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Abstract

As a catalytic coating for alkaline electrolysis Raney Nickel is one of the most efficient materials discovered, based largely
on the activity of nickel and the porosity of the alloy after leaching. This study improves the electrochemical and corrosion
performance of the coating for both hydrogen and oxygen evolution in alkaline water-splitting electrolysis through the
use during electrodeposition of a sacrificial stainless-steel counter electrode. Analysis using energy dispersive X-ray
(EDX) and scanning electron microscopy (SEM) revealed that the although the elemental make-up is largely similar,
the morphology is transformed. Through measurements of the electrochemical surface area (ECSA) after long-term
intermittent ageing it was found that the surface area was increased by a factor of six. Assessments and comparisons of
the electrochemical performance using 3-electrode chronopotentiometry confirm this is one of the most active bifunctional
coatings known.

Keywords: alkaline, electrolysis, bifunctional, raney nickel

1. Introduction

Enough solar energy reaches the Earth’s surface to
meet our current energy consumption 10,000 times over|[1,
2]. Despite this, (according to the World Bank) fossil fuels
still make up 80 % of total energy consumption. Renew-
able energy offers the opportunity to greatly reduce this
figure, but one of its greatest drawbacks is intermittency.
Worse still, when renewable energy is available, its timing
may not coincide with peak energy. To this end, the storing
of energy as hydrogen gas decouples supply from demand,
and offers great potential to permit both developed and
developing nations to reduce or avoid future dependency
on fossil fuel, as well as achieving great efficiency savings in
energy transport and distribution. There are many concur-
rent branches of research focussed on energy conversion to
hydrogen, for example photocatalytic water-splitting[3—5]
and artificial photosynthesis[6, 7], and to this the addi-
tion of a low-cost, reliable, efficient electrolyser that can
utilize highly variable electrical input would be of great
benefit[8, 9]. Such a device could on a small-scale be con-
nected directly to wind turbines and solar farms, thereby
introducing energy conversion, buffering and storage into
the energy network at the earliest opportunity, and gaining
efficiencies that would otherwise be lost due to electrical
management and transport[10].

In this study a comparison will be made between two
different types of electrodeposited Raney nickel, as listed
in Table 1. Coating Raney 1 is based on that refined by I.
Herraiz-Cardona et al.[11], itself based on earlier work[12],
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and ultimately based on processes which are widely used
in the nickel plating industry, and were first formulated by
Professor Oliver P. Watts in 1916[13]. Coating Raney 2 is
new, and differs only in the choice of counter electrode. It is
our aim to present evidence for the profound and beneficial
effects this produces for the performance and longevity of
the coating.

. . Electrodeposition
Coating Substrate Coating Counter-electrode
Raney 1 316SS Ni/Zn Graphite rod
Raney 2 316SS Ni/Zn 316SS

Table 1: The two electrolcatalytic coatings compared in this study,
which differ only in the choice of counter-electrode used during elec-
trodeposition. 316SS = 316-grade stainless steel.

Raney Nickel has been studied extensively since its
discovery in 1926, and is made by dissolving nickel in
molten aluminium, followed by the addition of zinc or
chromium whilst quenching. Electrodeposition methods
have been investigated commercially since the 1950’s,[14]
and in academia since the 1980’s,[12, 14-17] in addition
to other methods such as pressed powders and plasma
spraying[18]. Although typically investigated for hydrogen
evolution,[11, 19-25] as well as in combination with non-
abundant compounds,[26-28] the coating is also known to
perform well for oxygen evolution[29, 30].

In the field of alkaline water-splitting electrolysis, it
is recognised that insufficient attention has been paid to
long-term system performance when driven from variable
and discontinuous renewable energy sources. To quote from
Chapter 8 of ‘Hydrogen Production by Electrolysis’ (edited
by Agata Godula-Jopek) “it seems fair to say that the
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this hignly practical area oI research Dy Iocussing on the
performance of electrocatalytic coatings when subjected
to a simulated intermittent environment, whereby ageing
may be achieved over reduced time-scales[32].

In very long-term studies completed between 1989 and
1994, some running to more than 10,000 hours, it was re-
ported by Divisek et al. that a Ni/Al Raney Nickel cath-
ode experienced ‘complete destruction” when subjected to
electrolyser shutdown[33], forcing the authors to conclude
that “the only catalytic coating resistant to depolarization
consists of the metals of the Pt group”. A Raney coating
based on zinc fared little better, and in bi-polar operation
“to avoid major deterioration, the cells were polarized with
a protective current” [34], i.e. a permanent back-up power
supply was required to permit the electrolyser to cope with
intermittent usage. Although some protective effect was
discovered via the incorporation of Mo into the coating,
this protection was only temporary.

When the power input to a water-splitting electrolyser
is interrupted, the electrodes will have stored charge within
them in the form of capacitances, adsorbed species, ioni-
sation changes and as chemically altered compounds. As
the electrodes subsequently discharge this can lead to cor-
rosion currents that will selectively leach out vital com-
ponents of the catalytic coating. If this process continues
far enough, it can lead to the sort of ‘complete destruc-
tion’ reported by Divisek et al[33]. The possibilities for
discharge currents are greater in bipolar electrode stacks,
because the presence of electrolyte side-channels running
through the stack mean that there are many possible elec-
trolyte pathways by which currents can flow. Some of these
will be connecting electrodes at greatly differing voltages,
which could permit the corrosion of components which
would otherwise be stable. Despite this, the current study
focuses on a monopolar design, due to its simplicity.

Corrosion will also be considerably different at the an-
ode and cathode. Since metals form positively charged ions
in solution, their dissolution is associated with loss of elec-
trons i.e. anodic oxidation. During continuous operation,
such as in a commercial electrolyser, the water-splitting re-
actions dominate, and the corrosion rate of a well-designed
electrode can be minimal. During unprotected discharge,
reverse currents can flow, and it is therefore the cathode
that can experience the greatest rate of corrosion,[35, 36]
especially of components that have the most negative elec-
tropotential such as zinc, which are therefore the most sta-
ble in solution. Charting what changes occur, how these
affect the performance of the electrocatalytic coating, and
how they may potentially be avoided is of great interest
to the goal of harnessing intermittent renewable energy to
power the hydrogen economy.

Hz0 + e~ — Haqs + OH™ (Volmer)
Hags + HoO + e —— Ha(g) + OH™  (Heyrovsky)
Hags + Haas — Ha(g) (Tafel)

where H,4s stands for an uncharged hydrogen atom ad-
sorbed onto the surface of the electrode material. The
shape of the plot of log of current versus potential (a Tafel
plot) will vary depending upon which of the reactions is
the rate-limiting step, as described in Table 2[40]. Assum-
ing therefore that any of the transitions of slope can be ob-
served experimentally, the rate-limiting step could thereby
be surmised with a high degree of confidence.

Rate-Limiting Step Tafel slopes (in mV dec™ ')

Volmer 0 — —120
Heyrovsky 0 — —40 — —120
Tafel 0 - —-30 - —o©

Table 2: Theoretical Tafel slopes observed for HER

For the Oxygen Evolution Reaction (OER) in alkaline
media, the reaction is multi-step and irreversible. There
are many (broadly similar) possible reaction mechanisms
by which it may proceed, and one such scheme is shown
below:

OH™ —— OHags + ¢~ (1)

OH,ags + OH™ —— Ogags + HaO + €™ (2)
Ouqs +OH™ —— OOH,qs + e~ (3)
OOH,qs + OH™ — 00, + Hy0 (4)
007, — Oa(g) + ¢ 5)

There are four different types of adsorbed species (O,
OH, OOH and OO ) and four of the steps involve electron
transfer, which means that the reactions can draw electri-
cal energy from the potential on the electrode. Steps 4 and
5 are often combined as a single step, but there is good
evidence to suggest that they occur as two separate steps
above pH 11[41], which is where practical alkaline elec-
trolysers operate. The resulting theoretical range of slope
transitions for OER are presented in Table 3[40].

Rate-Limiting Step Tafel slopes (in mV dec™1)

Reaction 1 0 — 120

Reaction 2 0 — 30 — 120

Reaction 3 0 — 21 — 40 — 120

Reaction 4 0 — 22 - 30 — 60 — 120 — o©
. 0 — 22 — 120, or

Reaction 5 0 — 40 — 120

Table 3: Theoretical Tafel slopes observed for OER



errects and bubbles|s|. INevertheless, userul conclusions can
still be drawn from modest amounts of information.

2. Method

2.1. Electrodeposition of Raney Nickel

All procedures were conducted in standard laboratory
100 ml beakers. Such beakers are large enough to accom-
modate up to two 4cm x 4cm paddle-shaped stainless-
steel electrodes, as shown in Figure 1. For Raney 2 the
graphite rod counter electrode is exchanged for one made
from 316-grade stainless-steel, which is partially consumed
during the deposition, thereby progressively altering the
composition of the coating.

i s

|
o

(a) Raney 1 deposition (b) Raney 2 deposition

Figure 1: Mechanical drawings of the electrodeposition chambers for
a) Raney 1, which employs a graphite rod counter-electrode and b)
Raney 2, which employs a 316-grade stainless steel counter-electrode.
Both chambers were primarily constructed using laser cut acrylic
components, plus a standard 100 ml laboratory beaker

Pretreatment. The 4cm x 4cm stainless-steel electrode
was degreased in hot 25 wt% NaOH for 1 minute, then
submerged in 18 wt% HCI for 1 minute at room temper-
ature, before being placed in 70 wt% H2SO4 for 3 min-
utes at an anodic current of 108 mA m~2. Lastly the elec-
trode was placed in a Nickel Strike solution consisting of
240g17! NiCl, - 6 H,O and 120ml1~* HCI for 5 minutes at
a cathodic current of —26.8 mA cm™2. Between each step
the electrode was rinsed with deionised water, and the air-
exposure time between each step kept to a minimum. At
this point the electrode was observed to be covered in a
thin, adherent coating of nickel that is able to act as a base
for any subsequent functional coatings[21].

Functional Coating. The electrode was immersed
in a modified Watt’s Bath consisting of 330gl~!
NiSOy - 6H207 45g1_1 NiCl, - 6H20, 37g1_1 H3BO3
and 20g1~! ZnCly at 50°C for 60 minutes at a cathodic

current of —50mA cm™2. During this procedure the

snown 1n rigure 2 (lerv).

2.2. Electrochemical Surface Area (ECSA)

The ECSA is an estimate of the real surface area of
the electrode, and it can be very much larger than its geo-
metric area. Based on the assumption that the Helmholtz
double-layer is very thin, the ECSA should be proportional
to the double-layer capacitance (Cpy) and can there-
fore be determined by measuring the currents required to
charge and discharge the electrode. In essence, this requires
finding a region where all other currents are minimised,
specifically Faradaic currents (which are related to water-
splitting) and redox currents (which are related to changes
of oxidation state).

The voltage was cycled by £50mV, at various scan
rates, in a non-Faradaic region, usually around open-circuit
potential (OCP). Before each change of scan direction, the
voltage was held for 10 seconds to allow diffusion gradi-
ents to disperse[42]. Assuming that all of the current goes
towards charging and discharging the double-layer capac-
itance, the charging current will be given by:

ic = I/CDL (1)

where v is the scan-rate. Unfortunately, the values of ca-
pacitance observed in this study were often so large that
the current had not stabilised within the measurement
window. Therefore a method was developed that performed
a best-fit of an RC-network model to the current wave-
forms. This method also has a very good ability to reject
artefacts that are present on the waveforms.

Once the double-layer capacitance has been determined,
the ECSA can be calculated by comparing this value to
that expected for a flat plate, namely the specific capac-
itance Cg, which in 1 M NaOH is widely-accepted to be
0.040 mF cm~—2[43].

ECSA=CpL/Cs (2)

Finally, the roughness factor (RF) was determined by
dividing the ECSA by the geometric surface area.

2.3. Three electrode experiments

All 3-electrode experiments were conducted on an Ivium
n-Stat potentiostat, connected to a laminated electrolytic
cell, chiefly comprised of laser-cut acrylic plastic, as shown
in Figure 2 (right), which is similar to previous test cells[44].

The exposed area of the working electrode (WE) was
3cm x 3 cm, the counter electrode was a 316 stainless-steel
plate (of which 6cm x 6cm was exposed), and the refer-
ence electrode (RE) was a commercial design involving a
Ag/AgCl wire suspended in 3 M KCI. The distance be-
tween working and counter electrodes was approximately



Figure 2: Raney 2 electrode (left) and as assembled into the three-
electrode cell (right)

15 mm. The electrolyte was 0.5 M NaOH (standard reagent
grade) and deionised water was used throughout. Before
each experiment the RE was checked against a standard
calomel electrode (SCE), and the electrolyte was bubbled
with nitrogen for 10 minutes to reduce dissolved oxygen.
All experiments were conducted at laboratory ambient tem-
perature, which was 20 +1°C.

2.4. Owverpotentials

Overpotentials were calculated with reference to the
chart of potentials at pH 13.7, as shown in Figure 3.

- \ N
ov 241 mV
Cathode L SHE SCE A’node
J s

| Measured voltage -l Measured voltage -
> >
«Overpotential Overpotential _y,

L p R, A ]

-810 mV 210mV| 420 mV.

| HER Ag/AgCl| | OER
— - <

Figure 3: Diagram of relevant potentials at pH 13.7 (to scale)

It is important to clarify that the diagram shows poten-
tials (for which the symbol F will be used), whereas exper-
imentally we are restricted to measuring voltages (i.e. the
difference between two potentials, for which the symbol
V will be used). The standard potential for the hydrogen
evolution reaction at pH 0 is 0V, since this is a descrip-
tion of the standard hydrogen electrode (SHE), which is
used to define 0 V. As the pH becomes more alkaline, this
potential will shift by —59.1mV for every unit on the pH
scale, therefore in 0.5 M NaOH at pH 13.7, the standard
potential for the HER is:

Eonpr =0V —13.7x59.1 mV = —810 mV  (3)

The standard potential for the OER will be 1.23V
higher than this, at 420mV. The Ag/AgCl reference elec-
trode will remain at 210mV wvs. SHE, therefore to obtain
overpotentials from our measured voltages, we use:

NoER = Vanode — iRs — (Eo.0ERr — Eagagct)  (4)

the SUL, which 1s understandable given the basic condil-
tions under which it was operating, and the regularity of
the servicing it underwent. Therefore, before each experi-
ment an offset voltage to the SCE was measured and used
to correct for drift of the reference electrode.

2.5. Accelerated Ageing

All two-electrode accelerated ageing experiments were
conducted on an Ivium n-Stat potentiostat, connected to a
laminated electrolytic cell of a similar design to that in Fig-
ure 2. A Zirfon™ membrane was used to keep the evolved
gases separate, and the distance between electrodes was
approximately 30 mm. Each cycle consisted of 2 minutes at
200 mA cm~2, followed by 2 minutes at open-circuit. Each
experiment consisted of 2000 cycles, totalling 5.5 days. The
electrolyte was not circulated and consisted of 2.51 of 1 M
NaOH stored in a displacement tube. The reference elec-
trode was not present, since it cannot withstand prolonged
exposure to NaOH.

2.6. Sputter coating

The platinum sputter coating was performed on a Quo-
rum Q150T S, using a 0.3 mm thick 99.99 % pure platinum
target at a sputter current of 30 mA for 60 seconds onto a
0.9 mm thick 316 grade stainless-steel plate.

2.7. Electron Microscope

Scanning electron microscope (SEM) imaging and en-
ergy dispersive spectroscopy (EDX) were performed on an
Oxford Instruments AZtecOne spectrometer attached to a
Hitachi TM3030 table top microscope. To achieve coinci-
dent electromicrographs before and after ageing, a small
stylus mark was made on the electrode away from the
coated area. This was used to zero the axes, prior to mov-
ing the stage a fixed distance and visually locating the
previously examined location.

3. Results: Oxygen Evolution

The peak voltages of the 2-electrode cells containing
the Raney nickel anodes during the accelerated ageing
tests were as shown in Figure 4. The trend line shows the
results after the data have been manipulated to correct for
temperature variations, and to introduce some smoothing.
The cell with the Raney 1 coating shows a gradual but
consistent degradation in performance, finishing the ex-
periment about 150 mV higher. The cell with the Raney 2
coating had more problems with consistency (which were
due to the presence of air-locks), but generally lower volt-
ages throughout.
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Figure 4: Peak OER cell voltages over 2000 cycles of 2 minutes on 2
minutes off accelerated ageing

The anodes were analysed in isolation in the 3-electrode
cell, and the results were as shown in Figure 5. Both coat-
ings exhibit an improvement after ageing, which implies
that the ageing process brings about changes in the coat-
ing which are beneficial for oxygen evolution. The improve-
ment for Raney 2 is much larger than that for Raney 1,
but this may have been due to partial oxidation of the
electrode prior to ageing. If so the results serve to high-
light how the coating can recover its performance through
normal usage. After ageing, the Raney 2 coating is able
to outperform Raney 1 by over 50 mV, which equates to a
300-fold increase in current density at an overpotential of
0.3 V. The results are included for 1M KOH to illustrate
the effect of changing the electrolyte. They show that this
extends the useful range of the electrode by another order
of magnitude. All five plots show a region which appears
to be parallel to 30 mV dec™!, therefore it is expected that
either OER Reaction 2 or Reaction 4 is the rate-limiting
step.

0.6
Uncoated
= === = Raney 1 before ageing
—i— Raney 1 after ageing
0.5 = #-- Raney 2 before ageing "
——fi— Raney 2 after ageing "
> =% Raney 2 in 1M KOH R
I 30 mV/dec ’
§ 0.4
s}
2
[
8
0.3
0.2
-5 4 -3 2 1 0

Log 10 Current (A/cm?)

Figure 5: Tafel plots for OER before and after ageing

The ECSA measurements are as shown in Table 4.
They show that as deposited Raney 2 has a surface area
approximately 3 times larger than that of Raney 1, and

normal usage. At a rougnness ractor ol odo, the haney 2
anode is successfully exposing 1m? of reaction surface to
the electrolyte for each 11cm? of electrode. The capac-
itance measured for the 3cm x 3cm surface is nearly 3
Farads, thereby indicating that the electrode can be clas-
sified as a super-capacitor. It is useful confirmation of the
high capacitances that can be created using the Helmholtz
double-layer.

Anode Capacitance @ ECSA RF
Raney 1 As deposited 0.29F 797 cm? 89

After ageing 1.08 F 3008cm? 334

Raney 2 As deposited 0.75F 2077cm? 231
After ageing 2.87TF 7968 cm? 885

Table 4: ECSA measurements for 3cm x 3cm Raney Nickel anodes
before and after accelerated ageing

4. Results: Hydrogen Evolution

The peak voltages of the 2-electrode cells containing
Raney nickel cathodes during the accelerated ageing tests
were as shown in Figure 6. The trend line shows the re-
sults after the data have been manipulated to correct for
temperature variations, and to introduce some smoothing.
The performance of both cells decreased by approximately
200mV, although this could be due to any component of
the system, such as the stainless-steel anode or the gas-
separation membrane, and not necessarily the cathode.

0.1

0.0

Change in Peak Voltage (V)
<}
N

= Raney Nickel 1
= Raney Nickel 2

0 500 1000 1500 2000
Cycle Number

Figure 6: Peak HER cell voltages over 2000 cycles of 2 minutes on 2
minutes off accelerated ageing

The Raney 2 cathode was also analysed over 24 hours
of chronoamperometry at a cell voltage of —2.5V, with
the results as presented in Figure 7. Note that the left-
hand y-axis has been inverted to assist in highlighting the
correlation between cell current and temperature, which
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Figure 7: Chronoamperometry for HER of Raney 2 over 24 hours at
—25V

The cathodes were analysed in the 3-electrode cell, as
shown in Figure 8, and in greater detail in Figure S1. Both
Raney 1 and 2 improve with ageing, with Raney 2 showing
the greater increase in performance. Both coatings show a
significant improvement in performance over the uncoated
electrode, amounting to an increase in excess of 10,000-
fold in current density. Both coatings also showed a consis-
tent tendency to produce slightly negative overpotentials
at current densities below 3.2 mA em ™2, which is not fully
explained.
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Figure 8: Tafel plots for HER before and after accelerated ageing

The results for a Pt-sputtered plate are also included,
which serve to underline how a smooth, expensive ma-
terial can be outperformed comprehensively by a much
lower-cost material with a sufficiently large surface area.
The Pt-sputtered plate shows a transition in slope from
40mV dec™! to 120 mV dec ™!, therefore it is expected that
the Heyrovsky reaction is the rate-limiting step. Unfor-
tunately there are not enough points to draw the same
conclusion for the Raney Nickel coatings, since there are
in general too many bubbles above 32mA cm~2 for Tafel
analysis to be reliable.

The ECSA measurements were as shown in Table 5.
They confirm that as deposited Raney 2 has a surface

1t 6 times more surtace area. lLhese results correlate well
with the changes observed during the Tafel analysis above.
This surface area is of immense utility in helping the coat-
ing to achieve the high current densities observed in the
HER Tafel analysis. The ECSA measurement for the Pt-
sputtered electrode has been included for comparison, and
as a consistency check since because it is flat, it should
produce a roughness factor which is close to unity.

Cathode Capacitance =~ ECSA RF
Raney 1 As deposited 0.19F 528 cm? 59
After ageing 0.21F 580 cm? 64

Raney 2 As deposited 0.66 F 1829 cm? 203
After ageing 1.38F 3825cm? 425

Pt-sputtered 2.2mF 6.2cm? 0.7

Table 5: ECSA measurements for 3cm X 3 cm Raney Nickel cathodes
before and after accelerated ageing

5. Characterisation

The Raney Nickel electrodes were characterised using
SEM and EDX, for both HER and OER, and before and af-
ter accelerated ageing. Typical SEM images at 500X mag-
nification for Raney 1 and 2 as deposited are shown in
Figure 9.

N D92 x500 200pm

(a) Raney 1

(b) Raney 2

Figure 9: SEM images of the two Raney Nickel coatings as deposited
at 500X magnification

The images reveal that the morphology of the Raney
nickel coating has been greatly affected by the change of
counter electrode. The Raney 1 coating has a relatively
flat, cracked paving appearance, with many areas appear-
ing to be almost solid. By contrast the Raney 2 coating has
a much more three-dimensional appearance that suggests
it will have a larger surface area, and be better able to en-
gage with the electrolyte. This is borne out by the better
electrical performance of the coating prior to the ageing
tests. A comparative view of the Raney 2 coating before
and after accelerated ageing as cathode is shown in Figure
S2 at 500x magnification. The micrographs confirm that
no deterioration of the coating is visible.



nickel 1s being lost, however once the ngures are adjusted

to exclude oxygen (as shown in Figure 10b), it becomes
clear that the percentages of Ni, Zn, Cu and Fe are re-
maining constant, with just a small increase for carbon.
This is in contradiction of comparable results obtained by
Divisek et al. where a large loss of zinc from the anode was
observed, although it was stated that this had little effect
on its performance[34]. It has been confirmed that nickel
electrodes gradually dissolve when used for oxygen evolu-
tion, as the Ni(OH)2/NiOOH film produces soluble Ni(II)
species[45], and these results produce nothing in contra-
diction with this finding.

Atomic %

Raney 1 Raney 1 Raney 2 Raney 2
Before  After Before  After

(a) including oxygen

|
|

Atomic %

Raney 1 Raney 1l Raney?2 Raney 2

Before  After Before  After

(b) excluding oxygen

Figure 10: EDX results before and after accelerated ageing of Raney
nickel anodes

The EDX results for the Raney nickel cathodes are
shown in Figure 11. At the cathode the opposite effect
is observed, with a decrease in the level of oxygen af-
ter ageing. If oxygen and copper are numerically excluded
from the analysis, nickel abundance is observed to increase,
largely due to the loss of zinc. Nevertheless, the marked
increase in the level of copper is quite noticeable. In fact,
places on the cathodes were discovered at which the sur-
face was more than 60 at% copper. For Raney 2 the source
of this copper before ageing is speculated to be the sacri-
ficial stainless-steel counter electrode used during deposi-

Increased Ior both cathodes, and the source oI this copper
is speculated to be the stainless-steel anode used during
the accelerated ageing experiments. This will have released
small amounts of copper into the electrolyte, which are
then preferentially deposited and concentrated onto the
surface of the cathode.

Atomic %

Raney 1 Raney 1 Raney 2 Raney 2

Before  After Before After

(a) including oxygen

70

60

50

40

Atomic %

30

20

10 Ni
zn
C

0 Fe
Raney1l Raneyl Raney2 Raney?2
Before  After Before  After

(b) excluding oxygen and copper

Figure 11: EDX results before and after accelerated ageing of Raney
nickel cathodes

According to published official standards, 316-grade
stainless-steel does not contain any copper. To investigate
this, EDX experiments were conducted on samples from
two separate suppliers, and small amounts of copper be-
tween 1 and 1.6 wt% were observed in both. This result
is interesting because it appears to highlight the extent to
which sources of copper contamination can become highly
concentrated on the surface of the cathode during use.

6. Performance Comparisons

In order to assess how the Raney 2 electrodeposited
coating compares with other bi-functional catalysts, a small
survey was conducted to find other recently-published bi-
functional catalysts for water-splitting in alkaline condi-
tions, as shown in Table 6.



et e
NiSe-NF IMKOH  n/s |5

NiS/Ni IMKOH  n/s |52
CoP-MNA IMKOH  n/s  [37

Table 6: Nickel catalysts reported by Herraiz-Cardona et al. n/s =
not specified, but presumed to be room temperature.

The results of these comparisons are shown in Figures
S3 and S4, where the results chosen for Raney 2 are those
produced in 1 M KOH. They show that for hydrogen evo-
lution the Raney 2 coating compares extremely favourably
with recently published bi-functional catalysts, and is near
the middle for oxygen evolution. However, when both are
combined the coating is second only to the world-leading
FeP /NiyP, which is a coating that features a more compli-
cated deposition method involving chemical vapour depo-
sition within a tube furnace. The performance of the coat-
ing has also been compared with various results reported
by Herraiz-Cardona et al. and Solmaz et al. There are a
selection of materials with which to compare, as listed in
Table 7, with the results as shown in Figures S5 and S6.

Name Electrolyte Temp Ref
Ni/Zn 30 wt% KOH  50°C 11
NiCo-2 30 wt% KOH  30°C 23
Ni-Hcd 30 wt% KOH  50°C 53
NiR 30 wt% KOH  30°C 22
NiCo/Zn 30 wt% KOH  30°C 21
Cu/NiCuZn 1 M KOH RT 24
MS/Ni/NiZn-Pt 1 M NaOH 298K [25
Cu/NiNiZn-PtRul 1 M KOH 298K [26
Cu/NiNiZn-Pd(30s) 1 M KOH 298K [27
Cu/NiNiZn-Au 1 M KOH 298K [28

Table 7: Nickel catalysts reported by Herraiz-Cardona et al.

These results show a high degree of agreement, es-
pecially when it is considered that the Herraiz-Cardona
et al. measurements were all performed in stronger elec-
trolyte, and at higher temperature. Solmaz et al. aged
their Cu/NiCuZn coating to 120 hours at a constant
100mA cm~2, and observed a similar increase in activa-
tion over this period, which was attributed to a probable
removal of material from the pores. It is not possible to
perform comparisons for OER, as to our knowledge these
experiments were not reported.

7. Conclusions

This paper presents for the first time a simple modifi-
cation to the procedure for the electrodeposition of Raney
nickel that enhances not just its electrical performance
for alkaline water-splitting, but also its lifetime. The per-
formance of the Raney 2 coating for both the hydro-
gen and oxygen evolution reactions is such that it easily

grade stainless steel (01055), has transtormed the coating
and permitted it to break new ground in this area of re-
search. It is possible that the new coating is thus a hybrid,
able to combine the advantageous properties of both ma-
terials, creating a new coating that is effectively ‘Stainless
Raney nickel’.

The choice of a 316SS counter-electrode that corrodes
during deposition will inevitably have affected the con-
stituents of the finished coating, since 316SS contains a
variety of elements, most notably Fe, Cr, Mo and (accord-
ing to our analysis) Cu. Interestingly no Mo at all was de-
tected in the EDX results, which implies that it remained
in solution, but Fe was co-deposited, and is well-known
for enhancing the catalytic activity of Nickel, especially
towards OER[54]. In fact, even the levels at which Fe is
present as a contaminant in many laboratory-grade chem-
icals has been known to bring about a 10-fold increase in
activity[55].

Most significantly the choice of counter-electrode ap-
pears to have dramatically altered the morphology of the
coating from a cracked appearance [11, 22], to a more
cauliflower-like appearance (as shown in Figure 9). This
morphology change is confirmed to be associated with a
marked increase in electrochemical surface area (ECSA).

Similarly, although the standard Raney 1 coating is
observed to improve its performance with normal usage,
either as anode or cathode, the new Raney 2 coating is
observed to improve its performance by an even greater
amount. This performance increase is also associated with
large increases in the ECSA, a surface area that the coating
is able to utilise even up to large current densities where
mass-transport issues would be expected. This appears to
occur whether zinc continues to be leached out (at the
cathode) or not (at the anode). However, it is expected
from work by Divisek et al. that once the level of zinc falls
below about 10 wt% the cathodic overpotential should be-
gin to increase by up to approximately 200 mV[34]. This
effect has not been observed in this study, even though
cathodic levels of zinc were observed to fall to approxi-
mately 2 at%. This disparity could possibly be explained
by the difference in the method of assessing the level of
zinc, which in the work by Divisek et al. was assessed by
complexometry (a bulk analytical technique), whereas in
this work was assessed by EDX (a non-invasive surface
technique). It is quite possible that the low bulk concen-
trations of zinc reported by Divisek et al. were associated
with an almost complete absence of zinc at the surface.

A further explanation may rest with the issue of cop-
per contamination, which cannot be ruled out as a con-
tributory factor. Although it is not a common topic of
research in the literature in combination with nickel elec-
trodes, in work by Ngamlerdpokin et al. all Ni-Cu alloys
were observed to have higher electrocatalytic activity for



poisoning ol electrodes 1s OI great concern Irom a comimer-
cial perspective. Finally, it is the hope of the authors that
the accelerated ageing tests here outlined will constitute a
new and useful benchmark for future comparisons between
new electrode materials, thereby condensing the work of
months or years into just one week.
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Figure S1: Detail view of Figure 8 showing just Raney 1 and 2 before
and after accelerated ageing
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Figure S2: SEM images of Raney 2 at 500x magnification before and
after accelerated ageing as anode
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Figure S3: Raney 2 bifunctional comparisons for HER
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Figure S4: Raney 2 bifunctional comparisons for OER
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Figure S5: Comparisons with the coatings of Herraiz-Cardona et al
listed in Table 7
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Figure S6: Comparisons with the coatings of Solmaz et al listed in
Table 7



