
accounting for the contribution of the canopy structure effects
on radiative transfer schemes to obtain accurate assessments
[87, 106, 107].

Conclusion, Gaps and Future Prospects

Data Acquisition and Quality

There is consensus in the remote sensing community on
the lack of availability of high spatial, spectral and tempo-
ral resolution VIS, NIR and TIR data [108•]. The highest
spectral resolution in satellites with regular acquisition
schedule is currently provided by MODIS while the
highest spatial resolution is provided by Sentinel and the
highest temporal range by Landsat. The spatial, spectral
and temporal resolutions of satellite sensors constrain the
reliability of monitoring plant biochemical variables such
as pigment content or LAI at different spatial and temporal
scales [109]. Several TIR sensors have been launched for
Earth Observation (EO) purposes since the development of
the first experimental HCMM TIR mission in the late
1970s. However, most of these sensors provide TIR data
at low spectral and spatial resolutions. Applications of TIR
data for studies on natural resources were boosted by the
launch of Landsat-4 in the early 1980s, which included the
first TIR sensor at a high spatial resolution. The launch of
ASTER in December 1999 was a further step towards TIR
applications because of its unique multispectral TIR char-
acteristics (five TIR bands at high spatial resolution). The
ECOsystem Spaceborne Thermal Radiometer Experiment
on Space Station (ECOSTRESS) was recently mounted on
the International Space Station (ISS) to monitor plant pro-
cesses from space and is providing multispectral TIR im-
agery in five spectral bands at a spatial resolution below
100 m (ecostress.jpl.nasa.gov). Other future TIR missions
such as Copernicus’ Sentinel-8 or NASA’s HyspIRI may
also include multispectral capabilities at high spatial
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resolutions. In spite of these EO advances, significant gaps
remain which clearly need addressing.

The aforementioned limitations of EO satellites for TIR
applications requiring high spatial/spectral/temporal resolu-
tions have typically been solved by using aerial remote sens-
ing technologies. The procedure has been to use broadband,
multispectral and hyperspectral TIR sensors mounted on
planes under well-controlled conditions. This makes it possi-
ble to organize dedicated field campaigns for the acquisition
of high-quality thermal imagery. Since the development of the
thermal infrared multispectral scanner (TIMS) in the early
1980s [110], various airborne multi-/hyperspectral TIR sen-
sors have operated in dedicated field campaigns. Some exam-
ples are the MODIS/ASTER (MASTER) simulator, the
Spatially Enhanced Broadband Array Spectrograph System
(SEBASS), the Airborne Hyperspectral Scanner (AHS), the
Thermal Airborne Spectrographic Imager (TASI) and the
Hyperspectral Thermal Emission Spectrometer (HyTES).
SEBASS and HyTES have been used to identify plant species
[28], AHS has been used to detect water stress in an olive
orchard [111•] and MASTER has been used to assess LST
variability and crop stress [112].

Given that dedicated field campaigns using high-quality
airborne sensors incur high costs, proximal remote sensing
using unmanned aerial vehicles (UAVs) has rapidly developed
in recent years. However, due to their low load capacity,
UAVs do not allow configurations using heavy instruments.
In practice, small-sized and uncooled TIR cameras are cur-
rently used for thermal monitoring with UAVs. These un-
cooled microbolometer TIR cameras (FLIR Tau 2 or
Thermoteknix MicroCAM 3) operate without an active tem-
perature stabilization component, which can lead to LST re-
trievals whose precision is too low for some agricultural ap-
plications [113, 114]. This problem may be partly solved by
applying dedicated corrections to the data acquired with the
uncooled TIR instrument [114]. However, the calibration of
uncooled TIR cameras to absolute temperature measurement
is a time-consuming and complex process [115].

The rapid development of new hyperspectral sensors to be
carried onboard manned airborne and UAV platforms has giv-
en rise to the retrieval of high spatial resolution SIF at local
scales, which is becoming a novel area of research [12••, 54,
114, 115]. Some of the in situ-based SIF measuring systems
currently tested are FloX, JB Hyperspectral, PhotoSpec,
Piccolo and HyScreen. Fluorescence data previously amassed
from space were collected onmissions not purposely designed
for SIF but employing hyperspectral sensors such as OCO-2,
GOME or TANSO/GOSAT [116]. However, it remains very
challenging to cover the large areas required for forest moni-
toring analysis at a very high resolution. The measurement of
SIF requires highly accurate radiance and retrieval methods
reliant on instrument characterization and measurement setups
and protocols. This has hitherto been the main limitation for

studying the physiological condition of forest canopies in
higher detail, as current available satellite sensors are limited
by their spatial and spectral resolutions for SIF retrieval
purposes.

To address the current gap in SIF collected at the global
scale, the European Space Agency’s Earth Explorer Mission
of the ‘Fluorescence Explorer’ (FLEX) [117], the first mission
designed to observe the photosynthetic activity of the vegeta-
tion layer on a global level, has recently been approved, with
2022 as the tentative launch date. For the first time, this mis-
sion will enable the assessment of the dynamics of photosyn-
thesis in forest canopies through sun-induced fluorescence at
300-m spatial resolutions; in addition, it will be able to distin-
guish different fluorescence signals from PSI and PSII [118].
This offers a great advantage over current techniques used for
photosynthesis monitoring based on green biomass estima-
tions rather than on physiological processes acquired from
conventional Earth-resource satellites. Detection of photosyn-
thetic processes at the global level will change the scope of
environmental and ecosystem management approaches and
opens up a new line of research for ecological management
and conservation. One of the major uncertainties to get there is
understanding the relationship between SIF, PRI and LST
towards estimating photosynthetic rates under different stress
conditions. A recent experiment with passive proximal remote
sensing at the leaf level demonstrates that it is feasible to
estimate NPQ based on PRI and APAR, but under stress con-
ditions, the relationship is strongly alternated [119]. The val-
idation of these results at the canopy level will imply having
into account the additional effect of other geometrical and
structural components of the canopy and the background.

From the Leaf to the Canopy: Upscaling Limitations

Many constraints arise from the accurate scaling up and re-
trieval of PI from the leaf to the canopy. Such constraints are
mainly related to the variations in plant functioning, canopy
structure, atmosphere, pigments and soil background at differ-
ent scales and have different impacts on the PI.

Atmospheric eddies induce variability in the thermal range
that can limit the precision of LST retrievals [27, 120]. The
contribution of pixels outside the field of view of the sensor
(i.e. neighbour pixels) to the TIR radiance of the target pixel
(i.e. adjacency effect) also induces uncertainty into the LST
retrieval. Yet, the impacts of this effect on TIR measurements
have yet to be adequately studied. Overall, precise characteri-
zation of surface emissivity is the limiting factor for accurate
LST retrievals (emissivity uncertainties of 1% lead to LST un-
certainties between 0.4 and 0.6 K; Gomis-Cebolla et al. [121]).
Fortunately, most of these impacts are somehow minimized
over green vegetation because of its thermal homogeneity and
high emissivity. However, emissivity characterization over dry
(i.e. senescent) vegetation is more problematic, with a high
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impact on LST [122]. The scaling issue is still problematic in
some applications because spectral features observed at the leaf
level from in situ or laboratory measurements disappear at the
metre scale when using airborne data [123].

The greatest challenges with the routine use of the PRI in
vegetation health monitoring at the global scales lie in the
difficulty of separating the long- and short-term dynamic com-
ponents in the PRI and the difficulty in scaling up the index
from canopy to leaf level. Solving these issues may require
evaluating the full spectral information available in the region
affected by the dynamic photoprotection processes (505–
560 nm) instead of focusing on a single index, or at the very
least reformulating the PRI. We also need more research on
scaling with a full description of leaf optics as well as com-
prehensive and temporally extensive calibrated leaf-level
measurements to accompany remote spectral imagery.
Further research is warranted to better understand the spectral
response produced by the temporal and spatial dynamics of
the photosynthetic activity so that it can be generalized to the
ecosystemic and biospheric scales. In short, these problems
are related to the structural differences of canopies, the vary-
ing ‘background effects’ (e.g. soil colour, moisture, shadows,
the presence of other non-green landscape components), the
effects of seasonality or the signals derived from variations in
illumination and viewing angles.

One of the main challenges for scaling up chlorophyll fluo-
rescence is the establishment of a relationship between leaf
chlorophyll fluorescence and satellite-based measurements.
In recent years, passive methods for remotely measuring chlo-
rophyll fluorescence have been developed and applied. Field-
portable pulse amplitude modulated (PAM) devices have been
widely applied to individual leaves. They provide an approach
for bottom–up validation of steady-state fluorescence yield
(Fs) for canopy photosynthesis models. Alternatively, Fs can
also be measured with a FluorPen FP100 (Photon Systems
Instruments, Brno, Czech Republic). Although measurements
taken with both fluorescence instruments differ from airborne
SIF retrievals, leaf data have been successfully used as a field-
level assessment in vegetation health analysis [12••, 121].
However, fluorescence is a low-intensity signal that overlaps
with the much brighter red and near-infrared reflected radia-
tion. These methods are designed to disentangle both signals,
providing an indirect measure of fluorescence. Early on, it
became clear that it was necessary to have a way of validating
the retrievals or, at least, to have an estimate of the order of
magnitude of the expected fluorescence signal. This need led
to the design of a clip that allowed an attached leaf sample to
be fully illuminated by natural sunlight, inducing photosyn-
thesis; yet, at the same time it blocked the overlapping light
fluorescence, providing a direct measurement of the emitted
fluorescence from 650 to 850 nm and discriminating between
the contribution of the red and far-red emission peaks. The
FluoWat leaf clip was proposed by [124] and provided

measurements of other leaf optical properties, such as reflec-
tance, transmittance and, indirectly, absorbance and absorbed
photosynthetically active radiation (APAR), as well as fluo-
rescence yield. These parameters have made it possible to
validate retrieval algorithms, helped to fine-tune leaf RTMs
that include fluorescence emission and been used as a basis for
upscaling from leaf to canopy. Similar challenges have been
found for scaling up leaf pigment content to the canopy.
Pigment leaf data has been successfully retrieved using de-
structive biochemical analysis or indirect measurements mea-
sured with a SPAD chlorophyll meter [125]. However, when
scaling pigment content data from leaf to canopy level, the
heterogeneity in pigment composition and canopy structure
contribute to a higher variation of pigments in the canopy.

On balance, the uncertainty of scaling up PI from the leaf to
the canopy requires special attention [126]. Special care needs
to be applied to standardized retrieval methods for different
leaf types (i.e. broad leaves and needles) and spatial sampling
strategies that can be combined with airborne or satellite im-
agery. Other important challenges are related to assessments at
the canopy scale and over larger areas using imagery. There is
still a limited number of studies that have attempted to assess
mixed forest areas with high species diversity with varying
structural and composition properties. Previous studies have
demonstrated that the main spectral differences found in
mixed forests were the result of species composition and not
pigment concentration [127]. This is especially relevant in
high-production tropical forests considered to be the ‘lungs
of the Earth’ and highly significant for carbon balance ac-
counting at the global scale.

Future direction to solve these limitations is the improve-
ment of RTM, incorporating newmodules accounting for can-
opy structural effects and additional biochemical components
of the leaf. At the canopy level, 3D models and data derived
from active sensor imagery (e.g. LiDAR)may overcome some
of the aforementioned limitations [12••, 57]. At the leaf level,
recent improvements of PROSPECT, including anthocyanin
content [81], and Fluspect, including xanthophyll content
[82], may provide a better understanding of physiological
processes and vegetation dynamics.

Nevertheless, RTMmodelling approaches are powerful but
remain computationally demanding for complex environ-
ments, so they are limited to smaller areas. One of the most
recent solutions proposed to overcome this limitation is the
combined use of RTM with a surrogate machine learning or
emulator reducing the processing time while preserving accu-
racy [128].

It can therefore be concluded that remote sensing enables
the assessment of physiological indicators to detect vegetation
health over large areas. The close link between vegetation
temperature, leaf optical properties linked to pigment absorp-
tion and chlorophyll fluorescence emission with plant func-
tioning opens a wide range of applications and methods to
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monitor vegetation health remotely. Current and future re-
search should address the main challenges, focusing on the
improvement of data quality and successful upscaling to con-
sider the main drivers of plant physiology.
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