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Some advances in high-performance finite element methods  
 

Abstract 

Purpose－A review on the newest developments of high-performance finite element methods (FEMs) is given. It 

exhibits the recent contributions achieved by the authors’ group, especially shows some breakthroughs against 

inherent difficulties existing in the traditional finite element method (FEM) for a long time. 

Design/methodology/approach－Three kinds of new finite element methods are emphasized and introduced, 

including the hybrid stress-function (HSF) element method, the hybrid displacement-function (HDF) element method 

for Mindlin-Reissner plate, and the improved unsymmetric FEM. The distinguished feature of these three methods is 

that they all employ the fundamental analytical solutions of elasticity expressed in different coordinates as their trial 

functions. 

Findings－The new finite element methods show advantages from both analytical and numerical approaches. All the 

models exhibit outstanding capacity for resisting various severe mesh distortions, and even perform well when other 

models cannot work. Some difficulties in the history of the FEM are also broken through, such as the limitations 

defined by MacNeal’s theorem and the edge effect problems of Mindlin-Reissner plate.  

Originality/value－These contributions possess high value for solving the difficulties in engineering computations, 

and promote the progress of the FEM. 

Keywords high-performance finite element methods; mesh distortion; fundamental analytical solutions; hybrid 

stress-function (HSF); hybrid displacement-function (HDF); improved unsymmetric finite element method   

Paper type Review paper 

 

1. Introduction 

As the cornerstone of computational mechanics, the finite element method (FEM) is recognized as one of the greatest 

achievements in the 20th century (Feng and Shi 2006; Bathe 1996; Long et al. 2009; Turner 1956; Zienkiewicz and 

Taylor 2000). During past 70 years, with the progress of computer technology, the FEM also obtained great 

developments in its theories and applications, and has become the main computation and simulation tool in science 

and engineering. It is undeniable that, a quite completed system of the FEM has been formed, and can be applied for 

computing and simulating almost all problems with macro scale in continuum mechanics (Long and Cen 2001; Lu et 

al. 2015; Lu et al. 2018; Zhang and Cen 2016). However, any user of the finite element method must realize that, the 

traditional FEM is only a pure numerical method that depends on patch interpolation techniques. Therefore, from the 

viewpoints of the mathematics and computer technology, some inherent defects are inevitable. In some special 

occasions, incorrected results may easily appear if some little details are overlooked. 

 It is well known that, in a finite element analysis, the computation must be performed by using a mesh composed 

of various finite elements. In other words, the mesh is an essential part of the FEM, in which each element is the 

domain for interpolation, integration and computation in element level. Unfortunately, some troubles are just caused 
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by the mesh. In order to ensure computation precision, those meshes composed of elements with only regular shapes 

are strongly anticipated. Once a distorted mesh is used, the accuracy may drop dramatically (Lee and Bathe 1993). 

Various numerical problems, such as shear locking, volume locking, and so on, will appear. Figure 1a shows a 

rectangular beam under pure bending condition (plane stress state). The exact solutions for displacements and stresses 

can be obtained if only one rectangular 8-node isoparametric element Q8 with full integration is used (Figure 1b). 

However, if five distorted Q8 elements with full integration are used (see Figure 1c), the relative errors will exceed 

90 percent. This is the sensitivity problem to mesh distortion, an inherent difficulty existing in the FEM for a long 

time. For warning users to avoid unreliable results, many commercial CAE software products, such as Simula/Abaqus, 

will check the mesh and report the proportion of the distorted elements (Abaqus 2009).  

At present, few effective ways for eliminating the influence caused by distorted mesh can be found. All people 

must pay attention to the mesh quality. Nevertheless, for those solids and structures with complex configurations, it 

is not easy to achieve the goal. In the 3D problem, the hexahedral elements usually possess much better precision 

and efficiency than the tetrahedral ones. Up to date, the automatic 3D mesh generation technique of hexahedral 

elements is still a challenging problem in finite element modeling (Cheng and Zhang 2007). That is to say, the mesh 

distortion problem is almost inevitable in the mesh composed of hexahedral elements for the 3D solids with complex 

shapes. Some researchers suggested to resist mesh distortion problem with reduced integration in elements. However, 

the hourglass (over soft) problems may take place in local region where the reduced integration elements exist, and 

the precision for stress solutions cannot be guaranteed (Zhuang et al. 2005). The refined mesh is another treatment 

for overcoming mesh distortion. But if the number of elements is huge, the computation cost for highly nonlinear or 

dynamic problems will increase at an N3 rate. Furthermore, it seems that mesh distortions always occur for large 

deformation state.  

In crack propagation problems, some other troubles will be also caused by the finite element mesh. For example, 

when simulating crack propagation, different meshes may lead to different propagation directions. And re-meshing 

the structures after crack propagation is a big problem since a great deal of distorted elements will appear along the 

winding propagation path. In order to break above obstacles, Belytschko et al. (1994) proposed an Element Free 

Galerkin method. From that time, various element-free, mesh-free, and meshless methods have been appearing in 

numerous literatures. By combination of the techniques from CAD, finite element method and NURBS (Non-

Uniform Rational B-Splines), Hughes et al. (2005) proposed an exact geometry method for numerical modeling. This 

method, denoted by Isogeometric Analysis, has become a research hotspot in recent years. For avoiding mesh 

dependence problem and remeshing difficulty in crack propagation simulations, Moës, Dolbow and Belytschko (1999) 
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developed an Extended Finite Element Method (XFEM) by introducing enrichment shape function and level sets 

method. It allows a crack penetrates elements without remeshing during whole computation process, and this 

advantage has attracted many researchers. 

Besides the problems brought by mesh, another inherent defect also exists in the conventional FEM. At present, 

most elements are displacement-based in which the nodal displacements are taken as the degrees of freedom (DOFs). 

For linear elasticity, the finite element equations are usually derived from the principle of minimum potential energy, 

and relatively more accurate solutions for displacements can be obtained. However, the stress or the internal force 

solutions are extracted by the constitutive equations consisted of the derivatives of the displacements, so that their 

precisions and convergences are lower than those for displacements at least one order (in Mindlin-Reissner plate 

bending problem, the precisions of the shear forces are lower than those for displacements two order). This is the low 

precision problem for stress solutions of the FEM. In some occasions, such as the pure bending problem modelled 

by solid elements, if only low-order elements are used, ideal results will not be obtained although the element shapes 

are not distorted. Furthermore, for some problems in which the stress distributions varies sharply, how to correctly 

compute stresses is also a big difficulty. As shown in Figure 2, a square plate, with two opposite edges hard simply-

supported (SS2) and the other two edges free, is subjected to a uniformly transverse load q. Due to symmetry, only 

one quarter of the plate is modelled by a refine mesh with 6464 displacement-based plate elements ARS-Q12 (Soh 

et al. 2001). However, compared with the semi-analytical solution given by Kant and Hinton (1983), the resulting 

distribution of the shear force Tx along y=0.5L is not precise. Especially, the zero boundary condition of the shear 

force at the free edge cannot be reflected.  

However, we have to admit that, no matter what defects existing in the FEMs, its position is still irreplaceable 

for the time being. It still has great significance to develop high-performance FEM that can overcome the 

shortcomings and improve the performances of the conventional FEM. Although there is no definition for the high-

performance FEM, it should possess following features. First, under a coarse mesh, the high-performance FEM will 

produce much better results than those obtained by the conventional FEM, especially for the problems with drastic 

stress variation or stress concentration. Second, though the computation cost for a single high-performance finite 

element may be higher than that for a single conventional element, it will become much lower when simulating the 

whole structure because a relatively coarse mesh is needed. Third, the high-performance FEM can still perform well 

when the conventional elements cannot work, such as the elements in the severely distorted meshes. Fourth, the 

definition of the nodal DOFs is the same as that given for the conventional elements, so that the high-performance 

FEM can be complied in current FEM program system without any obstacle. 
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 During the past 60 years, the research on the high-performance FEM has never stopped. Many new ideas have 

been successfully developed, such as various hybrid stress (Pian 1964; Pian and Sumihara 1984; Pian and Wu 2006; 

Wu et al. 1987; Yeo and Lee 1997; Sze 2000; Cen et al. 2010) and multi-variable FEMs (Tian and Pian 2011), the 

incompatible or non-conforming FEMs (Wilson et al. 1973; Taylor et al. 1976), the enhanced assumed strain (EAS) 

(Simo and Rifai 1990) and the directly assumed strain approaches (MacNeal 1982), the stabilization matrix method 

(Belytschko and Bachrach 1986), the reduced integration schemes (Hughes 1980), the B-bar function method (Piltner 

and Taylor 1997), the quasi-conforming element method (Chen and Tang 1981; Tang et al. 1984), the generalized 

conforming element method (Long and Huang 1988), the refined hybrid element method (Chen 1992), the smoothed 

FEM (Liu et al. 2007; Liu and Quek 2013; Zeng and Liu 2018), the variationally consistent FEM (Liu et al. 2011), 

new spline FEM (Chen et al. 2010a, 2010b, 2011; Li et al. 2011), new natural coordinate FEM (Long et al. 1999a; 

Long et al. 1999b, 2010; Long and Cen 2000;  Chen et al. 2004, 2008; Li et al. 2008; Cen et al. 2007, 2008), the 

FE-meshfree element based on partition of unity (Rajendran and Zhang 2007; Rajendran et al. 2010; Xu and 

Rajendran 2011, 2013), and so on. All of these innovations improved the FEM more or less, but few can perfectly 

break the limitation brought by the meshes. 

Cen et al. (2011a) proposed a concept of shape-free FEM. This idea came from their paper published in 

Engineering Computations (Fu et al. 2010), in which a new kind of FEM whose performances are not affected by 

element shapes was presented. The 8-node plane quadrilateral element developed in that paper can keep good 

precision when it is severely distorted, even when the element shape degenerates into a concave quadrangle or a 

triangle. Recently, some similar models were also proposed by other researchers for plane problem (Peng et al. 2014a, 

2014b; Wang et al. 2016; Xia et al. 2017; Zhou et al. 2016), but seldom developments for 3D problem can be found. 

This paper will give a review on some newest developments of the high-performance FEMs achieved by the 

authors’ group (Cen et al. 2017), including the hybrid stress-function FEM, the hybrid displacement-function FEM 

and the improved unsymmetric FEM based on the fundamental analytical solutions, and exhibit their applications in 

plane, crack propagation, plate bending, 3D and shell problems. Some breakthrough points for inherent difficulties 

existing in current FEM are specially emphasized. 

 

2. The hybrid stress-function elements for plane problem  

In the stress-function solution method for plane elasticity, the fundamental variable is the stress function . 

Substitution of the relationship between the stress vector σ  and the stress function , ( )σ R = , into the functional 

of the element complementary energy yields 
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in which the stress function  becomes the fundamental variable; C is the elasticity matrix of compliances.; t, the 

thickness of the element; Ae, the element area;  e, the boundary of the element; L, the direction cosine matrix of the 

element boundary; u , the displacement vector of the element boundary, which can be interpolated by the element 

nodal displacement vector qe (same as that of the conventional isoparametric elements).  

Accordingly, when formulating the finite element models, instead of directly assuming stresses, the interpolation 

formula for stress function  is assumed firstly as follows: 
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where N is the number of the fundamental analytical solutions i  used for stress function  in equation (2); i  

(i=1~N) are N unknown constants; i  (i=1~N) are N fundamental analytical solutions (in Cartesian coordinates) of 

the Airy stress function , and satisfy the following compatibility equations: 
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where jiij CC ˆˆ =  are the reduced elastic compliances, and have been defined by Zienkiewicz and Taylor (2000).  

The stress function  has three fundamental analytical solutions for constant stress state and four for each other 

higher order stress states. For establishing equation (2), one should select these fundamental analytical solutions in 

turn from the lowest-order to higher-order, and ensure that the resulting stress fields possess completeness in 

Cartesian coordinates. Obviously, the stress fields derived from equation (2) will be more reasonable because they 

satisfy all control equations. Following the procedure similar to that of the traditional hybrid stress element method 

(Pian 1964), the element stiffness matrix 
*

K  and the equivalent nodal load vector can be obtained (Zhou 2014). 

This is the main procedure for construction of the hybrid stress-function (HSF) elements. Since the assume fields are 

all expressed in terms of Cartesian coordinates, there is no Jacobian determinant existing in the denominator of the 

final formulae for evaluating 
*

K , so that the main factor leading to sensitivity problem to mesh distortion (Lee and 

Bathe 1993) vanishes naturally. 
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2.1. Plane hybrid stress-function solid element models 

Cen et al. (2011b) developed two 8-node and two 12-node quadrilateral hybrid stress-function (HSF) elements 

for plane elasticity, in which the two 8-node elements, denoted by HSF-Q8-15 and HSF-Q8-29, use fifteen and 

nineteen fundamental analytical solutions of the stress function; and the two 12-node elements, denoted by HSF-

Q12-23 and HSF-Q12-27, use twenty-three and twenty-seven solutions. The stress fields of these four elements 

possess third-, fourth-, fifth- and sixth-order completeness in Cartesian coordinates, respectively. The element shapes 

are quite free (see Figure 3). Numerical examples show that, the 8-node and 12-node models can produce the exact 

solutions for pure bending and linear bending problems, respectively, even the element shape degenerates into triangle 

and concave quadrangle. For higher order problems, they also exhibit much better accuracy, convergence and 

efficiency than those of the conventional displacement-based elements with same DOFs. Furthermore, the new HSF 

models can avoid volumetric locking naturally. Figure 4 shows a high-order bending problem, a Cook’s skew beam 

under nearly incompressible and plane strain state. The precision of the HSF elements using about only 40 DOFs is 

almost the same as that obtained by the conventional 8- or 9-node isoparametric elements using about 1000 DOFs. 

These HSF elements have also been generalized to the models for anisotropic case (Cen et al. 2011a).  

By introducing Allman nodal drilling degrees of freedom (Allman 1984), Cen et al. (2011c) developed a 4-node 

quadrilateral HSF plane element HSF-Q4-7 with drilling degrees of freedom by using seven analytical solutions 

of the stress function. This element exhibits much better and more robust performance than other similar or higher-

order displacement-based and hybrid stress elements. It is immune to severe mesh distortion, for example, they can 

perform well even the element shape degenerates into triangle and concave quadrangle. Zhou and Cen (2015) 

proposed a shape-free plane quadratic polygonal HSF element HSF-AP-15. It also exhibits excellent performance 

for both displacements and stresses. 

 

2.2. The quasi-static crack propagation simulation based on the HSF element Method with simple remeshing 

The HSF element method also benefits solving stress singular problems. Zhou et al. (2014) constructed a 

singular HSF element HSF-Crack for analysis of plane crack tip by using Williams’s analytical solutions for the stress 

function (Williams 1957). This element is a shape-free multi-node model with arbitrary polygon. In practical 

applications, the limitations for its shape, size, number of nodes, number of the trial functions (analytical solutions) 

are quite small (Figure 5), so that it is very convenient for crack modeling. By combination with the 8-node plane 

HSF element HSF-Q8-15 (Cen et al. 2011b), the high-precision stress intensity factors can be obtained by using 

only a few elements, which means the computation costs are quite lower than those of other algorithms. Furthermore, 
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a simple and definite multiple relationship exists between the stress intensity factor and the parameters of the first 

two solutions of the stress function, so that there is no need for J-integration or other post-processing procedure.  

Then, Zhou et al. (2014) proposed a quasi-static crack propagation simulation scheme by applying a simple 

remeshing strategy with above crack element HSF-Crack and the plane solid element HSF-Q8-15. This scheme 

possesses following outstanding features. First, although the configuration of the structure near the crack will become 

more complicated along with the crack propagation, the shape, the number of nodes, and the size of the crack element 

at the crack tip can be flexibly adapted for such variation. Second, although the complicated crack propagation path 

will lead to severe mesh distortion, the computation precision can still be guaranteed because of the merits of the 

element HSF-Q8-15. Third, for remeshing in each propagation step, only a relatively coarse mesh is needed, which 

can be easily achieved by most software products. These features mean that the present scheme is convenient for 

modeling, and its computation cost is also quite low. Numerical tests demonstrate that the precision and the efficiency 

of the proposed scheme are better than those of the XFEM (Moës et al. 1999) and smoothed FEM (Nourbakhshnia 

and Liu 2011) (see Figure 6). Following the construction procedure of the element HSF-Crack, Cen et al. (2016) also 

proposed a similar scheme by combination of a new low-order crack element HSF-Crack- with drilling degrees of 

freedom and the element HSF-Q4-7 (Cen et al. 2011c).  

 

3. The hybrid displacement-function (HDF) elements for Mindlin-Reissner Plate 

How to develop robust finite element models for analysis of Mindlin-Reissner plate is an interesting topic and has 

attracted many researchers for a long time (Cen and Shang 2015). An ideal element should be free of shear locking, 

immune to mesh distortion, and able to produce good results for both displacements and internal forces. Although 

various models have been successfully proposed, few are truly independent of the element shapes. The 

aforementioned HSF element method provides a new thought for solving this problem. However, the concept of the 

stress function does not exist in plate problem. 

Hu (1984) proved that, in Mindlin-Reissner plate theory, the solutions of deflection w and rotations x and y 

can be expressed by two functions F and f:  

2, ,x y

F f F f D
w F f

x y y x C
 

   
= + = − = − 

   
,                      (5) 

in which D is the bending stiffness of the plate; C, the shearing stiffness of the plate; F is active within the whole 

plate; and f only appears near the plate edges and reflects edge effects. F and f can be defined as displacement 

functions, and must satisfy following equations: 
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2 2D F q  = ,                                          (6) 

21
(1 ) 0

2
D f Cf−  − = ,                                 (7) 

in which q is the distributed transverse load;  is the Poisson’s ratio. The solution of the displacement function F in 

Equation (6) is the sum of the the general solution F0 and the particular solution F*, in which  

2 2 0 0D F  = .                                         (8) 

Then, according to the geometry and constitutive equations, all components of the stress resultants can be expressed 

in terms of the displacement function F and f:  

T[ ] ( , )x y xy x yM M M T T F f= =R D ,                          (9) 

where Mx and My are bending moments; Mxy is the twisting moment; Tx and Ty are the shear forces. These resultant 

forces satisfy all control equations. Substitution of them into the functional of the element complementary energy 

yields 
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where C is the elastic flexibility matrix for plate; L is the direction cosine matrix of the element boundary; d  is the 

displacements along element edges, which can be interpolated by the element nodal displacement vector qe (The 

first-order (Hu 1984) or the arbitrary order (Jelenic and Papa 2011) Timoshenko’s beam functions are strongly 

suggested as this interpolation formulae).  

When formulating a finite element model, instead of directly assuming resultant force fields, the interpolation 

formula for displacement functions F and f are assumed firstly as follows: 

0 * 0 *

1

1

n

i i

i

m

j j
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F F F F F

f f
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
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

 =





,                            (11) 

where i and j are unknown parameters of the displacement functions; 
0

iF  (i=1~n) are first n analytical solutions 

(in Cartesian coordinates) of 
0F   satisfying equation (8); fj (j=1~m) are m analytical solutions (in Cartesian 

coordinates) of f satisfying equation (7); F* is the particular solution (in Cartesian coordinates) of F satisfying 

equation (6). Other construction procedure is similar to that HSF element method. Finally, according to the principle 

of the minimum complementary energy, the element stiffness matrix 
*

K  and the equivalent nodal load vector can 

be obtained. This is the main procedure for construction of the hybrid displacement-function (HDF) elements. Similar 
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to the HSF element method, there is no Jacobian determinant existing in the denominator of the final formulae for 

evaluating 
*

K , which means that the main factor leading to sensitivity problem to mesh distortion (Lee and Bathe 

1993) is eliminated. 

 

3.1. The HDF plate elements insensitive to severe mesh distortion 

By only applying the displacement function F, Cen et al. (2014) presented a 4-node, 12-DOF quadrilateral HDF 

element HDF-P4-11, in which the first eleven fundamental analytical solutions of F0 are employed so that the 

corresponding stress resultants fields reach second-order completeness in Cartesian coordinates. This element is quite 

simple, and exhibits almost the best performance among all existing 4-node, 12-DOF quadrilateral plate bending 

elements. Especially, it is quite insensitive to severe mesh distortions and can even perform well when element shape 

is a concave quadrangle or a degenerated triangle.  

As shown in Figure 7, a quarter of a thin clamped square plate subjected to uniformly distributed load is 

considered. This quarter plate is divided by a very coarse mesh (22), and the central node of the mesh will be moved 

along the main diagonal of the plate to the two corner nodes.  is the distortion parameter. It can be seen that, along 

with the variation of , the displacement results obtained by element HDF-P4-11 are quite stable and insensitive to 

mesh distortion. When an element in the mesh degenerates into a triangle or concave quadrangle (other finite elements 

cannot work), the model can still keep good precision. 

Following above thought, Bao et al. (2017) also successfully developed an 8-node, 24-DOF quadrilateral HDF 

plate element HDF-P8-23 in which the first twenty-three fundamental analytical solutions of F0 are employed. It 

exhibits almost the best performance among all existing 8-node, 24-DOF quadrilateral plate bending elements. Huang 

et al. (2017) also proposed a 3-node triangular HDF element HDF-P3-7 for both static and free vibration analyses 

of Mindlin-Reissner plates. Furthermore, Shang et al. (2016) combined the plate element HDF-P4-11 and the plane 

element HSF-Q4-7 (with drilling degrees of freedom) to construct a flat shell element HDF-SH4. This new shell 

element inherits all the advantages from the HDF and HSF element methods. Figure 8 gives the contour plots, 

calculated by HDF-SH4, of y-direction displacement of the pinched cylinder with diaphragms ends. It can be seen 

that, the plots are almost the same no matter regular or distorted mesh is used. 

 

3.2. Solving the edge effect difficulty by the HDF element method   

As described in Introduction, a kind of special difficulty, i.e., the edge effect phenomenon, is existing in the 



10 

Mindlin-Reissner plate theory (Arnold and Falk 1989, 1990). The so-called edge effect, or the boundary layer effect, 

is the fact that the rotations and stress resultants of a Mindlin-Reissner plate vary sharply in a narrow region at the 

vicinity of certain types of boundary conditions. Wang et al. (2001) pointed out that, accurate predictions of resultants 

are crucial for the design of a very large floating structure. However, the traditional displacement-based FEM cannot 

reflect such sharp variation without an extremely refined mesh. Furthermore, the boundary conditions of zero stress 

resultants cannot be satisfied, either.  

Shang et al. (2015), Shang (2016) firstly gave out two analytical solutions of the displacement function f 

satisfying equation (7): 

0

1

1
=

mx ny a
f e

D

+ −
− ,  ( ) 0

2

1
=

mx ny a
f nx my e

D

+ −
− − .

                        
(12) 

Then, they used these solutions to extend the HDF elements. After modifying the assumed stress resultants by 

introducing the exact boundary conditions, two special 4-node, 12-DOF quadrilateral HDF plate elements, HDF-P4-

Free and HDF-P4-SS1, were successfully formulated for capturing the edges effects along free and soft simply-

supported (SS1) boundaries, respectively. When dealing with the edge effect problems, these special elements will 

be allocated along the corresponding boundary, and the normal HDF element HDF-P4-11 are used in other regions 

to connect with the special elements. 

Figure 9 plots a square plate subjected to a uniformly distributed load q. Two opposite edges of the plate are 

hard simply-supported (SS2) and the other two edges free. Due to symmetry, only a quarter of the plate ABCD is 

considered. The special element HDF-P4-Free is allocated along the free edge AD, while normal element HDF-P4-

11 is used in other region. From Figure 9, it can be seen that, the edge effects of the twisting moment Mxy and the 

shear force Ty along AB can be well captured when only a 44 coarse mesh is employed. Especially, the zero boundary 

condition of the twisting moment Mxy obtained by the current model is exact. However, such good results cannot be 

obtained by most other higher-order elements, including the 8-node shell element S8R of the Simula/Abaqus, even a 

refined 100100 mesh is used. In order to obtain more smoothed results, Shang et al. (2017) proposed an improved 

HDF (IHDF) element scheme based on a modified complementary energy functional containing Lagrangian 

multipliers, and developed two new special 4-node, 12-DOF IHDF elements, IHDF-P4-Free and IHDF-P4-SS1, for 

modeling plate behaviors near free and soft simply-supported (SS1) boundaries, respectively. Such new modeling 

scheme not only greatly improves the precision of the numerical results, but also avoids usage of the additional local 

Coordinate system in original method (Shang et al. 2015). 

Following similar procedure, Bao et al. (2017) also extended the 8-node, 24-DOF HDF element HDF-P8-23 
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to two 8-node special HDF elements, HDF-P8-Free and HDF-P8-SS1, for analysis of the edge effects of the free and 

soft simply-supported boundaries, respectively. Numerical results show they are the best models among the existing 

8-node finite elements.  

 

4. An improved unsymmetric FEM based on the fundamental analytical solutions 

The unsymmetric FEM is a kind of Galerkin FEM, in which the test and the trial functions of the displacement fields 

are different (Rajendran and Liew 2003; Rajendran et al. 2007; Rajendran 2010; Liew et al. 2006; Ooi et al. 2004, 

2007, 2008). Based on the virtual work principle, the final element stiffness matrix can be written as: 

*
1 1 1 1 1

T *

1 1 1 1 1

ˆ ˆ ˆd d d d d d d
e

e

V
V      

− − − − −
= = =     

B
K B DB DB J B DB

J
            (13) 

where JBB
*=   is the strain matrix derived from the conventional isoparametric elements; B̂   is the strain 

matrix derived from the assumed displacement fields in terms of the Cartesian coordinates; J   is the Jacobi 

determinant. From equation (13), it can be seen that, although the element stiffness matrix Ke is unsymmetric, the 

Jacobi determinant J  in denominator disappears in the final formula for evaluating Ke. Therefore, the main reason 

that leads to the sensitivity problem to mesh distortion (Lee and Bathe 1993) does not exist anymore. Several high 

order models have been developed, including plane 6-node triangular element (Liew et al. 2006), plane 8-node and 

9-node quadrilateral elements (Rajendran and Liew, 2003; Rajendran 2010), 20-node hexahedral element for 3D 

problem (Ooi et al. 2004), and so on. They are almost immune to severe mesh distortions. 

However, due to the limitation for the number of the nodal DOFs, the interpolation formulae for assumed 

displacement fields in terms of Cartesian coordinates may not be completeness. This problem leads to three fetal 

defects when formulating serendipity (no internal node) plane quadrilateral and 3D hexahedral elements. First, the 

performance of the low order element cannot be improved. Second, some special shape of the element will lead to 

interpolation failure so that the element cannot work (for example, the 8-node quadrilateral element degenerate into 

a triangle) (Ooi et al. 2008). Third, the results for higher-order problems are not consistent when the coordinate axes 

rotate, i.e., the element exhibits rotational frame dependence (Ooi et al. 2008). 

  

4.1. Improved low-order unsymmetric plane, 3D solid and 3D solid-shell elements that can overcome all defects 

and break through MacNeal’s theorem  

In 2012, by employing the fundamental analytical solutions and generalized conforming technique (Long et al. 



12 

2009), Cen et al. (2012) assumed a new displacement fields that reaches fourth-order completeness in terms of 

Cartesian coordinates, and constructed a new unsymmetric 8-node, 16-DOF plane quadrilateral element US-ATFQ8. 

This element can still work well when interpolation failure modes for original unsymmetric element occur (Rajendran 

and Liew 2003), and provide the invariance for the coordinate rotation. Furthermore, the exact solutions for constant 

strain/stress, pure bending and linear bending problems can be obtained by the element US-ATFQ8 using arbitrary 

severely distorted meshes, and produce more accurate results for other more complicated problems. It should be noted 

that no other 8-node plane element that can provide exact solutions for linear bending problem is found. Shang et al. 

(2018b) also proposed a successful 8-node unsymmetric element US-Q8 based on self-equilibrium metric stress field 

for plane orthotropic problem. However, these ideas cannot be directly applied for developing lower-order models.  

In 1987, MacNeal (1987) declared his well-known theorem, that is, any 4-node, 8-DOF plane membrane element 

will either lock in in-plane bending or fail to pass a C0 patch test when the element’s shape is an isosceles trapezoid. 

This conclusion means such low-order elements must be sensitive to mesh distortion, and it almost closes out further 

effort to extend the linear strain capability of such elements beyond what has already been achieved for rectangular 

and parallelogram shapes. In 2015, Fotiu (2015) emphasized again that this MacNeal’s theorem is hard to be 

overturned.  

In 2015, Cen et al. (2015) and Zhou (2016) proposed a novel unsymmetric FEM by applying fundamental 

analytical solutions expressed in terms of composite coordinates. For an unsymmetric 4-node, 8-DOF plane 

quadrilateral element, the displacement fields expressed in terms of Cartesian coordinates are rewritten as: 

1

7 8 2

7 8

8

ˆ 1 0 0 0
ˆ

ˆ 0 1 0 0

x y U Uu

x y V Vv







 
 

    
= = =    

     
  

u Pα ,                (14) 

where i (i=1, 2, …, 8) are eight unknown parameters; U7, V7, U8, V8 are the analytical solutions for pure bending 

state and expressed in terms of the second form of the quadrilateral area coordinates (QACM-II) (Chen et al. 2008, 

Cen et al. 2009, Cen and Zhou 2016), and they are valid for both isotropic and anisotropic materials. First, because 

the relationship between the QACM-II and Cartesian coordinate system is always linear, all the features brought by 

Cartesian coordinates are still kept. Second, since the QACM-II is a kind of local natural coordinates, the rotational 

frame dependence will not exist even though the trial functions are not completed.  

The resulting element, denoted by US-ATFQ4, will never produce interpolation failure, and can exactly pass 

constant strain/stress patch test no matter its shape is a arbitrarily convex or concave quadrangle, or a degenerated 
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triangle. For the pure bending test given by Figure 10, the computation results are given in Table 1. It can be seen 

that element US-ATFQ4 is the only 4-node, 8-DOF model that can provide the exact answers for both pure bending 

test and the constant strain/stress patch test. Furthermore, there is no rotational frame dependence existing in this 

element. Thus, the MacNeal’s theorem is perfectly broken through. Furthermore,  unsymmetric 3-node triangular 

and 4-node quadrilateral membrane elements with drilling DOFs that can exhibit excellent performances were also 

proposed by Shang et al. (2018a), Shang and Ouyang (2018), respectively.   

MacNeal’s theorem can also be generated to 3D 8-node hexahedral elements and shell elements (MacNeal 1992). 

Actually, how to find a solution strategy for 3D problem is more difficult. Zhou (2016) and Zhou et al. (2017) derived 

out the fundamental analytical solutions in terms of 3D skew coordinate system (Yuan et al. 1994) (a kind of local 

coordinates, also has linear relationship with Cartesian coordinate system) for 3D elasticity (both isotropic and 

anisotropic materials). Then, they selected the terms corresponding to the pure bending state to assume the 

displacement fields. Similar to the plane element US-ATFQ4, the resulting 3D unsymmetric 8-node, 24-DOF 

hexahedral element US-ATFH8 also exhibit super ability for resisting mesh distortion, and can break through the 

limitations defined by MacNeal’s theorem. Recently, by introducing proper shell assumption and assumed natural 

strain modification for transverse strains, Huang et al. (2018) modified the isoparametric displacement fields of 

element US-ATFH8, and successfully generalized the 3D unsymmetric element US-ATFH8 to a new 3D solid-shell 

element US-ATFHS8. The new element is able to give highly accurate predictions for shells with different geometric 

features and loading conditions and is quite insensitive to mesh distortions. In particular, the excellent performance 

of US-ATFH8 under membrane load is well inherited, which is an outstanding advantage over other shell elements. 

 

4.2. Geometric nonlinear formulations of the improved unsymmetric FEM 

Since the improved unsymmetric FEM adopts the fundamental analytical solutions for linear elasticity, some 

researchers (Cowan and Coombs 2014) claimed they cannot be applied in nonlinear problems. In fact, the analytical 

trial functions are only the functions of physical coordinates with material constants. These coordinates and material 

constants can be updated referring to the current configuration at each iterative step so that it is possible to use them 

as part of the incremental equations of the updated Lagrangian (UL) formulation. 

Recently, Li et al. (2018) successfully extended the unsymmetric 4-node, 8-DOF element US-ATFQ4 to 

geometric nonlinear applications. First, the analytical trial functions are updated at each iterative step in the 

framework of the UL formulation that takes the current configuration, i.e., the configurations at the beginning of an 

incremental step, as the reference configuration during that step. Then, the Cauchy stresses are updated by the 
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Hughes-Winget method (Hughes and Winget 1980) to estimate the current stress field. Other procedure is similar to 

the conventional UL formulations. Numerical examples show that element US-ATFQ4 also possesses amazing 

performance for geometric nonlinear analysis, no matter whether regular or distorted meshes are used.  

Figure 11 shows different deformed shapes of a slender cantilever subjected to a resultant moment at its free 

end. These shapes are computed by element US-ATFQ4 and other 4-node and 8-node plane quadrilateral elements in 

CAE platform Simula/Abaqus (Abaqus 2009), and Figure 11a plots the results by using 110 regular mesh, while 

Figure 11b plots the results by using 120 distorted mesh (isosceles trapezoid). Theoretical analysis shows that the 

cantilever beam should bend to be a circle. It can be seen that only the unsymmetric 4-node, 8-DOF element US-

ATFQ4 gives the correct answer, even much better that that obtained by 8-node, 16-DOF element. 

Similar situation for geometric nonlinear problems can also be obtained by the 3D unsymmetric 8-node, 24-

DOF hexahedral element US-ATFH8 (Zhou et al. 2017). Related results will be reported in near future. 

 

5. Concluding remarks 

By introducing the fundamental analytical solutions of elasticity, the HSF, the HDF, and the improved unsymmetric 

finite element methods are established. They are all the newest developments in the field of high-performance FEM, 

and exhibit advantages from both analytical and numerical approaches. All the successful models exhibit outstanding 

capacity for resisting various severe mesh distortions, and even perform well when other models cannot work. Some 

difficulties in the history of the FEM are also broken through, such as the limitations defined by MacNeal’s theorem 

and the edge effect problems of Mindlin-Reissner plate. These efforts promote the progress of the FEM. 

The HSF element method is quite simple. It has exhibited its advantages when constructing shape-free high-

order plane elements and singular crack tip elements. However, for low-order 4-node, 8-DOF element model, the 

HSF element method has no any merit when compared with the conventional isoparametric element. Furthermore, 

this method needs an exact displacement mode (not only exact conforming) along element boundary, so that the 

results will become worse once any edge of plane element is curved, and no proper 3D model can be found.  

The improved unsymmetric FEM may be a more promising FEM. Excellent models with high distortion 

tolerance for plane and 3D elasticity have been successfully developed. But the efficiency of the unsymmetric element 

stiffness matrix may arouse some doubt from those researchers who have been applying symmetric matrix system 

for a long time. Actually, by rational design, the unsymmetric matrix will not bring more additional computation 

costs. In simulations for practical engineering, material nonlinearity and coupled problems often lead to unsymmetric 

stiffness matrices. All premium CAE products must consider how to solve related problems efficiently (Abaqus 2009). 
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Furthermore, the precision obtained by several improved unsymmetric elements may reach the precision obtained by 

several hundreds of isoparametric (symmetric) elements. Therefore, the model composed of the improved 

unsymmetric elements may have better efficiency. Of course, it cannot say that the improved unsymmetric FEM is 

completely successful at present, because many problems have not been solved yet. How to extend this method to 

material nonlinear, contact, dynamic, coupled problems are all interesting topics.   

To-date, there is no any other numerical method that can completely replace the FEM. Therefore, it still has 

great significance and application value to develop high-performance FEMs. 
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Table 1. Results of the tip deflection vA of a pure bending cantilever beam with a distorted parameter e (Figure 10) 

      e 

Element models 
0 0.5 1 2 3 4 4.9 

Elements 

that 

cannot 

pass the 

C0 patch 

test 

Q6 (Wilson et al. 1973) 100 93.21 86.89 92.67 102.42 110.52 116.6 

AGQ6-I (Chen et al. 2004) 100 100 100 100 100 100 100 

AGQ6-II(Chen et al. 2004) 100 100 100 100 100 100 100 

QACII6(Chen et al. 2008) 100 100 100 100 100 100 100 

QAC-ATF4(Cen et al. 2009) 100 100 100 100 100 100 100 

QACIII6(Long et al. 2010) 100 100 100 100 100 100 100 

Elements 

that can 

pass the 

C0 patch 

test 

Q4 28.0 21.0 14.1 9.7 8.3 7.2 6.2 

QM6 (Taylor et al. 1976) 100 80.9 62.7 54.4 53.6 51.2 46.8 

P-S(Pian & Sumihara 1984) 100 81.0 62.9 55.0 54.7 53.1 49.8 

SPS (Sze 2000) — — 110.0 120.5 132.7 147.1 162.6 

SYHP (Sze 2000) — — 110.0 120.5 132.8 147.5 163.3 

CPS4I (Abaqus 2009) 100 73.53 56.16 50.31 50.38 49.39 46.58 

QE2(Piltner & Taylor 1995) 100 81.2 63.4 56.5 57.5 57.9 56.9 

B-QE4 (Piltner & Taylor 1997) 100 81.2 63.4 56.5 57.5 57.9 56.9 

QACM4 (Cen et al. 2007) 100 83.8 66.5 60.1 61.4 60.3 56.0 

CQAC6 (Long et al. 2010) 100 83.8 66.5 60.1 61.4 60.3 56.0 

F-M QUAD4-P (Rajendran 

and Zhang 2007) 
9.85 9.94 10.22 11.08 12.00 12.64 12.88 

F-M QUAD4-R (Xu and 

Rajendran 2011) 
99.28 99.28 99.28 99.28 99.28 99.29 99.29 

HSF-Q4θ-7β (Cen et al. 

2011c) 
100 99.93 99.47 95.95 87.14 71.87 52.47 

US-ATFQ4 100 100 100 100 100 100 100 

 Exact 100 100 100 100 100 100 100 
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Figure 1. Pure bending beam calculated by plane 8-node elements (Lee and Bathe 1993). 
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Figure 2. Distribution of the shear force Tx along y = 0.5L in a square plate with two opposite edges 

hard simply-supported (SS2) and the other two free (Soh et al. 2001). 

The usual FEM results cannot reflect the zero 

boundary condition of the shear force  
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Figure 3.  Shape-free plane high-order quadrilateral elements (Cen et al. 2011b). 
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(b) 12-node element with arbitrary shapes 

(a) 8-node element with arbitrary shapes 
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Figure 4.  The convergence for the strain energy of Cook’s skew beam under plane strain and  

nearly incompressible state (Cen et al. 2011b). 
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Figure 5.  Multi-node plane polygonal crack-tip element HSF-Crack and the 

example meshes for computations (Zhou et al. 2014). 
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HSF element method 

128 elements, 461 nodes 

XFEM (Moës et al. 1999) 

2650 nodes 

Figure 6.  Comparison of different FEMs for simulating quasi-static crack propagation. 
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(Zhou et al. 2014) 



28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

HDF-P4-11 can keep good precision when other elements cannot work (triangle or concave quadrangle) 

Figure 7. Sensitivity test for symmetric mesh distortion, clamped plate (Cen et al. 2014) 
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Figure 8. The contour plots of y-direction displacement of the pinched cylinder on different meshes. 

(Shang et al. 2016) 
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Figure 9.  The edge effects of a square plate with two opposite edges simply-supported and the other two 

free, span-thickness ratio a/h=50 (Shang et al. 2015). 



31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

A 

e 

2 

y 

E=1500, μ=0.25, t=1 

5 5 

x P=1000 

P=1000 

Figure 10.  Pure bending test with two distorted elements (Cen et al. 2015). 
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Figure 11. The final configurations of slender cantilever beam subjected to end resultant moment (Li et al. 2018). 

(b) Deformations obtained by distorted mesh. 

(a) Deformations obtained by regular mesh 


