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Abstract

A novel parallel technique that couples the lattice-Boltzmann method and a finite
volume scheme for the prediction of concentration polarisation and pore blocking in
axisymmetric cross—flow membrane separation process is presented. The model uses
the Lattice—Boltzmann method to solve the incompressible Navier—Stokes equations for
hydrodynamics and the finite volume method to solve the convection—diffusion equation
for solute particles.

Concentration polarisation is modelled for micro—particles by having the diffusion
coefficient defined as a function of particle concentration and shear rate. The model
considers the effect of an incompressible cake formation. Pore blocking phenomenon is
predicted for filtration membrane fouling by using the rate of particles arriving at the
membrane surface.

The simulation code is parallelised in two ways. Compute Unified Device Archi-
tecture(CUDA) is used for a cluster of graphical processing units(GPUs) and Message
Passing Interface(MPI) is utilised for a cluster of central processing units(CPUs), with
various parallelisation techniques to optimise memory usage for higher performance.
The proposed model is validated by comparing to analytical solutions and experimental
result.

Keywords: Filtration, Concentration Polarisation, Cake Formation, Pore Blocking,
Parallel Programming

Highlight

e An unifying model for predicting concentration polarisation, cake formation and pore
blocking.

e A novel coupling of axisymmetric lattice Boltzmann — finite volume schemes is devel-
oped.

e Parallel implementation that caters for multiple hardware platforms.
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1 Introduction

Over the last few decades membrane filtration has become increasingly important in indus-
tries, due to the higher efficiency compared to other separation methods. Membrane filtra-
tion is used in a wide variety of processes, from water treatment[1] and dairy processing[2][3]
to oil purification[4][5] and medical devices[6]. These processes require experiments to cali-
brate the optimal set-up, which include using different types of membrane material, changing
the distribution of pore sizes, varying operating pressure, and altering the geometry of the
set-up. To speed up the process, simulation models are developed to help determining the
optimal operating conditions.

Concentration polarisation is, in general, a reversible fouling, which leads to particles
depositing onto the membrane, and in turn, reduces the efficiency of the filtration process.
Therefore, predicting the evolution of concentration polarisation is important. Models have
been developed for cross-flow membrane filtration from an early stage. These models include
Chudacek and Fane[7] that used a resistance model of the filtration theory to predict flux
decline. Porter[8] used a model that considers back diffusion phenomenon by utilising a
simplified convection—diffusion equation. Zydeny and Colton[9] proposed a model based on
shear induced diffusion which is a major back diffusion mechanism in microfiltration[10].
These models are one dimensional and require experimental data to calibrate.

Subsequently, 2D models were developed, such as work by Lee and Clark[11] which solves
2D convection—diffusion equation with an assumed cross-flow velocity field; the model also
includes cake formation prediction. Hong et al.[12] proposed a model that predicts the
permeate flux decline due to concentration polarisation and cake growth, based on simple
particle mass balance equation. However, the model is only applicable for early stages of
filtration as cake is forming. Song and Elimelech[13] developed a theory that utilises a
filtration number based on particle size and transmembrane pressure to predict whether
concentration polarisation evolves to cake formation. The model was further developed[14]
to determine the time-dependent flux and time required to reach steady state. Bhattachar-
jee et al.[15] proposed a model that takes solute particle interactions into consideration,
however it is assumed that cake layer is absent. Kim et al.[16] proposed a model that
takes the Derjaguin, Verway, Landau and Overbeek interactions between solute particles
into consideration to predict formation of cake layer.

Whilst concentration polarisation models are common and well developed, pore blocking
is a more complex mechanism that involves particle and pore interactions. Hermia[l7]
proposed a model for pore blocking in dead-end filtration, which has been converted and
applied in cross-flow filtration such as work done by Brido et al.[18] and Konieczny [19]. The
model is based on classical dead-end filtration with constant pressure. It derives a differential
equation, which depends on the type of pore blocking mechanism involved, to describe
the permeate flux decline. Alternative models include Broeckmann et al.[20] which utilise
particle size distribution and pore size distribution to calculate the membrane resistance.
On a microscopic level, Kim and Liu[21] used a hydrodynamic force bias Monte Carlo
method and incorporated it with Brownian and shear induced diffusion to simulate particle
behaviour in a cross-flow filtration.

The inorganic nature of ceramic membranes give them higher mechanical strength than
organic counterparts[22], thus able to be produced in tubular form. The tubular structure is
axisymmetric , which means it has cylindrical symmetry and is not dependent on the angle
when using cylindrical coordinates; this allows 2D axisymmetric models to be used instead
of traditional 3D models, which has simplified calculations for faster simulations. Early
attempts to model ceramic membranes include Doleek[22] who modelled ceramic membrane
monoliths and solved with the finite element method. Whilst the monolith honeycomb struc-
ture is not axisymmetric, he attempted to utilise the symmetric nature inside the structure
to simplify the simulation domain. Konieczny[19] proposed a relaxation model to the per-
meate flux and membrane resistance, as well as including a pore blocking model(Hermia
model). However the models are focusing on simulating the permeate flux only. Pak[23]



proposed a computational fluid dynamic model for cylindrical porous membranes which uses
a fine grid for the boundary layer to predict the effects and growth rate of the concentration
polarisation. The model does not extend to other fouling mechanisms and assumes low
solute concentration which restrict the usage of it. Thus, there exists a need to develop a
more in-depth filtration simulation model to solve axisymmetric problems.

Different schemes were used to solve the governing equations in cross-flow filtration.
Huang and Morrissey[24] used a finite elements technique to solve convection—diffusion equa-
tion, whereas Lee and Clark used a finite difference scheme, both with an assumed velocity
profile. Geraldes et al.[25] used a finite volume method to solve for both cross-flow velocity
and concentration distribution. Kromkamp et al.[26] developed a model that solves cross-
flow hydrodynamics and particle distribution based on Lattice Boltzmann Method(LBM) in
a coupled manner. The Kromkamp model is further developed by Kim[27] and Paipuri[2§]
to include particle interactions and osmotic pressure, and is the basis of our current model.

Attempts to modify a Cartesian grid LBM to axisymmetric LBM were made with various
methods. One way is to add an additional term to the 2D LBM, such as the work by
Halliday et al.[29]. This type of schemes require a gradient term which disallows efficient
parallelisation. For example Niu et al.[30] extended the idea in 2003 to include azimuthal
rotation in the scheme; Lee et al.[31] proposed a similar scheme to reduce the compressibility
effect in Hallidays model. Others developed axisymmetric schemes that do not involve
gradient terms, such as the work done by Xie et al.[32], or the work done by Chen et al.[33]
that develops the scheme from vorticity-stream-function. In 2009, Guo et al.[34] proposed an
axisymmetric LBM derived from the cylindrical governing equations. The resulting scheme
requires more calculations but retains many features close to the standard LBM such as
utilising local information only and able to incorporate force terms easily into the scheme.
This scheme is subsequently developed into a multiple relaxation time scheme[35] and a
thermal scheme[36]. The thermal scheme can also be used for solute particle transport .For
these reasons we have chosen this scheme to form the basis of our axisymmetric model.

With modern advances in computing hardware, parallel programming allows simulation
to fully utilise the potential of a cluster of CPUs or GPUs for modelling industrial cases
with the appropriate grid resolution in an acceptable time scale. Methods to parallelise
LBM are well established in literature for CPUs and GPUs. Bella et al.[37] implemented
LBM with Open Multi-Processing which scales with high efficiency, Davidson[38] proposed
techniques to optimise MPI communications for LBM and was able to attain excellent
scalability. Lee et al.[39] analysed the performance of LBM on CPU and GPU, and concluded
that LBM is bandwidth bound, meaning that the performance bottleneck is sending data
between processor and memory storage. Therefore the selected GPU is roughly 5 times
faster than a multi-core CPU due to bandwidth difference, and optimisation techniques are
usually focused on minimising data transfer and choosing the best data structure. Various
techniques to parallelise LBM on GPU are present in literature such as Rinaldi et al.[40]
and Myre et al[41]. There are also attempts to optimise computations[42] according to the
design of processors, but such optimisation may not be applicable on other devices that
have different architectures.

The focuses of this paper are on microfiltration and ultrafiltration where the main causes
of permeate flux decline are concentration polarisation, cake formation and pore blocking.
In order to reduce the number of physical experiments needed to calibrate and optimise the
process of ceramic filtration, a computational model that is capable of predicting changes
in cross-flow filtration is presented. The formulation is extended to enable the modelling of
axisymmetric scenarios, making it suitable for simulating experiments using tubular mem-
branes. The simulation software is finally optimised and parallelised for CPU cluster and
GPU cluster. The current work assumes that particle interactions, osmotic pressure and
cake compaction are negligible. Cake compression is currently ignored as the model focuses
on the period when cake is forming rather than a prolonged filtration.



2 Mathematical Model

The filtration model consists of two parts: hydrodynamics of the fluid, represented by the
incompressible Navier—Stokes equations; and particle transportation, represented by the
convection—diffusion equation. The two systems are solved in two stages in a staggered
manner. In stage one the hydrodynamic equations are solved; the convection diffusion
equation is solved in stage two using the velocity field obtained in stage one.

The axisymmetric incompressible Navier—Stokes equations can be expressed as

ou, ou, ou, 10p 9 Uy
= - - — —— 1
5 +uTaT +UZ3 paT—i-V(V . T2) (1)
Ou, Ou, Ou, 1 9p 2
r z = - —a_ z 2
ot T or T 0z p8z+yvu 2)

where u(r, z,t) is the velocity of fluid, in terms of radial and axial position, and time;
V2 = %%(7‘%) + 572 is the axisymmetric Laplacian, p is the pressure, v is the kinematic
viscosity. The numerical solution of this system of equations can be obtained using the finite
difference, finite volume(FV), finite element method or the lattice Boltzmann methods. Here
we choose the LBM for its ease of implementation on parallel platforms such as GPUs and
CPUs clusters.
The axisymmetric convection—diffusion equation can be written as
o¢ ¢ o¢ 2

+urar+uzaszV¢ (3)
where ¢ is the volume fraction of particle concentration which measures the percentage of
the control volume occupied by the particles, D is the diffusion coefficient. It is possible
to use the LBM to solve for particle concentration; however, the scheme is computationally
expensive for small diffusion coefficients as it requires a small lattice spacing and small time-
step to maintain stability. Hence, a finite volume scheme is utilised to solve the convection—
diffusion equation.

To couple the two schemes together, kinematic viscosity and diffusion coefficient are
assumed to change locally. Kinematic viscosity is based on the local volume fraction of
solute ¢ and the viscosity of fluid in the absence of any solute, as proposed by Romero and
Davis[43]

¢

2

(1 - ¢/¢mar)] (4)
where ¢4, denotes the maximum packing volume fraction of solute particles. By assuming
particles are spherical and they are packed together randomly, the maximum packing fraction
is about 0.64[44][45].

Similarly for the convection—diffusion equation, the diffusion coefficient is set to be a
function of the local concentration of particles. Cho et al.[46] determined that shear induced
diffusion dominates for particle sizes more than 0.5um, and can be calculated by using
shear rate and particle size. The shear induced diffusion coefficient in the filtration device
is estimated by using work of Leighton and Acrivos[47]

v(g) =1p[l+ 1.5

D = 0.33ya%¢?(1 + 0.5¢589) (5)

where the diffusion coefficient is related to - the shear rate of fluid, a the radius of particle
and volume fraction of particles ¢.

2.1 Lattice Boltzmann Scheme for Fluid Flow

The lattice Boltzmann method is derived from the kinetic theory of gases, which treats a
body of fluid as a distribution of small particles, which move in random directions with



random velocities. It consists of two steps to solve the Navier—Stokes equations, streaming
and collision, which can be expressed by

The discrete Particle Distribution Function(PDF) f; describes the portion of particles mov-
ing in a particular direction. The left hand side represents streaming where particles travel
with velocity ¢; from x,, to their new location x,, 4+ c;dt after a time-step d¢; the right hand
side is the collision operator Q(f) which simulates momentum exchange by particle collision.

The simulation scheme used here restricts particles to a possible 9 directions, stationary
and a combination of radial direction and axial direction. This is also known as a D2Q9
lattice Boltzmann scheme which stands for 2 dimensions and 9 directions. The velocity
vectors ¢; are defined as

(0,0) if i =0,
ci(r,z) = q (cos((i = 1)7/2), sin((i — 1)7/2))c if i € [1,4], (7)
(cos((2i — 9)w/4), sin((2i — 9)w/4))V2¢ ifi € [5,8].

c is the lattice speed which is related to the lattice spacing 6, = §, and lattice time J;

or
c= 57 (8)

macroscopic variables density p, radial velocity u, and axial velocity u, are given by
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where R is the membrane resistance for membrane lattice, or R = 0 for a fluid lattice.

The collision operator used in the proposed model is axisymmetric multiple relaxation
time developed by Wang et al.[35]. By using Multiple Relaxation Time(MRT) the model
is more stable than the traditional single relaxation time model, thus less restrictive when
choosing a desirable scale for ¢, and &;.

The MRT collision term can be expressed as

Q(f) = M~!S[m® — Mf] + M~1(1 — g)F’ (11)
1 1 1 1 1 1 1 1 1
-4 -1 -1 -1 -1 2 2 2 2
4 -2 -2 -2 -2 1 1 1 1
0 1 0 -1 01 -1 -1 1
M= 0 -2 0 2 01 -1 -1 1 (12)
0 0 1 0 -1 1 1 -1 -1
0 0 -2 0 2 1 1 -1 -1
0 1 -1 1 -1 0 0 0 0
0 0 0 0 0 1 -1 1 -1

where M transform the PDFs into moment space, Mf = r(p, €, €, j., @z, Jr, Grs Pozy Prz). P 1S
mass density, e, € are related to energy and energy squared, j is momentum, q is energy flux,
and p is the symmetric traceless viscous stress tensor. Each variable then adjusts according



to the respective equilibrium value m®? with relaxation time S.
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The values of S = (so,...,sg) used in this work are sy = s3 = s5 = 0 by conservation of
mass and momentum. s; = 1.5,89 = 1.4,54 = s = 1.5 and s7 = sg = are chosen for
current work.

Finally F/ represents the forces acting on the fluid and is given by,

1
3v+0.57

0
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2.1.1 Boundary Conditions for Lattice Boltzmann

Four types of boundary conditions(BCs) are used in the current simulation code. Mir-
ror boundary condition is used for line of symmetry, solid boundary condition is used for
solid walls, velocity and pressure boundary conditions for inlet and outlet boundaries are
adapted from implementation proposed by Zou and He[48], with suitable changes made for
axisymmetric LBM.

Symmetry and Wall Boundary Conditions

Mirror boundary condition, also known as full-slip wall, reflects the PDF's as they ap-
proaches the boundary in such a way that the lattice node behind the boundary mimics the
one in front. Figure 1 illustrates the process of streaming and how the boundary condition
redirects the PDF's to the correct node. This implementation sets the boundary at half way
between nodes, i.e. the boundary is at » = 0 and the first node is located at r = 0.5. The
boundary condition with the mirror placed on the top side is illustrated by figure 1 and can
be summarised as

;i1 i ;
Y

z’ - —_— /L’
1y’ =| £’ (15)
fi,jfl ]

7 6

where node (i, 7) is the mirror node.

Solid boundary condition is very similar to mirror boundary condition, except it imposes
no-slip condition on the boundary and PDF's are reversed and bounced back to the source
node. Figure 2 illustrates the process of this boundary condition. Similar to the mirror
boundary condition, the solid wall boundary by this method is located half way between
lattice nodes. The boundary condition with the wall placed on the top side is illustrated by
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(a) Approaching wall (b) Arrived at wall (c) Reflected by wall

Figure 1: Illustration of mirror boundary condition: partial distribution functions fs, fs, fs,
(a) approaching wall, (b) arrived at wall and (c) reflected by mirror boundary condition.

figure 2 and can be summarised as

fimti-1 fir
N (5
fy? =1 £’ (16)

where node (4, j) is the wall node.

g N
we AT TN g RN

nodes  fg fa fs f7 fa fs

(a) Approaching wall (b) Arrived at wall (c) Reflected by wall

Figure 2: Illustration of wall boundary condition: partial distribution functions fs, fs, f6,
(a) approaching wall, (b) arrived at wall and (c) reflected by wall boundary condition.

Pressure and Velocity Boundary Condition

To impose a pressure or velocity boundary condition, Zou and He[48] proposed a scheme
to calculate the missing PDFs. The principle is to use the equations of macroscopic variables
and one assumption to find the missing macroscopic variable and three PDFs. For example
an inlet from the bottom of the grid will be missing fo, f5 and fg due to no nodes streaming
from below. Suppose velocity is known, then by using equation 9,

fo+fs+ foe=rpu.+ fa+ fr+ fs (17)

By substituting this into the density equation, the value of density can be calculated

fo+fiFfar2(fat frt f)
p_
r(1—uy)

(18)

In order to solve the system of equations, one more equation is required, which Zou and He
proposed an assumption to complete the system.

fo— = fa— 11" (19)
by expanding the equilibrium terms, f; can be obtained by

fo=fa+ ?uz (20)



Using the remaining radial momentum equation

rpus | (r*+v)pu,  p fs—h
_ _r Js— 1 21
fo==5+ 5 TR (21)
rpu,  (r24+v)pu, | p fs—f1
_ _ A _d3—n 22
fe 5 o + 12 + f3 5 (22)

If pressure is known, instead of the incoming axial velocity, then by p = % p, and the
density of the boundary is defined. Starting with the density equation,

Lot fst+fe=ro—fo—fi—fs—fa—[fr—[s (23)
and substituting into the axial momentum equation

uz:rp—fo—fl—f3_2(f4+f7+f8) (24)
rp

Again using the same assumption for f

2r
f2 = f4+ Juz

3 (25)

which leads to the same equation for the two remaining PDFs when using the radial mo-
mentum equation

rous (2 + v)ou, fs— i
frd _ P 2
fs= ="+, + T (26)
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2.2 Finite Volume Scheme for Particle Transportation

An obvious limitation in using LBM to solve the convection—diffusion equation is the case
of low diffusivity. One of the simulations conducted in this paper has diffusion coefficient
of the order 10~'2, which gives a relaxation time of 1/(3D + 0.5) close to 0.5, which makes
the model unstable. To overcome this limitation with LBM it would require a very fine
grid which, in turn, requires tiny time-steps, thus drastically increasing the computational
cost. To address these limitations, the finite volume method is used to solve the convection—
diffusion equation, which is capable of accommodating the small value of diffusion coefficient
without major drawback.
The convection—diffusion equation is discretised by integrating each term of the convection—

diffusion equation over the control volume V' of each node, which can be rearranged as follow

—dV+ / V- (ug)dv = / V- (DVe)dV (28)

By using the divergence theorem, the two integrals are changed to surface integrals over the
surface I' of the control volume V

gfdv+ / - (ug)dl = /F n - (DV¢)dl (29)

where n is the normal to I'.

In order to discretise in time, the equation is further integrated in time, from time ¢ to
time t + At.

10



The first term is discretised to 2mrA, A, (¢rrar — ¢r), where A, and A, are radial spacing
and axial spacing. The other two terms are discretised in time in the form of

t+At
/ bdt = 0604 ne + (1— 0)pu] AL (31)
t

Here 6 = 0 results in an explicit scheme, while # = 1/2 gives the Crank Nicholson scheme[49],
and 6 = 1 gives a fully implicit scheme. Fully implicit scheme is unconditionally stable[50]
whereas the other schemes have a restriction on the size of time-step for the scheme to be
stable. In the current work, the explicit scheme is used. This choice is due to the ease of
parallelisation, as explicit schemes avoid the need for the solution of systems of equations
which reduces the efficiency of the parallel implementation.

The surface integrals are evaluated using values at the centre of each edge. The equation
for each node can be described as

V(dfins — of)/At =
Ppup o™ — Lsupd® + Lyul’ ¢ — Feufo® (32)
+T,D%" —T,D% 4+ T,D% —T,D2%"

where V' = 2arA,, '), = 2n(r — A, /2)A,, Ty = 2n(r + A, /2)A,, T = T, = 2a7A,.
The notations n, e, s, w are illustrated by figure 3, which denotes the points on the middle
of each side of the boundary. Velocity at the boundary of each node is obtained by linear
interpolation of values obtained from LBM, and the differentials of ¢ are evaluated with the
values of the nearby nodes.

In particular, we are using the upwind scheme in this model, which means values of ¢
are chosen according to the velocity of the fluid, and can be summarised as

s = W ifu¥ >0 5 = of if ué >0,
T of ifur <0 T #F ifuc <0
{ of if us >0,

4 = &N ifu >0, =
of ifu? <0 ¢S ifu <0

(33)

The choice of an upwind scheme instead of a central difference scheme is due to the expected
Peclet number of the flow. The Peclet number is defined as
convective transport rate

Pe = 34
€ diffusive transport rate (34)

When |Pe| > 2 the central difference scheme may lead to physically impossible situa-
tions such as negative concentration which lead to instability, while upwind scheme ensures
stability at the cost of reduction in the spacial accuracy. The example presented later has
Pe = 0O(10%), which makes upwind scheme the clear choice throughout the domain. It
was previously shown[27] that using an upwind scheme for the solution of the convection-
diffusion equation will result in a first order accurate scheme, which is still appropriate for
the current application.

The current work focuses on microfiltration and ultrafiltration, where the bulk of the
flow does not change much during filtration. As such, concentration polarisation and other
fouling mechanisms happen in the vicinity of the membrane and we focus the simulation on
that region. Solute concentration is resolved only over a small portion of the domain near
the membrane as shown in figure 4. The figure shows a schematic of the grids used. The
finite volume grid with spacing of A, and A, shown in red, is used in the region above the
membrane nodes, shown in green, and overlays the fluid nodes which has a spacing of §,, and
d,, shown in blue. The remainder of the domain is assumed to have the bulk concentration.
The selected height for the solution of convection-diffusion equation is refined in the radial

11
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Figure 3: Illustration of notations used in finite volume equation. P is the centre of current
node, W N E.S denotes centre of neighbouring nodes and w,n,e,s denotes centre of the
boundary between current and neighbouring nodes.
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Membranefsurface

0, —T T—
T T Membrane lattice

(a)

[ ]
| Finite volume grid

-

Fluid Lattice

Figure 4: a) Schematic of the finite volume grid(red) and the lattice Boltzmann grid(blue
and green). b) 3D illustration of simulation grids overlaid on a cross-section of tubular
filtration set-up.

direction. Refinement of the mesh in the vicinity of the membrane results in many solute
control volumes within a single fluid node as shown in figure 4.

A time-step of the FV scheme may differ from a time-step of the LB scheme, depend-
ing on the problem and stability of the solution, thus saving computational resource from
unnecessary calculations. In order to maintain stability, the coefficient of each ¢ term from
equation 32 must be positive. By putting in the upwind scheme, assuming positive veloc-
ity in both direction and ignoring the diffusion terms(which are small in our axisymmetric
example), we can rearrange the equation to

Vora/At =Tpupo™ + Tuul ¢ + [V/At = Teug — Tug]o” (35)

where the left hand side and the first two terms on the right hand side are positive, and the
coefficient of ¢F gives the stability condition of

V/At > Toul +Tous (36)

assuming r >> A, the value of the allowable time step that ensures stability is given by

A,
At < (A—ui +ug)™t (37)

12



2.2.1 Boundary Conditions for Finite Volume Method

In comparison with the BCs for LBM, the BCs for F'V are considerably simpler as the values
required at the boundary are the macroscopic variables rather than partial distribution
functions.

Take a mirror wall at = 0 for example, there is no convection term nor diffusion term
due to symmetry. If we take the north side as r = 0, then the terms 2w (r — A, /2)A ul¢"
and D27 (r — A,./ 2)AZ% will vanish. Similarly for solid walls, the appropriate convection
term and diffusion term are modified accordingly.

As for inlet and outlet, the value of ¢ and its gradient are set appropriately. For the
inlet we set ¢ = ¢g as we assume the flow to have constant solute concentration; for the
outlet, the gradient of ¢ normal to the boundary is set to 0.

2.3 Pore Blocking and Cake Formation Model

Pore blocking model is implemented by applying a probability term, P which calculates
the probability of pores being free after each time-step, inspired by Starov et al.[51] and
developed by Kim[27].

To calculate the rate of particles reaching the membrane surface, we calculate the volume
of particles in a unit volume, V.. Conveniently this is ¢. Then by considering the volume
of a single particle Vy, we can calculate the number of particles in a unit volume, N,

from this we can find the number of particles per lattice spacing /N./é,. Using the local
velocity normal to the membrane surface, u,, the rate of particle reaching the membrane
surface, 7, is

Tp = Uy v/ Ne /67 (39)
This is used to obtain the probability of a pore being free, P,
P=1- (BrpN;Ap) (40)

where 3 is determined from experimental data, A, is the cross-sectional area of a pore and
N}, is the number of free pores at time ¢. Thus with P and N/,

t+1 t
N7 = PN, (41)
Using Hagen-Poiseuille equation which describes the flux through a membrane as

2
EmasAP
J= P (42)
SUT I
where 7 is the tortuosity of a pore which is taken as 1 in current work, a, is the radius of
a pore and J,, is the membrane thickness. €,, can be formulated as the ratio between pore
area and membrane surface area,

TNpa
m = T (43)
where A,, is the surface area of the membrane. Thus equation 42 becomes
TN, a* AP
J=__rr" (44)
8uUT A dm
By equating the above equation with the common membrane equation for microfiltration,
AP
J=— 45
R, (45)
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we arrive at the resultant membrane resistance R,,

8T0mAm
R, = Niad (46)

The pore blocking module is implemented as a boundary condition and updates the
membrane resistance every time-step. Each membrane node along the membrane surface
has its unique N; and is used to compute the resistance at that lattice node. In the case
that the membrane is thicker than one node then the nodes beneath have their resistance
adjusted according to the top node.

When the concentration of solute particles reaches ¢4, the node is treated as an
incompressible cake formation, and the pore blocking mechanism stops. The cake formation
is treated as incompressible due to simplicity, which can be modified accordingly in the
future for scenarios where cake compaction is a factor. Resistance of the cake formed can
be calculated by the Carmen—Kozeny relationship, defined as

45(1 — €)?

R =
e3a?

(47)

where € is the cake porosity which would be 1 —0.64 here and a is the radius of the parti-
cles. In this paper the examples do not exhibit this mechanism as the particle concentration
does not reaches 0.64, however the validation can be referred to work by Kim|[27].

3 Parallelisation

The schemes are parallelised in two ways, by using CUDA and MPI, for GPU cluster and
CPU cluster respectively. This section aims to give an overview of the parallelisation and
optimisation techniques used.

LBM are generally memory bound[39], however this changes depending on the collision
operator, additional calculations (such as dynamically updated viscosity and diffusion coef-
ficient) and the hardware used. Double precision in particular is an issue for GPUs which
are generally designed for single precision calculations. The ratio between CUDA cores to
double precision cores is 2:1 for scientific GPUs and up to 24:1 for other GPUs, which means
that while the dataset doubles in size, the speed of GPU computing is generally much less
than half. Thus the increase in compute time is considerably higher when using double
precision and can change the bottleneck of the simulation. For CPUs this is generally not
an issue as the single precision to double precision performance is usually 2:1.

3.1 Memory Management

In a simple LB scheme the collision step and streaming step are implemented as individual
functions as shown in figure 5. The collision function reads data from the random access
memory(RAM), performs collision calculations, and then saves outputs in the RAM. The
streaming function reads data from the RAM, and then saves data to their new location in
the RAM.

It is obvious then that streaming is no more than a read and write and can be combined
with collision to minimise data transfer. However streaming cannot be combined in a simple
manner as it would cause new data to overwrite old data that is still required for nearby
nodes. Thus one way to avoid this is to have two sets of memories, memory space A for odd
time-steps and memory space B for even time-steps; the usage of two memory spaces is also
referred as “AB pattern”. When the processor finishes collision for a node it stores data
in the other memory space, which is holding data two time-steps before, therefore does not
cause any memory clashes. Whilst this is a possible solution, requiring twice the memory is
not feasible for large grids.

14
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Function RAM "l RAM

Figure 5: Illustration of collision function and streaming function.

To combat this issue Bailey et al.[52] proposed a method to combine the two processes
such that streaming is done by accessing the same set of memory in one time-step. The
usage of a single memory space gives the name “AA pattern” as it reads from memory space
A and writes to memory space A. AA pattern has two different schemes for odd time-steps
and even time-steps, as illustrated in figure 6. In odd time-steps, data for the node with
position x is read normally from f;[x] and after the collision step it is stored in the same
set of memory but swapped pairwise with the PDF with opposite velocity f;[x], i.e f1 is
stored at where f3 was and vice versa, fo is swapped with fy, etc. In even time-steps, the
processor pulls data from nearby cells; for the ith element the data is read from f;[x — ¢;],
i.e f1 from the left cell, f3 from the right cell etc. Afterwards data is swapped pairwise like
before and stored in f;[x + ¢;], f3 is now stored in the left cell, f; in the right cell, thus
pushing the PDF's out to achieve streaming.

Read Write
N N N NP NP4
ANZNZN RN ZANZIAN
AN 4’% N ST NN
- SAINL N RN W
S NP NN NN < EPX 7|
ANZANZN ZaANZAANEZAAN
N T —Lh\r/\t/\vlj
" RN ZAAN AN ANZNZN
Bren  TNIN/NTY SN
NI NSNS
Steps T ok 7 NN N,
i N NN

Figure 6: Steaming using AA pattern. Top left: odd time-steps load partial distribution
functions(PDFs) from current position. Top right: odd time-steps stores PDFs in current
position and swapped pairwise. Bottom left: even time-steps load swapped PDFs from
neighbouring positions. Bottom right: even time-steps store PDFs to neighbouring posi-
tions.

Intuitively there are two types of memory structures for LBM, array of structures(AoS)
and structure of arrays(SoA). AoS means that all PDFs of the first node are stored together
then all PDFs of the second node are stored after, etc. SoA means that fy of the entire
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Table 1: Time taken(ms) for each operation with MPI implementation and CUDA im-
plementation, using 1024 x 10240 grid. Speed up factor when compared to single core
performance is also shown.

collision streaming combined step
1 core 303.9 71.9 311.9
2 cores 152.4 (1.99x) 37.4 (1.92x)  157.7 (1.98x)
4 cores 84.1 (3.61x)  23.4 (3.07x)  86.2 (3.62x)
8 cores 45.2 (6.7x) 21.4 (3.36x)  46.6 (6.69x)
14 cores 28.5 (10.6x)  21.0 (3.42x)  29.0 (10.8x)
CUDA
9880 cores 20.3 6.1 20.6

lattice are stored in an array, and f; of all nodes are stored afterwards or in a separate array,
etc.

For GPUs the choice is obvious as SoA will automatically give coalesced memory access,
whereas AoS will have a warp loading data from various segments of the memory. For
CPUs, Wittmann et al.[53][54] presented detailed tests on memory structures with different
streaming methods. It is shown that the “AA pattern” has the best performance out of the
streaming implementations and the vectorised AA pattern using SoA has better performance
than using AoS. As a result SoA is chosen for both versions in the current paper. The AA
pattern streaming method which was introduced by Bailey et al.[52] is adopted and explained
below. Alternatively there are other structures such as those proposed by Calore et al.[55]
which aims to exploit data locality for more complex layouts.

In order to measure the efficiency of the AA pattern compared to the traditional scheme,
the time taken for each operation and the speed up of using multiple cores or GPUs was
performed. Each operation was tested with a 1024 x 10240 grid on an Intel Xeon E5645(using
up to 14 cores); a similar test was performed on a NVIDIA Titan Z(using 1 of 2 GPUs
within). Table 1 contains details of the results and speed up when using multiple cores
of the CPU and the speed up when using the GPU. As the number of CPU cores used
increases, the speed up of streaming levels off very quickly, indicating that the memory
bandwidth is fully utilised and having multiple processors requesting data do not have any
positive impact. Collision shows that by increasing the number of cores, the time taken to
complete this operation scales linearly. The use of the AA pattern that combines collision
and streaming operation has very similar times and speed up when compared to collision
step, and it is up to 75% more efficient than having two separate operations.

The AA pattern resulted in a 40% speedup on GPUs when compared to the traditional
scheme. However, the ratio of computation time to memory transfer time shows that the
GPU spends most of the time on computation and the combined step has smaller benefits.

3.2 Grid Sub—division

As the algorithm is designed to perform simulations on a cluster of CPUs/GPUs, the work-
load must be divided between processors. With a 2D rectangular domain it is then logical to
divide it in one of two possible ways: along the longest axis, or along both axes. The former
minimises the number of neighbours to a maximum of 2, which minimises the communica-
tion overhead but has a bigger set of data to communicate, due to longer boundaries; the
latter divides the domain such that the boundary of each subdomain is minimised, which
minimises the size of messages but has up to 8 neighbours to communicate with. This is
due to diagonal PDFs which require communication with diagonal neighbouring block.
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Comparison of performance with different grid division methods
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Figure 7: Comparison of performance with different grid division methods using various
grid sizes, measured in million lattice update per second. Grid size varies from 76 x 180 to
7600 x 18000

The method of dividing the simulation domain between processors was investigated by
using 10 6-core Intel Xeon E5645 CPUs with increasing domain size. The problem solved in
this simulation was proposed by Kromkamp[26]. Figure 7 shows the million lattices updates
per second(MLUPS) of the simulations, plotted against the logarithm of grid size. Grid size
is defined as the number of lattice nodes in the grid, which is 76 x 180 for the smallest one
and 7600 x 18000 for the largest one. For smaller domains the communication overhead
is significant to the overall runtime and therefore dividing along the longest axis is more
beneficial. On larger domains collision and streaming take considerably more time than
communication so the benefits of having shorter messages is negligible. Thus it is better to
divide the domain along the longest axis, for better performance in small grids and ease of
programming. In particular for GPUs, packing and sending communication messages is a
relatively slow operation, which further favours division along the longest axis.

4 Simulation Algorithm

Coupling the lattice Boltzmann method and the finite volume method has been carried out
in the past[28][56][57], the procedure involves passing interpolated or averaged data between
the two systems. In particular, the coupled scheme used here is based on Paipuri|[28] and
is extended to axisymmetric form. The LB scheme requires the volume fraction of solute
particles from the FV scheme to calculate the local kinematic viscosity. As each LB cell
contains multiple FV nodes, the average volume fraction is used in the computation of the
viscosity.

Algorithm 1 describes the implementation of the coupling technique. Firstly, the LB
scheme reads the particle concentration from the F'V scheme and updates the local viscosity.
The fluid equations are then solved for a number of time-steps. The resultant velocity is
passed to the FV scheme, which updates the diffusion coefficient and solves for the volume
fraction of solute particles.

Algorithm 2 describes the lattice Boltzmann scheme in detail. The scheme begins by
checking the state of the lattice node and then setting the correct resistance and viscosity.
Afterwards, calculations of the MRT collision operator are carried out and outputs are saved
according to AA pattern(explained below) to complete the streaming step. When all nodes
are processed, communications and boundary conditions are applied and then advance to
the next LB time-step or pass the data to the particle solver.

Algorithm 3 describes the finite volume scheme in detail. The solver computes the
velocity from data obtained by the fluid solver, which is used in the upwind scheme to
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for iter + 1 to finite volume steps do
for iter «+ 1 to lattice Boltzmann steps per finite volume step do

Update viscosity

Fluid Solve Navier—Stokes equations for fluid flow

solver Update membrane resistance with pore blocking model
Calculate flux through membrane

end

Calculate velocity field from lattice Boltzmann scheme
Particle Compute macroscopic variables and diffusion coefficient

solver Solve convection—diffusion equation to obtain particle volume fraction
Calculate particle volume fraction for lattice Boltzmann scheme

end
Algorithm 1: Coupling of fluid and particle solvers using lattice Boltzmann—finite vol-
ume scheme

determine values of ¢. The diffusion coefficient is calculated and terms are modified if
boundary conditions are applicable. After the computation of the new ¢, the state of each
node is checked for cake formation.

5 Validation and Results

In this section we first validate the accuracy of the chosen numerical scheme, then apply
the technique to the simulation of a practice ceramic filtration problem. We finally use
the scheme in predictive mode to investigate possible variations the geometry in order to
improve efficiency of the filtration process.

5.1 Poiseuille Flow in Annular Section

A simple validation test for the fluid part of the filtration model is Poiseuille flow. Consider
a flow in an annulus, driven by a constant pressure difference Ap between two ends and fluid
flows between an inner and outer cylinder with radii Ry and Ry respectively. The velocity
profile can be solved analytically and is given by

op 1 op 1

__op L o 9y OD L 5 9
u(r) = 8z4u(R1 ) 824M(R2 Ry)

In(r/Ry)
lTL(RQ/Rl)

Annulus was modelled by a grid of nr x nz points, where nz >> nr, Ry = nr, Ry = 2nr,
v = 0.016667. The pressure gradient varied according to the number of lattice nodes used
such that the Reynold’s number Re = uL/v = 15 remains constant. The maximum relative
error in velocity is defined as[48]

(48)

exr __ 2 exr __ 2
err = max Ve —u)” + (g — ) (49)
Ug

where u®® is the analytical velocity and wug is the peak velocity. Figure 8a shows the
simulation result (red cross) and the analytical solution (blue line), and figure 8b shows a
2D plot of axial velocity of a segment of the annulus. Table 2 shows the maximum relative
errors when using different nr and nz values. The ratio between simulations show that the
LB scheme is 2nd order accurate, which is the expected order of accuracy.

5.2 Tube with Sinusoidal Dirichlet Condition

In this example, the accuracy of the solute solver is tested. Fluid flow inside a pipe of radius
Ry and is assumed to be a plug flow with constant axial velocity U and zero radial velocity.
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begin
for node < 1 to lattice Boltzmann size do
Read ¢ and flag

if ¢ > 0.64 then

| Flag node as cake
end
if node is membrane or cake then

| Compute resistance R

else

Set R=0

Compute kinematic viscosity v
end

Read fy, ..., fs according to AA pattern scheme
ComPUte my, M2, My, Mg, M7, 18

Compute macroscopic variables

Compute force terms and equilibrium terms
Compute new mai,msa, My, Mg, M7,1M8g

Compute new fo, ..., fs

Save fy, ..., fs according to AA pattern scheme
end

Communicate with other processors

Perform boundary conditions

Update membrane resistance with pore blocking model

Calculate flux through membrane

end

Algorithm 2: Detailed fluid solver using lattice Boltzmann scheme.

begin
for node < 1 to finite volume size do
Compute u from lattice Boltzmann scheme
Read ¢ according to upwind scheme
Compute shear rate dependent diffusion coefficient D
Compute finite volume terms

if node has boundary condition then

|  Modify finite volume term

end

Compute new ¢
if ¢ > 0.64 then

| Flag node as cake
end

end
Communicate with other processors

Compute ¢ for lattice Boltzmann scheme
end

Algorithm 3: Detailed particle solver using finite volume scheme.

Table 2: Maximum relative errors for Poiseuille flow in annular section, simulated with a
lattice of nr X nz nodes. The error ratio of the smallest grid to the four grids are presented
to indicate order of accuracy.

nr 50 100 200

nz 1200 2400 4800

err  4.0215(-4) 9.9981(-5) 2.4926(-5)
ratio 1 4.0222 16.1334
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Figure 8: Plot of Poiseuille flow in annular section, simulated using 50 x 1200 grid.

Table 3: L-2 norm errors of tube with sinusoidal Dirichlet condition on different grid resolu-
tions nr x nz. The error ratio of the smallest grid to the four grids are presented to indicate
order of accuracy.

nr 100 200 400

nz 200 400 800

err  7.6651(-3) 3.8317(-3) 1.9273(-3)
ratio 1 2.0005 3.9770

Periodic boundary conditions are applied on the two ends, a mirror boundary condition for
the axis of symmetry and a sinusoidal Dirichlet condition is imposed on the pipe wall

@(z) = cos(2nz/L),at T = Ry (50)
The analytical solution for ¢ is[58]

o(r,2) = Re[eikzMJ (51)

where Iy is the modified Bessels function of the first kind of order 0, A = k4/1 + fj—Uk and
k=2n/L.

For this example D = 1/120 and U = 0.01, a grid of 50 x 100 finite volume nodes was
used and the solution is advanced until steady state was reached. Subsequent simulations

were scaled accordingly to investigate the order of accuracy, measured by the L-2 norm error
which is defined as

p=[Ye-ot Y] (52)

Table 3 shows the error of simulations and confirm that that the FV upwind scheme is
first order accurate. Figure 9 illustrates the distribution of the solute concentration within
the domain.

5.3 Ceramic Membrane Filtration

The experimental work carried out by Ogunbiyi[59] is used to validate the current scheme.
Tubular ceramic membrane was used in this experiment and is made of alumina(70%),
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Figure 9: Simulation result of solute concentration of tube with sinusoidal Dirichlet condi-
tion, using 200 x 400 grid.

zirconia(25%) and yttria(5%), with nominal pore size of 0.5um and porosity of 50%. The
membrane was suspended horizontally in a membrane module during the experiment. The
feed used in this experiment was bentonite suspension, with size of particles found to be in
the region of 2—10um. The tube has an inner radius of 5mm, thickness of 1mm and 210mm
in length. Suspension was prepared at 0.05¢/L and was fed into the tube at 1.2L/min with
2.5bar pressure. This particular experiment was chosen due to the high pressure used and
made pore blocking the dominant fouling mechanics. The pure water flux was recorded
as 421.2L/m?h at 1bar pressure, and by using the basic filtration equation, the membrane
resistance was found to be R,, = 8.55 x 10''; the value of 3 for the pore blocking model
was found to be 2.04 x 1073,

Bentonite clays are used in many industries such as waste absorbent, drilling muds,
pelletising iron ore, foundry sand and adhesives.[60] They are also used to form a cake
on walls of rock formation to prevent the collapse of pit walls during drilling by stopping
water flow.[61] In particular, permeability of the cake is important as too high will lead to
excess water passing through and too low will lead to increased thickness and makes drilling
difficult to manoeuvre. Therefore knowledge of the filtration properties of a bentonite clay
is vital to determine if its suitability.

The Reynold’s number of this experiment is of the order Re = O(2000). It is expected
that changes of the flow field will be minimal over the length of the tube. Hence, a repre-
sented length of the tube will be used in the current simulation. Also, since our interest is in
the concentration polarisation that occur close to the boundary of the ceramic membrane,
it is possible to assume that the concentration of pollutant will remain constant away from
the boundary.
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Figure 10: Schematic of the domain set—up for 10mm membrane’s length and 0.5mm height
above the membrane. Blue represents fluid nodes, black represents wall nodes and green
represents membrane nodes.
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However, in order to justify our assumptions, two set of meshes were generated. The
first set of meshes are for three domains that include the membrane, a constant membrane’s
length of 10mm and heights above the membrane of 0.25mm, 0.5mm and 0.75mm. The sec-
ond set of meshes are for three domains that include the membrane, a constant height above
the membrane of 0.5mm and membrane’ lengths of 5mm, 10mm and 15mm respectively.
Mesh spacing of 100 points per mm was used for all meshes. Figure 10 shows a schematic of
the grid used for the simulation of 10mm membrane’s length and 0.5mm height above the
membrane. The upper part of the domain represents fluid nodes above the membrane and
has 50 nodes representing 0.5mm in height; this is modified to 25 and 75 nodes for height
above the membrane of 0.25mm and 0.75mm respectively. The lower section represents the
membrane and permeate chamber, which consists of 25 nodes in height for all simulations.
A 1.0mm solid wall was placed at the start and end of the membrane to smoothen the effect
of boundary conditions. In these simulations, each LB time-step is §; = 600,000 's and
each FV time-step is A; = 300,000~ 's, together with the length scale this gives an intial
kinematic viscosity v = 0.0167 in LB scheme.

The permeate flux measured in the experiment is scaled in relation to the flux after one
minute, and is used to indicate the membrane efficiency; the permeate flux for simulations
are scaled similarly. Membrane efficiency can be calculated as

permeate flux at time t

membrane efficiency at time t = (53)

permeate flux at 1 minute mark

Figure 11a shows the membrane efficiency for different domain’s height and figure 11b
shows the membrane efficiency for different domain’s length. The efficiency measured on
the smallest domain of each group are marginally different to the efficiency measured on
the other two grids. This justify the use a domain which is 10mm long and has a height of
0.5mm above the membrane.
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Figure 11: Plots of the simulation results for various domain sizes. Membrane efficiency is
permeate flux normalised to permeate flux at 1 minute mark.

Figure 12 shows a comparison between the simulation result and the experimental re-
sult, with the filtration flux normalised to the initial flux(measured at first minute mark).
Simulation is in good agreement with the experiment with the exception of the drop in the
efficiency at the 5.0 minute mark. The addition of the solid wall at the start and end of the
membrane would have resulted in a local disturbance in the flow pattern which may have
reduced the initial pore blocking and resulted in a higher efficiency.

To demonstrate the predictive capability of the developed scheme, a study of the effect of
changing the geometry of the ceramic tube is carried out. Two new scenarios were designed;
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Figure 12: Plot of ceramic membrane filtration simulation result and experimental result.
Membrane efficiency is permeate flux normalised to permeate flux at 1.0 minute mark.

the first case involved the addition of uniform non-permeable inter—spaces, while the second
case replaces the inter—spaces with small steps. The addition of inter—spaces and steps are
illustration in figure 13. The additional four inter—spaces of 0.1mm spread evenly on the
analysed membrane were treated as walls. The steps that replaced the inter—spaces have a
height of 0.01mm.

Figure 14 shows the membrane efficiency of the original simulation(blue), with inter—
spaces(black) and with steps(red). The membrane efficiency of the two new simulations
were scaled using the flux after one minute of the original membrane. Efficiency of the
membrane with inter—spaces declines at the same rate as the original membrane, ending
with efficiency of 0.32 compared to 0.33 for the original membrane. This indicates that
the benefit that results from disturbing the flow by separating the membrane into smaller
sections does not overcome the reduction of the effective area of the membrane. However,
the addition of steps resulted in a lower flux decline than the original simulation, with 0.38
membrane efficiency at the end of simulation. Figure 15 shows a plot of volume fraction in
the vicinity of a step; particles flow from left to right and are concentrated on the surface of
membrane. The step disperse particles by promoting turbulence, which alleviates the effect
of concentration polarisation on the right hand side of the step. This shows that the step
can be a useful device for longer filtration processes to maintain higher steady permeate
flux.

Irz 51508 .3 e o o s o o o e e - e -

-

(a) Membrane separated by inter—space. (b) Membrane separated by a step.

Figure 13: Ilustration of membrane with the addition of inter—space and step. Blue rep-
resents fluid nodes, green represents membrane nodes and black represents inter—space and
step.
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Figure 14: Plot of simulation results with the addition of inter—space between membranes
and with the addition of step between membranes. Membrane efficiency is permeate flux
normalised to permeate flux of the original filtration at 1 minute mark.
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Figure 15: Plot of volume fraction of particles in the vicinity of a step. Black space represents
the step, with particles flowing from left to right.

The simulation set-up is further modified by changing the flow rate (2.4L/min) and the
particle concentration (0.1g/L bentonite solution) with and without the additional steps.
Figure 16a shows the simulation results, with the blue line representing the original simu-
lation, the red line representing simulation with double flow rate, and the black line rep-
resenting simulation with double flow rate and double particle concentration. Without the
addition of steps, using double flow rate is expected to have higher membrane efficiency due
to the increase of the flow velocity and, hence, reduction in the concentration polarisation.
Doubling the flow rate and the particle concentration resulted in a similar efficiency to the
original set-up. This shows that the increase in the shear rate due to the increase of the
flow velocity did not have a significant effect on the overall efficiency. The efficiency that
resulted from the inclusion of steps along the ceramic are shown in figure 16b. Simulation
using double flow rate increased the efficiency by 14%, whereas doubling the flow rate and
the particle concentration see membrane efficiency increased by 3%. Doubling the flow rate
observes more substantial gain in efficiency than the original set-up, as the higher flow rate
generates stronger turbulence to alleviate membrane fouling.
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Figure 16: Plot of membrane efficiency of ceramic membrane with the addition of steps.
Using the original set-up, with double flow rate, and with double flow rate and particle
concentration.

In similar simulations[27][28], the time taken to execute a simulation using the original
serial code is between real time for small simulations to a couple days for larger ones.
With the help of parallelisation and optimisations, these can be done in minutes. These
simulations have Reynold’s number of order 1, the length and velocity scale allow generous
time scale(up to 10* steps per second) to keep kinematic viscosity with a stable region.
However the high Reynold’s number of this experiment requires small values of 8, and J; in
order to keep the scaled kinematic viscosity within a stable region. Whilst the simulation
domain can be kept reasonably small by simulating a section of the tube, the time scale
cannot be simplified in a similar fashion and gives 6 x 10° steps per second; the harsh
scaling makes the simulation cost hundred-fold higher than the previous simulations, which
are impractical for a serial simulation code. The presented simulations requires 12 CPU
hours using 12 14-core Intel Xeon E5-2680 v4 CPUs.

6 Conclusion

In this paper, a two-dimensional cross-flow membrane filtration model is modified to an ax-
isymmetric model and parallelised for CPU or GPU cluster. The proposed model solves the
incompressible Navier—Stokes equations for fluid flow and convection—diffusion equation for
particle transport. These equations are solved in a staggered manner using an axisymmetric
version of the D2Q9 lattice Boltzmann method for fluid and explicit finite volume scheme for
particles. The lattice Boltzmann method was chosen due to its ability to cope with complex
boundary, porous medium and ease of parallelisation on clusters. As for particle transport,
the finite volume scheme was used in place of the lattice Boltzmann method due to ability to
cope with extreme values and scaling appropriately for the boundary layer; since only first
order accuracy is required this made an explicit finite volume scheme suitable. This coupled
scheme allows the prediction of concentration polarisation and cake formation. With the
addition of a pore blocking scheme, the model is also capable of predicting flux decline due
to particles blocking the membrane pores. The individual modules of the model have been
validated against analytical solutions for different scenarios and together the model has been
validated against experimental data. The ease of using the developed model in a predic-
tive mode was demonstrated and it showed that altering the geometry and the operating
conditions can increase the efficiency of the filtration process.

The model can be further enhanced by adding particle interactions or organic interac-
tions, or inclusion of osmotic pressure. Cake compression is also a factor that should be
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considered for long term filtrations as the cake formation here is assumed to be incompress-

ible.
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