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Abstract 

A conductive form of networked cellulose, prepared by incorporating carbon nanotubes, 

has been used in polyvinyl alcohol (PVA) membranes for reverse osmosis. The use of 

networked cellulose and carbon nanostructures (CNS) not only helps control the thermal, 

mechanical and electrical properties of the membrane, but also enhances RO performance 

and allows the membrane surface to be cleaned electrolytically. High surface area multi-

walled CNTs become trapped in the structure of networked cellulose. The modified 

material has greater tensile strength and elastic modulus, indicating an improvement in the 

mechanical properties of the membrane. Membranes with CNS demonstrate enhanced 

electrocatalytic activity when tested for hydrogen evolution in an acidic medium. The 

membranes are successfully applied to reverse osmosis using a feed of 25000 ppm NaCl, 

where the membranes with 7 wt. % CNS  exhibited a 93% increase in flux compared to 

PVA-NC with no CNS, due to the nanotubes disrupting the compression of polymer chains 

under pressure. The membrane surface was recovered after fouling via electrolytic cleaning 

where the membrane was used as the cathode and a potential of -5V was applied for 20 

minutes.  All membranes retained a high salt rejection above 99.8%.  

Keywords: reverse osmosis, carbon nanotubes, cellulose, electrically conductive 

membrane 
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1. Introduction 

Population growth and limited fresh water resources have driven an increase in desalination 

installation capacity in the last several decades. The UN World Water Development Report 

states that 3.7 billion people are affected by water scarcity at present [1]. Although thermal 

processes have been traditionally applied, lower costs of and the ability to tailor membrane 

materials has caused the market share of membrane-based desalination to rapidly rise in 

the last several decades. Reverse osmosis (RO), in particular, is the fastest growing 

desalination technology in the world [2, 3]. RO relies on a dense semipermeable membrane 

separating the salty feed and clean permeate, wherein separation takes place by solution 

diffusion through the membrane material. Although there have been significant advances 

in membrane materials for RO, the process is limited by the occurrence of fouling which 

leads to deterioration of membrane performance and shortens its lifetime. As a result, 

functional materials with the ability to prevent fouling while retaining superior membrane 

performance are desirable, with the goal of minimizing cleaning frequency and energy 

costs associated with cleaning and membrane replacement. In the last few years, research 

has rapidly grown in the area of electrically conductive fillers, such as carbon nanotubes 

(CNTs), in polymeric membranes [4, 5]. These membranes have been applied to 

electrically enhanced fouling control through oxidation of foulants, physical sweeping via 

bubble generation, inherent antimicrobial properties of the filler as well as electrophoretic 

transport of foulants [6-8]. For reverse osmosis, the challenge is to modify existing 

membranes to enhance their electrocatalytic activity while retaining a hydrophilic, non-

porous membrane with high selectivity and water permeation. A few studies have focused 

on developing electrically conductive membranes for ultrafiltration [9], nanofiltration [10], 
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reverse osmosis [11] and more recently, forward osmosis [12].  

Despite its swelling capacity, polyvinyl alcohol (PVA) has widely been investigated as a 

promising material in membrane-based separation technologies due to excellent film 

forming ability and hydrophilicity [13]. Recently, Anis et al. used networked cellulose 

(NC) to control the swelling of PVA membranes for RO. Apart from biodegradability and 

biocompatibility, the world’s most abundant natural raw material also offers high chemical 

stability. NC is a form of cellulose obtained through controlled dissolution in sulphuric 

acid followed by regeneration [14]. In a previous study, an electrically conductive form of 

NC prepared using CNTs, known as NC-CNS was shown to be effective as a cathode for 

hydrogen evolution reaction (HER) [10], which renders it an attractive material for 

electrolytic self-cleaning membranes.  

This study builds on previous work to develop electrically conductive RO membranes 

based on PVA, incorporated with NC-CNS. The incorporation of NC-CNS in self-

supporting PVA membranes provides control over their mechanical, thermal, electrical 

properties and RO performance such that they can potentially be used for in situ electrolytic 

cleaning. The performance of this novel membrane material is studied with respect 

to electrocatalytic activity and reverse osmosis, in an attempt to identify its potential as a 

self-cleaning reverse osmosis membrane 

2. Materials and methods 

2.1 Materials 

Polyvinyl alcohol (PVA, Mw = 145,000), ethanol and sulfuric acid were purchased from 

Aldrich. Microcrystalline cellulose (MCC), Avicel PH 101, (Mw: 160 kDa–560 kDa), was 
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purchased from FMC Biopolymer (USA). CNS (with an average length of 300 μm) was 

developed by Applied NanoStructured Solutions, LLC through a continuous chemical 

vapor deposition process [4,14]. Yeast (Baker’s yeast, DCL, France) and humic acid 

(Aldrich) were used as model foulants. All materials were used as received.  

Preparation of networked cellulose (NC) has been described elsewhere [10, 14]. 

Conductive NC was prepared by adding 2 g CNS for every 10 g MCC 10 minutes before 

regeneration with chilled ethanol such that the ratio of NC:CNS by weight is 5:1. This ratio 

was chosen on the basis of lowering CNS in large amounts during regeneration of 

networked cellulose. 

2.2 Membrane fabrication 

A 5 wt% PVA solution was first prepared by stirring PVA powder in DI water at 150 °C 

until a clear solution was obtained. Membranes were prepared with 0, 3, 5 and 7 wt% CNS, 

using a solution casting procedure described by Anis et al. [13]. NC or NC-CNS suspension 

was gently stirred in varying amounts with PVA solution at varying content and cast in an 

aluminum dish and subsequently dried for 3 days at room temperature. Table 1 shows the 

PVA, NC, CNS content in the prepared membrane samples. 

Table 1. PVA, NC, CNS content in prepared membrane samples 

Sample PVA NC CNS 

PVA-NC-0CNS 80 wt% 20 wt% 0 wt% 

PVA-NC-3CNS 81 wt% 16 wt% 3 wt% 

PVA-NC-5CNS 67 wt% 27 wt% 5 wt% 

PVA-NC-7CNS 58 wt% 35 wt% 7 wt% 
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2.2. Characterization 

2.2.1. Morphology 

Morphology of the PVA-NC membranes with and without CNS was examined using field-

enhanced scanning electron microscopy (FEI Quanta 450 FEG, Netherlands) under high 

vacuum. The samples with 0 and 3 wt. % CNS were first gold coated using the 108 Auto 

Sputter Coater (Ted Pella, USA).  

2.2.2. Structure (TEM) 

In order to examine the structure of the PVA-NC membrane with and without CNS, the 

PVA-NC and PVA-NC-CNS suspensions were observed under a transmission electron 

microscope (FEI TEM Talos F200X). To prepare TEM samples, a small amount of 5 wt.% 

PVA solution was mixed with a few drops of either NC or NC-CNS, diluted with water 

and bath sonicated for 10 minutes. A droplet of each resulting suspension was then dried 

on a carbon coated copper grid. 

2.2.3 Wettability 

To examine, the wettability of the membrane surface to water, contact angle measurements 

were taken on an EasyDrop Standard drop shape analysis (KRUSS, Germany) using 

deionized water. Digital images of 2 μL water droplets on the membrane surface were 

captured and used to measure the contact angle using the sessile drop technique. An 

average of three measurement values was then recorded as the water contact angle.  

Three measurements were taken for each sample and the average of these values was 

recorded.  
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2.2.4. Tensile testing 

Tensile testing was carried out to examine the mechanical properties of the PVA-NC-CNS 

membranes on the Instron 5966 Dual Column Tabletop Testing System (Italy). Standard 

dog-bone specimens were stretched in tension at a strain rate of 1 mm/min until failure. 

The stress response was measured and used to generate stress-strain curves, from which 

key properties such as elastic modulus, tensile strength and % elongation at failure were 

obtained. Young’s modulus is calculated by taking the ratio of tensile stress to strain in the 

elastic region, and is a measure of the stiffness of the material. 

2.2.4. Thermal stability 

Thermal analysis of PVA-NC and PVA-NC-CNS membranes was carried out using 

thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) using TA 

Instruments SDT-Q600 TGA/DSC (Delaware, USA). A sample of known mass was placed 

in an alumina crucible next to an identical reference pan. The sample and reference pans 

are then heated from room temperature to 800 °C at a rate of 10 °C/min under a nitrogen 

atmosphere.  

2.2.4. Electrochemical properties 

Linear polarization (LP) and impedance measurements were performed on Autolab302N 

potentiostat/galvanostat using a three-electrode system, where PVA-NC-CNS acted as the 

working electrode, Pt as the counter electrode and Ag/AgCl (3.5 M KCl solution) as the 

reference electrode. In the case of LP, Measured potentials are converted to RHE by adding 

a value of 0.205 + 0.059pH) V. The working electrodes have an area of 1 cm2. For 

electrochemical impedance spectroscopy (EIS), an alternating voltage of 100 mV was 

applied at 50 frequencies over a range of 10−2 to 105 Hz in a logarithmic distribution, and 
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the current developed was used to calculate the impedance. The potentiostat has a current 

accuracy of ± 0.2%. Before running LP scans, all the electrodes were run for ten cyclic 

voltammetry curves in the appropriate potential range for HER to stabilize the electrodes. 

2.3. Reverse osmosis 

For RO testing, membranes with a diameter of 8.5 cm were wet with water. Pure water was 

passed through the PVA-NC-CNS membranes at a pressure of 22 bars for 30 minutes. RO 

tests were carried out for each membrane using an aqueous solution of 25000 ppm NaCl 

as feed at a pressure of 24 bars for a duration of 60 minutes, using the setup shown in 

Figure 1.  

 

Figure 1: Lab-scale RO unit used for RO experiments  

Two performance parameters, namely flux and salt rejection rate, were determined. Salt 

rejection (SR) was calculated using the following formula: 

%𝑆𝑅 =  
𝐶𝑓𝑒𝑒𝑑 − 𝐶𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒

𝐶𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒
 

Where Cfeed and Cpermeate are the feed and permeate NaCl concentrations (ppm), 

respectively. Permeate concentration is obtained by converting permeate conductivity, 
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measured on accumet® XL 50 dual channel pH/Ion/conductivity meter to total dissolved 

solids (TDS).  

2.4 Membrane fouling and electrolysis 

Based on RO performance, PVA-NC-7CNS was selected for fouling experiments. A model 

foulant solution was prepared by stirring 500 mg/L humic acid powder and 500 mg/L yeast 

in DI water under continuous stirring for 24 hours. The membranes were dipped in the 

foulant solution for 48 hours to induce membrane fouling. The fouled membrane was then 

removed from solution and dried at room temperature. In the electrolysis experiment, the 

fouled membrane was used as the working electrode, a platinum rod was used as the 

counter electrode while an Ag/AgCl reference electrode was employed. An aqueous 

solution of 25000 ppm NaCl was used as electrolyte. Electrolysis was carried out using 

Autolab potentiostat, where a voltage of -5V was applied for 20 minutes. The membrane 

was removed after electrolysis and dried at room temperature. Optical images of the 

membrane before and after electrolysis were obtained on a Leica M205C stereomicroscope 

(Leica Microsystems GmbH, Germany).  

3. Results and discussion 

3.1. Morphology and structure 

Figure 2 shows SEM images of the PVA-NC-CNS membranes with increasing NC-CNS 

content, with the insets showing water droplets on the membrane surface. The surface of 

the PVA-NC-0CNS and PVA-NC-3CNS membranes appears to have an uneven surface 

due to the presence of cellulose, although CNTs are not yet visible. With increasing NC-

CNS (Figure 2c and 2d), however, the morphology of the membrane is drastically affected 
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and bundles of CNTs can be observed on the membrane surface, caught in the networked 

cellulose. 

 

Figure 2: SEM images of the surface of a) PVA-NC-0CNS, b) PVA-NC-3CNS, c) PVA-NC-5CNS, d) PVA-NC-7CNS 

membranes. The inlets show water droplets on each of the membrane surfaces.  

Figure 3 shows TEM images of PVA-NC a) without CNS and b) with CNS. The network 

structure of cellulose resulting from random bundling of chains during regeneration is 

characteristic of NC [13, 14]. Figure 3b confirms a homogeneous distribution of high 

aspect ratio carbon nanotubes entrapped in NC. The high aspect ratio of the tubes indicates 

a large surface area. A high surface area will play a role in the electrocatalytic behavior of 

the composite membranes, which could be beneficial for self-cleaning via electrolysis. It 

is important to note that the CNS:NC ratio used in the pre-prepared samples was kept at 

1:5 for all samples. This ratio has been identified before through unreported data to 
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minimize aggregation issues during regeneration of networked cellulose. A more 

interconnected network of CNS across NC is likely to be achieved by increasing this ratio 

during the preparation of NC-CNS suspension. 

 

Figure 3: TEM images of PVA-NC a) without CNS and b) with CNS 

3.2 Wettability 

 

Figure 4: Water contact angle of PVA-NC-CNS membranes with varying NC-CNS 

content 

Contact angle tests were carried out to investigate the wettability of the PVA-NC-CNS 

membranes with water. The values are shown in Figure 4, while images of the water 
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droplet on the membrane surface are shown in the inlets of Figure 2. Although the contact 

angle increases from 58 to 77° from without CNS to 3 wt. % CNS, it decreases slightly 

with increasing CNS content despite the hydrophobicity of CNS [10], due to 

simultaneously increasing NC content. The amorphous open structure of NC enables it to 

readily uptake water and thus contributes to the hydrophilicity of the material. All the 

composite membranes are hydrophilic, with a water contact angle of less than 80°. 

Hydrophilicity is a desirable property for reverse osmosis membranes as it translates into 

improved water flux as well as better resistance to fouling by hydrophobic foulants that are 

present in seawater in the form of Natural Organic Matter (NOM)  [15, 16].   

3. Tensile testing 

The mechanical behavior of the PVA-NC-CNS membranes with different amounts of NC-

CNS was investigated. Stress-strain curves for the membranes are shown in Figure 5. 

Initially, the incorporation of filler leads to an increase in tensile strength, elastic modulus, 

as well as ductility as can be seen in Figure 6. As the amount of filler is further increased 

however, the tensile strength and modulus continue to increase but the ductility of the 

material, indicated by % elongation, starts to decrease. CNS are composed of randomly 

oriented multi-walled carbon nanotubes. When introduced to the membrane, the CNS 

fibers are able to align themselves with stress direction, resulting in greater elongation at 

break. However, as the NC content is also simultaneously increasing, this leads to an 

increase in stiffness and sharp drop in elongation from 199% in PVA-NC-3CNS to 27.2% 

and 7.7% PVA-NC-5CNS and PVA-NC-7CNS membranes, respectively (Figure 6). The 

contribution from NC to the stiffness and ductility are greater than that from the CNTs. 

Tensile strength increases from 16.8 to 41.8 MPa between PVA-NC-0CNS to PVA-NC-
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7CNS. 

 

Figure 5: Stress-strain for PVA-NC-CNS membranes with varying NC-CNS content 
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Figure 6: Mechanical properties of the membranes with varying NC-CNS content: a) tensile strength, b) Young’s 

modulus, c) % elongation 

3.4. Thermal stability 

Thermal properties of the membranes with increasing amounts of CNS were studied with 

TGA and DSC. Typically, a baseline shift in the endothermic direction at 75 °C should be 

observed indicating the glass transition temperature of PVA. However, in the DSC curves 

obtained (Figure 7a), it was not possible to resolve the glass transition of PVA from the 

broad boiling peak due to evaporation of bound water in the samples. PVA is known to be 

sensitive to moisture and thus there is a significant endothermic peak from the evaporation 

of moisture. Another possible explanation is that the sample was only heated once and this 

may not be sufficient to observe the glass transition [17]. The melting point of the 
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membranes as obtained from DSC data is between 223 °C and 225 °C, in agreement with 

values from literature [17]. It is interesting to observe that the melting peak becomes 

narrower when the amount of CNS in the sample is increased from 3 to 5 wt. %. A narrower 

melting peak indicates an increase in crystallinity and could be due to the presence of 

carbon nanotubes, which have been shown to serve as nucleation sites for crystallization 

of PVA [17, 18]. TGA thermograms shown in Figure 7b indicate that the membranes are 

stable until about 205 °C, after which both PVA and NC begin to decompose. Weight loss 

occurs in three distinct stages. The first is attributed to the vaporization of water, while the 

second and third that occur after 210 °C correspond to the thermal decomposition of the 

PVA and NC. Carbon nanotubes retain their stability in a nitrogen atmosphere in the range 

of temperatures studied. The membranes are thermally stable up to 210 °C. The CNS 

content can also be confirmed by the TGA thermograms as the weight % of the sample 

after complete polymer degradation has occurred (at ~470 °C) increases with wt. % CNS.  

 

Figure 7: DSC and TG curves for PVA-NC membranes with CNS 

3.5 Electrochemical measurements 

Electrocatalytic activity of the PVA-NC-CNS membranes was evaluated in acidic media 
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using 0.5 M H2SO4 through linear polarization, from which Tafel curves were generated. 

Figure 8 shows the polarization and Tafel curves of PVA-NC-CNS membranes for 

hydrogen evolution reaction (HER) in 0.5 M H2SO4 at a scan rate of 50 mV/s. When tested 

for HER in acidic media, the coefficients of charge transfer, indicated by the Tafel slope, 

are shown in Table 2. The charge transfer coefficient and current density increases from 

PVA-NC-3CNS to PVA-NC-5CNS with as CNS content is increased from 3 wt% to 5 

wt%. However, when at 7 wt.% CNS content, the charge transfer coefficient and the current 

density decreased due to simultaneous increase in non-conducting NC content. The NC 

which traps CNS inside it possibly prevents the formation of a continuously connected 

network of CNS with PVA.  

Table 2: Tafel slopes for CNS-modified PVA-NC membranes for HER in acidic medium 

Membrane Tafel slope (V/dec) 

PVA-NC-3CNS 0.348 

PVA-NC-5CNS 1.14 

PVA-NC-7CNS 0.765 

 

 

Figure 8: Linear polarization curves (a) and Tafel plots (b) of different electrodes for hydrogen evolution generation in 
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0.5 M H2SO4  

3.6 Reverse osmosis performance 

The PVA-NC and PVA-NC-CNS membranes were tested for reverse osmosis. Figure 9 

and Table 3 shows key performance parameters including flux and salt rejection of the 

membranes when tested with 25,000 ppm NaCl as feed. The flux through all membranes 

with CNS is higher than that of PVA-NC. However, the focus of this work is to study the 

effect of adding conductive carbon nanostructures to previously fabricated PVA-NC 

membranes in order to demonstrate electrolytic cleaning. As indicated in Figure 9, the flux 

is greatest for the membrane with the largest filler content. The polymer chains tend to 

form compressed packing structures when subjected to high pressures. This tendency to 

compress is disrupted by the presence of nano-fillers such as carbon nanostructures, and 

lower compression causes greater water flux through the membrane [19, 20]. Although the 

membranes demonstrate high salt rejection rates (above 99.7%), and the flux in the 

modified membranes is greater than that in PVA-NC alone, flux values are still low 

compared to commercial thin film composite (TFC) RO membranes. This is due to two 

main factors. First, the thickness of these self-supporting membranes is between 175 and 

218 µm, which contributes to mass transfer resistance across the membrane. Second, the 

driving force, i.e. the transmembrane pressure, was kept at 24 bars, which is significantly 

less than typical pressures of 60-80 bars applied for seawater RO. According to the van’t 

Hoff equation, the osmotic pressure for a feed solution with TDS 25,000 ppm is 19.4 bars. 

In RO, the driving force is the difference in applied pressure and osmotic pressure. In the 

RO experiments carried out in this work, the applied pressure is 24 bars which results in a 

transmembrane pressure of only 4.6 bars. The applied pressure should thus be increased to 
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obtain higher flux through the membrane for the treatment of given feed salinity. Although 

the freeze-drying step to open up the membrane structure was eliminated, the flux obtained 

is still comparable to freeze dried PVA-NC membranes in a previous study [13]. This is 

because pure water was first permeated through the membrane to open up the structure and 

enable water permeation during RO, without the additional step of freeze drying during 

membrane fabrication.  

 

Figure 9: Flux and salt rejection for PVA-NC-CNS membranes with varying CNS content; RO test carried out at 

pressure of 24 bars with 25,000 ppm NaCl 

Table 1: RO performance data for PVA-NC-CNS membranes 

 Thickness 

(µm) 

Pure water flux 

J0 (L/m2 h) 

Flux  

J (L/m2 h) Salt rejection (%) 

PVA-NC-0CNS 218 ± 4 0.815 0.92 99.89 

PVA-NC-3CNS 179 ± 20 1.43 1.12 99.87 

PVA-NC-5CNS 175 ± 21 1.22 1.02 99.82 

PVA-NC-7CNS 203 ± 18 1.935 1.78 99.91 
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3.7 Electrolysis 

Seawater RO membranes are prone to fouling by natural organic matter (NOM), such as 

humic acid (HA) [21]. To verify the effectiveness of conductive PVA-NC-CNS 

membranes for foulant removal via electrolysis, the membranes were first fouled by HA. 

Electrolysis was carried out on the fouled PVA-NC-7CNS membrane for 20 minutes, by 

applying a potential of -5 V, using 35000 PPM NaCl in DI water as electrolyte and a Pt rod 

counter-electrode. A relatively stable current of 7.5 mA was present during electrolytic 

cleaning, which according to the membrane area using during electrolysis is equivalent to 

3.75 mA/cm2. The resulting current was recorded as a function of time, and is shown in 

Figure 10. Optical images of the membrane before and after electrolysis (Figure 11) 

indicate that electrolysis was effective in removal of foulant from the membrane surface. 

The foulant is clearly visible before electrolysis (Figure 11a), while the membrane 

observed after electrolysis shows a clean surface (Figure 11b). Similarly, the foulant 

released from the membrane surface into the electrolyte is evident in photographs of the 

electrolyte taken before and after electrolytic cleaning (Figure 11 c and d). CNS was 

incorporated to improve the performance of PVA-NC membranes and render them 

conductive, allowing electrolytic cleaning for removal of foulants.  
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Figure 10: Current-time behavior during electrolysis with an applied voltage of -5V on the membrane 

 

Figure 11: Digital images of a) fouled PVA-NC-7CNS membrane before electrolysis and b) fouled PVA-NC-7CNS 

membrane after electrolysis at -5V for 20 minutes; c) and d) show photographs of the electrolyte before and after 

electrolytic cleaning of membrane 
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4. Conclusion 

In this work, PVA membranes were modified using a conductive form of networked 

cellulose, made by incorporating carbon nanostructures in NC, also known as NC-CNS. 

Using NC-CNS improved the mechanical strength of the membranes as compared to NC 

alone, and increased the RO flux by 93%. The enhanced membranes demonstrated 

enhanced electrocatalytic activity for hydrogen evolution in acidic medium, which can 

further be used for in situ membrane cleaning via electrochemical methods. The efficiency 

of the membranes for electrolytic cleaning was demonstrated using humic acid and yeast 

as foulants. Future work includes investigating the effect of adding a conductive layer to 

the membrane-electrolyte surface as opposed to modifying the bulk material and 

incorporating these novel membranes for electrically enhanced RO.  
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