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Abstract

A novel packing characterising system based on principal component analysis (PCA)
is developed in our previous work [Computer Methods in Applied Mechanics and En-
gineering 340: 70-89, 2018] to provide a quantitative approach that can reveal some
fundamental features of particle packings. The current work extends this methodology to
3D cases. Gaussian Quadrature is adopted to obtain the volume matrix representation
of a particle packing. Then the digitalised image of the packing is obtained by convert-
ing cross-sectional images along one direction to column vectors of the packing image.
Both a principal variance function and a dissimilarity coefficient are proposed to charac-
terise differences between different packings (or images). Comprehensive investigations
for several sets of purposefully generated particle packings are conducted to understand
relationships of their principal variances with packing features. Differences between two
packings with different packing features can be revealed by the principal variances (PV)
and dissimilarity coefficient (DC). Furthermore, the values of PV and DC can indicate
different levels of effects on packing caused by configuration randomness, particle distri-
bution, packing density and particle size distribution. The uniformity and isotropy of a
packing can also be investigated by this PCA based approach.

KEYWORDS: 3D particle packing, digitalised image, principal component analysis, principal
variance, spatial homogeneity and isotropy

1 Introduction

Particulate systems have attracted significant attention over the last several decades due
to their wide existence in nature, ranging from nano to cosmic scales, and may involve
either hard particles (such as sand) or soft ones (such emulsions and foams) [II, 2, B [4].
The particle packing plays an important role in leading the physical behaviour of a particle
system. Therefore the spatial-statistical analysis of the geometrical structure of the system is
of great scientific and engineering interests. As the topology of the system is highly complex,
it is difficult to observe the way particles packed around each other by experiments [5]. With
the development of various particle based methods, such as Molecular Dynamics (MD) and
the Discrete Element Method [0, [7, [§], more detailed information on the internal structure of
particulate systems can be accessed.

Currently, the techniques applied to investigate the features of particle packings focus on the
packing density, orientations of the particle contacts, and internal (topological) structures of
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packings. Conventional means to characterise a particle packing are limited especially for
loose packings without obvious contact chains. The classical characteristics such as particle
size distribution and packing density cannot consider the spatial distribution of a packing.
Besides, the method involves the use of a radial function is less effective [9]. When a packing
is subject to external loading and generates contacts between particles, more features can
be checked such as the coordination number, contact force distribution and the contact ori-
entation distribution [I0]. More advanced techniques have been developed to characterise a
packing, see for instance [11].

These techniques may be classified into different categories from different perspectives. From
the perspective of problem scale, there are macroscopic based (stress, strain and critical void
ratio [I2]) and microscopic based (coordination number and stress tensor [13]). While from
the perspective of the specific information to be extracted from the particle system, the
methods can be classified into two categories: One is focus on the void ratio (or the solid
fraction) [14, [15] of the packing and the other pays attention on the contact network [16].

A particle packing can be viewed as a specific spatial variation of solid material (assigned
a value 1) and void (a value of 0). The packing can be represented as a digitalised image
with grey-scale ranging from 0 to 1 on a regular grid. Then the resulting packing image can
be analysed by techniques developed in the field of computer graphics and imaging process
[17, 18], 19} 20], and the (dis)similarity of multiple packing images may also be compared in a
quantitative manner. Principal component analysis (PCA) [21}, 22] is one of the most popular
linear transform based statistical techniques, and has been extensively used in a wide variety
of applications. It has proved to be a powerful tool that is often employed for data analysis
in general, and dimension reduction in multi-variance analysis, and pattern recognition in
signal and imaging processing in particular.

Following this idea, a novel characterising method is developed in our previous work [23] using
the principal component of a packing image as the signature of the packing. Furthermore,
a dissimilarity coefficient is defined which can provide a single valued metric to quantita-
tively compare two packings. This has been made possible by the definition of the principal
variance function that maps the ordinal numbers of individual principal variances into a
non-dimensional unit interval. The current work extends this novel system from 2D particle
packings to 3D cases. Gaussian Quadrature is adopted to obtain the volume matrix of the
particle packing. Then the digitalisation of packing is obtained by converting cross-sectional
images along one direction into column vectors. The signature of the particle packing can be
revealed by the subsequent principal component analysis.

The current PCA method is a microscopic based technique which focuses on the void ratio
distribution of a particulate packing. Existing methods that belong to the same category
include density profiles, the distribution of void ratio or the correlation functions. For the
density profile or the distribution of void sizes, Huang et al.[14] evaluate the homogeneity of
the samples by dividing the packing into eight horizontal layers in the vertical direction and
four rings in the horizontal direction. The density profiles of the packings are analysed by
comparing the layers or the rings directly and the results are inevitably verbose to a certain
degree. The density profile is, however, not unique for different packings and is strongly
affected by the division resolution, as will be showed later. Alshibli et al.[I5] study the
spatial variation of the void shear band thickness based on the CT images. Some qualitative
conclusions are obtained that a cross-sectional variation in void ratio is detected and the
void ratio within the shear band is relatively high. For correlation functions, also called
the pair distribution function[24] and radial distribution function[25], the results are usually
illustrated by the relation between the pair correlation function and the distance to the



centre of the reference sphere. The corresponding curves have complex shapes and can only
be explained qualitatively. The current PCA method exploits the full scale spatial correlation
in the void distribution of a packing and utilises the Principal Variance function (PV) and
the Dissimilarity Coefficient (DC) to qualitatively compare different packings, or different
regions/orientations of a single packing.

The paper is organised as follows. The whole analysis procedure of applying PCA to a
spherical particle packing is introduced in Section 2, including the formation of packing image,
the subsequent numerical treatment of the image matrix and the resulted characterisation of
particle packing revealed by the principal variance function and the dissimilarity coefficient.
In Section 3, this packing characterising system is applied to several sets of purposefully
generated random packings. Then comprehensive investigations are conducted to illustrate
that the principal component analysis can reveal the different effects on packings caused by
packing randomness, particle distribution, packing density and particle size as well as the
uniformity and isotropy of the particle packing. Concluding remarks are made in Section 4.

2 Principal component analysis

This section is devoted to the full description of the numerical procedure that is involved in
principal component analysis of a packing and how such analysis can be applied to characterise
particle packings. The main principals and terminologies adopted in the current work is
derived from our previous work [23] which has some minor differences with the traditional
PCA, as explained in [23].

2.1 Packing digitalisation and formation of packing image
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Figure 1: A random particle packing and the corresponding digital representation

First consider a particle assembly €, = J, €% where €; denotes the domain of the i-th
particle, and arbitrarily choose a cuboid solid region V of dimensions L, x L, x L., termed
the analysis region. The region can be divided into a regular grid of M x N x P cubic cells
with spacing h = L, /M = L,/N = L./P (Figure[Ifa)). For a cubic cell at (i,, k) with the
volume denoted as V;;i, compute its average volume covered by particles, or grey-scale as
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where || denotes the measure or volume of a domain Q; |V| = L,L,L.; and [V;ji| = h>.
An empty cell with no overlapping with any particle has v;;; = 0; while a cell fully covered
by a particle has v;j;, = 1. A cell partially covered by particles has v;;, < 1. So in general
Vijk € [0,1]. The computation of vk is however not straightforward. Different numerical
schemes used to evaluate v;; are discussed in Subsection 2.5.1.

The collection of all the average volumes v;;), at the layer p in the z-direction (highlighted
in Figure (a)) forms an M x N matrix, which can be viewed as a digitalised grey-scale
representation of the origin 3D packing at the height of z(p) (as shown in Figure [I(b)). The
matrix is then re-shaped into a vector simply by concatenating the rows into a single vector
with Q = M N elements, and placed as the p-th column vector in a larger @) x P matrix
V. By processing all the P layers in the z-direction, the resulting matrix Vj, can be viewed
as a digitalised grey-scale representation of the original packing €1, thus is termed as the
packing matrix or image, as shown in Figure (3) Despite converting a layer matrix along
the z-direction to a column vector, the resulting matrix V}, can also be created by converting
a layer along the z-direction or y-direction to a column vector. The image matrices generated
by different directions can reveal the uniformity of the packings as shown in Section [3.3.1}

2.2 Formulations and numerical procedures

The mean value of the packing matrix Vj,, i.e. the packing density of the region V), can be
computed
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Let v(x) be the material distribution function with v taking the value of 1 for a point located

within a particle, and 0 otherwise. It is not difficult to derive that the total variance of a
packing in the region V is related to the packing density by

7 =g [ p)2=p,(1=p) 3)

The total variance of the matrix is defined as
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i.e. the total variance of the packing o, is the upper bound of any packing image.

Let g; be the mean value of the j-th column of the packing matrix Vj,
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By subtraction of its mean from each column vector of Vj,, the column centralised matrix
Vp of V}, is obtained as:
Vp = Vh — quP (6)
where e, is an @ X 1 column vector with all its elements being 1’s; and mp is the 1 X P
mean value vector q, = {g;}.
Define the covariance matrix of Vp as
1__71



where Sp is a P x P square matrix. Notice in the above that @ instead of () — 1 is used.
Further define the column-wise total variance as

P

0 = %Tr(Sp) = ;;(Sp)u‘ (8)

which may be (slightly) different from the total variance o, in general.

By solving the eigenvalue problem of Sp, it yields the following matrix decomposition
SpUp = UpDp (9)

with

Dp =ULSpUp, ULUp=1Ip
where the diagonal matrix Dp = diag{d;} contains all the eigenvalues d; in descending order,
which are termed the principal variances (PVs); and Uy = {u;} are the orthonormal vectors,
termed the principal modes. As 'V p is column centralised, Sp is a semi-positive definite matrix

with at least one zero principal variance. It is also well known that the sum of the PVs and
the total column-wise variance is related by
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Sp can be recovered from the principal variances and modes as
P-1
i=1

The column-wise total variance o¢,, the mean value vector qp, the principal variance ma-
trix Dp and the corresponding modes Up form a unique set Cp, termed the column-wise
characteristic set, that fully determines the packing image.

C’P:{UfﬂanDanP} (12)

As the PVs and the column-wise total variance is related by , and the total variance (and
also the column-wise variance) is related to the density (see ), the PVs play a dominant
role to characterise a packing image and therefore can be viewed as the signature of the
packing.

2.3 Principal variance function

To facilitate the comparison between different sets of principal variances, particularly when
they are obtained from different resolutions P, the ordinal number ¢ of a principal variance
d; is mapped from 1 to P to a non-dimensional 'position’ variable z € [0, 1] by

2(i) = %@ - %) (13)

Then a continuous function d(z),z € [0, 1], termed the principal variance function, can be
constructed to interpolate the discrete variances d; using piecewise linear or higher order
interpolation functions such that

d(.%l) :di, xi:x(i), ’izl,'-- ,P (14)



2.4 Packing image similarity

Consider two packing images with their principal variance functions dj (z) and do(x) obtained,
define a so-called dissimilarity coefficient (DC) between these two images as

1
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where Y1 and X9 are defined as
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Consequently, the degree of similarity of these two packing images can be quantified by the
similarity indez € [0,100] defined as

Sr=(1-D,) x 100 (16)

DC:[

2.5 Additional Issues

This subsection discusses some additional issues related to the principal component analysis
of 3D cases.

2.5.1 Different Schemes to compute the volume average of each cubic cell

The most time consuming part of the above proposed procedure is the evaluation of the
density, or the particle covered volume of a cubic cell . In 2D cases, the covered area
of a square cell by circular particle(s) may be computed analytically depending on their
overlapping situations which can be classified by the number of grid nodes contained in the
circle(s), while it is difficult to follow a similar procedure to obtain the exact overlap volume
between spherical particle(s) and a cubic cell due to the complexity of the contact situations in
3D cases. Two different computational schemes are therefore adopted to numerical compute
the volume average of each cubic cell.

The first scheme, termed the area-based, is derived from the method used in the 2D case which
can determine the overlap area between a circle and a square cell. The 3D problem can be
reduced to the 2D one by integrating the overlap area in the z-y plane along the z-direction.
Gaussian Quadrature is implemented to numerically evaluate the integration. The volume
average of a cubic cell of side h and centred in a local coordinate system is obtained by

h/2 n
Vijk = / aij(2)dz = w,ai(2) (17)
—h/2 =1
where a;;(2) is the average area covered by circles at z, and z, and w, are the position and

corresponding weight of a Gaussian point.

The second scheme, termed the point-based, simplifies the problem by checking whether a
point is inside a particle or not. A certain number of points are selected in each cubic cell.
Two values 0 (point outside the particle) or 1 (inside the particle) can be assigned to each
point. Gaussian Quadrature is again applied in this scheme to select the position and weight
of each point in the cubic cell. The volume average of each cubic cell is the integration of the
point values. Using n Gaussian points in each directions gives rise to the formula

Vijk = Zzzwzstv(xwfys’zt) (18)
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Table 1: The overall packing density of three regular packings computed by different com-
putational schemes

R1 RS R64
1-Point | 3-Point | Area | 1-Point | 3-Point | Area | 1-Point | 3-Point | Area
25 | 0.5259 | 0.5231 | 0.5236 | 0.5212 | 0.5230 | 0.5232 | 0.5212 | 0.5232 | 0.5235
50 | 0.5260 | 0.5238 | 0.5236 | 0.5259 | 0.5231 | 0.5236 | 0.5212 | 0.5230 | 0.5232
100 | 0.5240 | 0.5236 | 0.5236 | 0.5260 | 0.5238 | 0.5236 | 0.5259 | 0.5231 | 0.5236

N

where w,st, (z,,Ys, 2¢) and v(x,,ys, 2¢) are the weight, coordinates and material distribution
value of each Gaussian point.

Several numerical tests are conducted to compare the above two schemes. Three regular
packings are generated in a unit cubic region where there are respectively 1, 8 and 64 equal-
sized particles in the packings that are labelled as R1, R8 and R64 respectively. It is obviously
that the three packings have the same overall packing density p = 3/47/8 = 0.5236. The
region is then divided into a regular grid of N x N x N cubic cells, and three resolutions
N = 25,50, 100 are considered. The packing density can also be computed by . In the first
scheme (area-based), the number of sections along the z-direction in each cubic for integrating
is 3 which is able to obtain sufficiently accurate results. In the second scheme, two different
numbers of Gaussian integration points n = 1 and 3 are tested. Table [I| provides the overall
packing densities of the three regular packings for different grid resolutions computed by the
two computational schemes, while the first principal variances of the three packings with
different resolutions are listed in Table [2| These results indicate that the two computational
schemes can have a similar accuracy when the number of Gaussian points used is reasonably
large.

2.5.2 Properties of repetitive packings

In our previous work [23] for 2D cases, the relationship between packings with repetitive,
periodic and symmetric natures has been established, and it is theoretically derived that
for a m-repetition packing, 1/m of the principal variances will be m times those of the basic
structure. This conclusion is also valid for 3D cases. Take the previous three regular packings
as an example: Packing R1 can be regarded as the basic structure, R8 is a 2-repetition packing
of R1, and R64 is a 2-repetition packing of R8 and a 4-repetition packing of R1. From the
first principal variances of the three regular packings R1, R8 and R64 given in Table [2] it
is evident that, regardless of the integration scheme used, the first PV of R64 with N=100
is about twice of that of R8 with N=>50 which itself is also about twice of that of R1 with
N=25. Note that different resolutions N are used for different packings to ensure that a
constant relative resolution is maintained for the comparison. It can also be observed that
the accuracy of the computational scheme used does not influence the relative relationship
of two packings.

2.5.3 Analysis Region and Formation of Packing Matrix

The analysis region of a packing is not necessarily a cuboid as is assumed earlier. In fact
the analysis region can be, in general, a prism which has the same cross-section along one
direction (defined as the z-direction). Then each section image can be reshaped to a vector



Table 2:  The first principal variances of three regular packings computed by different
computational schemes

R1 RS R64
1-Point | 3-Point | Area | 1-Point | 3-Point | Area | 1-Point | 3-Point | Area
25 11.715 11.623 | 11.587 | 12.043 11.187 | 11.140 | 12.043 9.817 9.781
50 23.291 23.434 | 23.450 | 23.401 23.217 | 23.146 | 24.056 22.347 | 22.253
100 | 47.026 | 47.053 | 47.054 | 46.567 | 46.853 | 46.885 | 46.788 | 46.420 | 46.279

N

Figure 2: A cylindrical analysis region with a circular cross section image

with the same number of elements which forms one column of the final analysis matrix Vy,.
For instance, the analysis region could be a cylinder and the cross section along the z-direction
is a disc as shown in Figure[2] Only the elements in the circular area are selected to construct
the column vector of the packing image matrix.

Alternative to representing each section image as a column vector in the final image matrix,
all the pixels with the same (z, y) coordinates along the z-direction can instead be represented
by a column vector, resulting in an different packing matrix which is nothing but Vg, the
transpose of the original image matrix V. Vj, and Vz may have different principal variances
in general, but both can be used to characterise particle packings. In the following discussions,
V,, is assumed.

2.5.4 Evaluation of main principal variances

The computational cost associated with the solving eigen-value problem @ may be high par-
ticularly when the resolution P (in the z-direction) is large. One option to reduce this cost
is to evaluate only a specified number of main principal variances, as will be demonstrated
below that the principal variances with largest values play a more dominant role in char-
acterising packings and qualitatively comparing different packings using the (dis)similarity
coefficient /index defined earlier.

Note from the definition of the principal variance function that compares images with different

resolutions (in the z-direction), the same proportion of the selected number of principal
variances over the resolutions should be specified.



Table 3: Properties of random packings: U-set and G-set

Set Uniform Distribution (U-set) | Gaussian Distribution (G-set)
Group Name Ul U2 UL2 G1 G2 GL2
Mean Density | 0.6038 0.6062 0.5664 0.6026 0.6053 0.5673
Particle No. 16804 2094 1939 14770 1841 1701

T'min 0.015 0.030 0.030 0.015 0.030 0.030

T'maz 0.025 0.050 0.050 0.025 0.050 0.050

r 0.020 0.040 0.040 0.020 0.040 0.040
Table 4: Packing Properties of the L-set
Layer 1 2 3 4 5 6
Tmin | 0.010 | 0.020 | 0.030 | 0.040 | 0.050 | 0.060
Tmaz | 0.015 | 0.030 | 0.045 | 0.060 | 0.075 | 0.090
r 0.0125 | 0.025 | 0.0375 | 0.050 | 0.0625 | 0.075

3 Packing Characterisation

This section is devoted to illustrating how the principal variance function and dissimilarity
coefficient defined in the previous section can be applied to quantitatively characterise the
features of different packings. As the same relative relation of two packings can be obtained
by different volume average computational schemes, only the results obtained by the area-
based integration scheme are shown below. Several packing samples to be used are given
in the next subsection, while a number of characterisation issues will be discussed in later
subsections.

3.1 Numerical samples

Two sets of random particle packings are generated within a unit cubic domain [-0.5,-0.5,-
0.5]x[0.5,0.5,0.5] with the periodic condition applied to all three directions. The first set,
termed U-set, has particle sizes uniformly distributed within a range; the second set, termed
G-set, has particle sizes obeying a Gaussian distribution with limited minimum and maxi-
mum values. Each set has three groups of packing with different particle sizes or densities,
while within each group, 10 random packing samples with the same packing properties are
generated. The packing properties used are listed in Table [3, and one generated packing
sample for each group is illustrated in Figure In the U-set, groups Ul and U2 have the
same density of 0.6 but the particle size distribution range of U2 is double of Ul; groups U2
and UL2 have the same particle size range but different densities with 0.60 for U2 and 0.57
for UL2. The same goes for the groups in the G-set.

The third set, or L-set, is a group of layered particle packings randomly generated within the
same domain. Each packing is divided into six layers along the z-direction, having particle
sizes obeying the uniform distribution within each layer. The particle size distribution ranges
of the layers form an arithmetic sequence. The packing density is 0.6 which is the same as
those of Ul, U2, G1 and G2. The packing properties are given in Table 4] and one packing
sample is displaced in Figure [4

The principal component analysis introduced in Section 2 is applied to each sample of the
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Figure 3: Sample Packings of both U-set and G-set

Figure 4: A sample packing of the L-set

U-set, G-set and L-set.

3.2 Different effects on packing samples
3.2.1 Packing randomness effects
For each group of Ul, U2, G1 and G2, 10 random packing samples are generated with the

same packing properties. It is obvious that the packing configurations of these samples in
each group are statistically different, but the difference can hardly be evaluated by existing



Table 5:  Average dissimilarity coefficients of each group in U-set and G-set

P Ul U2 G1 G2
100 | 0.0064 0.0119 0.0070 0.0123
200 | 0.0061 0.0114 0.0062 0.0117

11

conventional methodologies. As will be shown below, the currently proposed novel PCA based
approach has the capability of measuring the effects caused by the randomness of packing
configurations.

For each packing group, the PVs of all 10 samples are computed and their averages are taken
to be the PVs of the group. The principal variance functions of the 10 samples for groups Ul
and G1 at two grid resolutions M (= N = P) = 100,200 are displayed in Figure [5| Clearly
the PV functions of the 10 samples in each group are located within a narrow band around
the group mean value. This indicates that these randomly generated samples from the same
particle size distribution indeed have very similar statistical features.
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Figure 5: Average principal variance functions of groups Ul and G1 for N=100, 200

To quantify the difference, the dissimilarity coefficient of 10 samples in each group are cal-



12

-3 -3
g5 £ 0 5 x10% ‘
% UL ; * * UL
*
I * * Gl % * G1
8 * * 6.8
g Z 6.6
3750 * 3 *x ¥
S )
k5 B 64T %
8 8 i
> TR ok X k| 362 g
3 ¥ * ¥ 8 F-oT T TTTTooooo—o- Fo—F T
E [T TTTTTTTTTTTTTTT T T TTT E S *
B 651 r 2 5.8 * *
a % a5
*
* 5.6
61 * * * *
541
* % "
5.5 , , , , , , , , 5.2 , * , , , , | ,
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Sample No. Sample No.
(a) N=100 (b) N=200

Figure 6: Dissimilarity coefficients of groups Ul and G1 for N=100, 200

culated based on the formula against their group average for two resolutions: 100 and
200. The dissimilarity coefficients of groups Ul and G1 are displayed in Figure [f] and the
group average of the 10 samples are provided in Table |5} As Figure [5| visually shows a mi-
nor difference among PVs functions of samples in each group, which is confirmed by very
small dissimilarity coefficients in Table [5] it can be concluded that the effects of the particle
distribution randomness is indeed insignificant. It has also been found that the difference
decreases when the number of particles in the packing increases.

3.2.2 Particle distribution effects

The effects of different particle distributions on packings can be illustrated by the comparison
between the corresponding groups in both U-set and G-set. For each packing group, the
average PVs are taken to be the PVs of the group. The principal variance functions of groups
Ul, U2, G1 and G2 at two grid resolutions P = 100 and 200 are displayed in Figure |7} To
quantify the difference caused by different particle distributions, the dissimilarity coefficients
of Ul-G1 and U2-G2 are provided in Table [6] The dissimilarity between the corresponding
groups of the two distributions are larger than that of the samples within each group. In
other words, the particle distribution has a more significant influence on the packing features
than the packing configuration randomness.

The density profiles of the Ul packing for different resolutions are also presented in Figure
clearly indicating that the profile is strongly dependent of the resolution NN, while the general
shapes of the PV distribution remain very similar for different N, as shown in Figure [7}

Table 6: Dissimilarity coefficients between different groups
P | Particle distribution

Packing density Particle size

U1l-G1 U2-G2 U2-UL2 | G2-GL2 U1-U2 G1-G2
100 | 0.0592 0.0467 0.1397 0.1392 0.4798 0.4664
200 | 0.0463 0.0423 0.1353 0.1346 0.4111 0.4041
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Figure 9: Dissimilarity coefficients of different samples and groups

3.2.3 Packing density effects

The effects of different packing densities are observed by comparing U2 against UL2, and
G2 against GL2. The PVs of UL2 and GL2 are displayed in Figure [7] and the corresponding
dissimilarity coefficients are listed in Table[f] Clearly, the dissimilarity caused by the packing
density is larger than that of the particle distribution.

3.2.4 Particle size effects

Finally, the effects of particle sizes with the same distribution nature (uniform or Gaussian, for
instance) are investigated by comparing Ul against U2, and G1 against G2. The dissimilarity
coefficients of U1-U2 and G1-G2 are also listed in Table [6] which are significantly larger than
the others.

3.2.5 Summary

To visualise the effects caused by different packing properties, all DCs are plotted in Figure [0}
It can be concluded that the randomness of the packings has a minor influence on the packing
features compared to the other three factors. The influence extent of both packing density
and particle size is related to the value range of each factor. To compare these two effect
factors, more simulation results are conducted. The base sample has a density of 0.5 and
a particle size range [0.025,0.035]. Both the packing density and the particle size have a
variation of 10%. The dissimilarity between the base sample and the other samples are listed
in Table [7 It can be seen that packing density has the most significant influence.

3.3 Packing uniformity and isotropy

Besides having capability of comparing the features of two particle packings, this PCA based
approach can also be employed to exploit the properties of a packing in more detail, such as
its spatial uniformity and isotropy.



Table 7: Effect extent of density and particle size
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Density 0.51 0.52 0.53 0.54 0.55
DC 0.0318 0.0666 0.1007 0.1219 0.1623
Pa;tzfle 0.0255,0.0357] | [0.0260,0.0364] | [0.0265,0.0371] | [0.0270,0.0378] | [0.0275,0.0385]
DC 0.0258 0.0381 0.0516 0.0672 0.0847
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Figure 10: Uniformity and isotropy checks of a packing

3.3.1 Uniformity

For one packing, its uniformity in space can be checked by applying a moving analysis region
and obtaining the PVs at some selected locations (as shown in Figure [10]), and then compute
the DCs of these PVs by . A uniformly small DC indicates that the packing may be
statistically homogeneous. Alternatively, if the volume matrix Vj, of a packing within a large
analysis region is obtained, by selecting smaller analysis regions with the same grid spacing
h, or by simply selecting sub-matrices from Vj,, the spatial uniformity of the packing can
also be investigated at a smaller scale.

To illustrate this approach, U1(200) and L(200) are used as two examples. 10 of [100 x
100 x 100] sub-matrix blocks are randomly extracted from the two packing volume matrices
and principal component analysis is applied to every sub-matrix to obtain its PVs. Fig-
ure (a) shows PVs of the sub-matrices and the averages of different packings. Clearly the
PV functions of 10 sub-matrices of Set Ul are located within a narrow band around the
mean value while those of Set L show notable variations. The dissimilarity coefficients of the
sub-matrices against the averaged value are depicted in Figure b). A small level of spatial
in-homogeneity exists in Packing Ul while a large degree of in-homogeneity is observed in
Packing L, as expected.

As mentioned in Section the image matrices generated along different directions can also
be used to check the uniformity of packings. Two image matrices by converting the matrix
in a XY layer or a YZ layer into a column vector are created and the corresponding PVs are
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Figure 11: Packing uniformity checkings for Ul and L

shown in Figure It can be seen clearly that the two PV functions of Set Ul are almost
the same while the two PVs of Set L show apparent difference. It is easily concluded that a
large degree of in-homogeneity exists in Packing L especially along the z-direction.
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Figure 12: Principal variances of image matrices generated along different directions

3.3.2 Isotropy

The isotropy of a packing can be examined by rotating an analysis region in three direc-
tions, and applying principal component analysis to each analysis region, as displayed in
Figure (b) Then the DCs of the PVs of these rotated analysis regions against their aver-
aged PVs will reveal if the given packing is generally isotropic or not.

For illustrative purpose, this approach is applied to Packings Ul and L. The analysis region
is dimensioned as [0.5 x 0.5 x 0.5] with the resolution [50 x 50 x 50]. Seven values of rotate
angles 6, ¢, are chosen from 0° to 180° as [0°,30°,60°,90°,120°,150°, 180°]. Then the total
number of rotated analysis regions is 343. Figure [L3|shows PVs of the rotated regions and
the averages of Packings Ul and G. Obviously, the PV function of Packing U1 is smaller and
stabler than that of Packing L. The dissimilarity coefficients of the rotated analysis regions
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Figure 14: Dissimilarity coefficient for isotropic checking

against the averaged value are plotted in Figure[14] The average DC of Packing U1 is 0.0186
but that of Packing L is 0.0443, which indicates that a weak isotropy exists in Packing Ul
while a notable an-isotropy exists in Packing L.

4 Conclusion

The present work has extended the methodology which characterises the particle packing
based on Principal Component Analysis to 3D cases. Gaussian Quadrature is adopted to
obtain the volume matrix of a particle packing. Then the digitalised image of the packing is
obtained by converting the image matrix along the z-direction into a column vector of the
image matrix of the packing. Both principal variance function and dissimilarity coefficient
are proposed to compare different packing images.

This approach has been applied to several purposefully generated packings. Numerical in-
vestigations have shown that differences between two packings with different features can be
characterised by the principal variance and dissimilarity coefficient. The values of PVs and
DC can indicate different levels of effects on packing caused by configuration randomness,
particle distribution, packing density and particle size. The uniformity and isotropy of a
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packing can also been investigated by this PCA based approach. Although only spherical
particle packings are considered, other non-spherical packings can equally be treated within
the proposed characterisation methodology.

In addition, as noted in [23] the packing characterisation through the illustrative examples
has been mainly focused on the quantitative comparison between different packings or differ-
ent regions/orientations of a single packing using their principal variances or the dissimilarity
coefficient. More work is being pursued to directly relate PVs and other values in the char-
acteristic sets to packing features of a packing.
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