=
&

Swansea University ‘C I'OIlfa

Prifysgol Abertawe Setting Research Free

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:
Nonlinear Dynamics

Cronfa URL for this paper:
http://cronfa.swan.ac.uk/Record/cronfa51462

Paper:

Renson, L., Sieber, J., Barton, D., Shaw, A. & Neild, S. (2019). Numerical continuation in nonlinear experiments using
local Gaussian process regression. Nonlinear Dynamics

http://dx.doi.org/10.1007/s11071-019-05118-y

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms
of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior
permission for personal research or study, educational or non-commercial purposes only. The copyright for any work
remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium
without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the
repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/


http://cronfa.swan.ac.uk/Record/cronfa51462
http://dx.doi.org/10.1007/s11071-019-05118-y
http://www.swansea.ac.uk/library/researchsupport/ris-support/ 

Nonlinear Dynamics manuscript No.
(will be inserted by the editor)

Numerical Continuation in Nonlinear Experiments using Local

Gaussian Process Regression

L. Renson' - J. Sieber? - D.A.W. Barton' - A.D. Shaw? -

Received: date / Accepted: date

Abstract Control-based continuation (CBC) is a gen-
eral and systematic method to probe the dynamics of
nonlinear experiments. In this paper, CBC is combined
with a novel continuation algorithm that is robust to
experimental noise and enables the tracking of geomet-
ric features of the response surface such as folds. The
method uses Gaussian process regression to create a lo-
cal model of the response surface on which standard
numerical continuation algorithms can be applied. The
local model evolves as continuation explores the experi-
mental parameter space, exploiting previously captured
data to actively select the next data points to collect
such that they maximise the potential information gain
about the feature of interest. The method is demon-
strated experimentally on a nonlinear structure featur-
ing harmonically-coupled modes. Fold points present in
the response surface of the system are followed and re-
veal the presence of an isola, i.e. a branch of periodic
responses detached from the main resonance peak.

Keywords nonlinear experiment - control-based
continuation - regression-based continuation - Gaussian
process regression - active data selection

1 Introduction

Numerical continuation is a popular and well-established
method to systematically investigate the behaviour of

1 L. Renson (X)), D.A.W. Barton and S.A. Neild
Faculty of Engineering, University of Bristol, Bristol, UK.
E-mail: l.renson@bristol.ac.uk

2]J. Sieber
Centre for Systems, Dynamics and Control, College of Engi-
neering, University of Exeter, UK.

3A.D. Shaw
College of Engineering, Swansea University, UK.

S.A. Neild! -

nonlinear dynamical systems and perform bifurcation
analysis [1,2]. At a basic level, numerical continuation
finds the solutions of a zero-problem f(x, A) = 0 where
x are the system states, and tracks the evolution of
the solutions as the parameter A is varied. Based on a
mathematical model, the long-term behaviours of a sys-
tem, such as steady-states and periodic responses, can
easily be represented by such a zero-problem. Bifurca-
tions, and hence stability changes, in those behaviours
can then be detected along the solution path and in
turn tracked by adding suitable constraint condition(s)
and free parameter(s). The principles of numerical con-
tinuation are extremely general such that the method
has been applied to a wide range of problems across
engineering and the applied sciences as, for instance,
in bio-chemistry [3], physics [4], mechanics [5] and fluid
dynamics [6].

Without the need for a mathematical model, control-
based continuation (CBC) is a means to define a zero-
problem based on the inputs and outputs of an ex-
periment, thereby allowing the principles of numeri-
cal continuation to be applied to a physical system di-
rectly during experimental tests. The fundamental idea
of CBC is to use feedback control to stabilise the dy-
namics of the experiment whilst making the control sys-
tem non-invasive such that it does not modify the po-
sition in parameter space of the responses of the open-
loop experiment of interest. This non-invasiveness re-
quirement defines a zero-problem whose solutions can
be found and tracked in the experiment using the same
path-following principles and methods as in the numer-
ical context.

CBC is similar in principle to other methods such
as the famous OGY (Ott, Grebogi, Yorke) control tech-
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nique that has been extensively used to stabilise un-
stable periodic responses embedded in chaotic attrac-
tors [7]. The OGY method was coupled to continuation
algorithms in [8], but the application of this method
to general nonlinear experiments' remains challenging
due to the particular form of control used in the OGY
technique. Other examples of control techniques used
to experimentally measure unstable responses are the
Pyragas delayed feedback control [9] and phase-locked
loops [10]. The latter has recently been applied to sev-
eral nonlinear mechanical systems [11,12,13]. Although
these methods and CBC share a number of similarities,
CBC does not assume any particular form of control.

CBC was first proposed by Sieber and Krauskopf [14],
and experimentally demonstrated on a parametrically-
excited pendulum [15]. The method has since been suc-
cessfully applied to a range of mechanical systems, in-
cluding an impact oscillator [16,17,18], oscillators with
magnetic nonlinearities [19,20] and a cantilever beam
with a nonlinear mechanism at its free tip [21]. Through
those studies, CBC proved to be a versatile technique
that can extract important nonlinear dynamic features
such as nonlinear frequency response curves [22], non-
linear normal modes [23,24] and isola [21] directly in
the experiment. However, the systematic application of
CBC to general nonlinear experiments remains chal-
lenging. Most existing continuation algorithms are ideal
only in a numerical context where the solution path
is smooth and derivatives can be evaluated to high
precision. This is not easily achievable in experiments
where solutions and derivative estimates are corrupted
by measurement noise. Schilder et al. [25] discussed the
effect of noise on continuation algorithms. In particu-
lar, the tangential prediction and orthogonal correction
steps of the commonly-used pseudo-arclength continua-
tion algorithm were shown to perform poorly in a noisy
experimental context. Similarly, continuation step size
control techniques that reduce continuation steps when
convergence is not achieved were also shown to be in-
adequate as reducing the step size usually makes noise
distortions even more apparent. Schilder et al. proposed
alternative numerical strategies that are more robust to
noise [25]. These new strategies significantly improve
the robustness of CBC as they are able to trace solu-
tion paths that are no longer smooth due to noise. These
strategies work well for low levels of noise but are not
sufficiently robust to find and track dynamic features
that are very sensitive to noise as, for instance, bifur-

1 The term “nonlinear experiment” refers to an experiment
for which any model describing its behaviour has to be non-
linear to be consistent with observations.

cations which are defined in terms of derivatives.

This paper proposes an algorithm that not only
makes CBC more robust to noise but also enables the
tracking of general dynamic features that are not di-
rectly measurable in the experiment due to perturba-
tions from noise for instance. The proposed approach is
fundamentally different from the one taken by Schilder
and co-workers. Multivariate regression techniques are
exploited to locally model the response surface of the
experiment, providing local models that are smooth and
cheap to evaluate and thus enabling the use of estab-
lished numerical continuation techniques. The proposed
method is inspired by the work reported in [20] where
a single-parameter cubic polynomial regression was ex-
ploited to capture the geometry of the response sur-
face at a fixed forcing frequency and used to detect and
track a limit-point bifurcation in parameter space. The
algorithm presented in [20] is however limited to bifur-
cation curves with simple geometries. For instance, the
algorithm cannot follow the bifurcation through a cusp.
The method proposed here overcomes this limitation.

A key difficulty in using online models is to devise a
strategy to collect the experimental data necessary to
build them. We use Gaussian Process regression (GPR)
techniques to address this challenge. GPR has many de-
sirable features, such as the ease of extension to models
with multiple inputs and outputs, the ease of expressing
uncertainty, the ability to capture a wide range of be-
haviours using a simple (hyper-)parameterisation, and
a natural Bayesian interpretation. Here, based on the
data points already captured, GPR will allow us to de-
termine where to collect new data points to maximise
the potential information they will provide about the
dynamic feature of interest. This active selection of the
data based on our current knowledge and the feature of
interest contrasts with the approaches currently found
in the literature [26,27] where data collection and iden-
tification are two activities often performed separately.

The proposed algorithm is presented in Section 2
and demonstrated on a nonlinear mechanical structure
composed of a cantilever beam with a nonlinearity at-
tached at its free end (Sections 3 and 4). The natu-
ral frequencies of the first two modes of the structure
are almost in a 3:1 ratio, which leads to strong har-
monic couplings between these modes and the presence
of complicated nonlinear dynamic behaviours. In par-
ticular, a branch of stable periodic responses detached
from the main resonance peak can be observed. Our
new algorithm is employed to track fold points present
in the response surface of the system. The obtained



Numerical Continuation in Nonlinear Experiments using Local Gaussian Process Regression 3

curves are found to have a complex geometry due to
the presence of the modal interaction and to reveal the
presence of the isola.

2 Tracking dynamic features using an online
regression-based continuation algorithm

The zero-problem defining the responses tracked in the
experiment is now explained (Section 2.1). The algo-
rithm used to experimentally solve and continue the
solution of this zero-problem is then presented in Sec-
tion 2.2. Detailed discussions of the important compo-
nents of this algorithm are given in Sections 2.3 — 2.5.

2.1 Definition of the zero-problem

The response surface of an experiment such as the one
considered here presents the generic form shown in Fig-
ure 1, where A is the system response amplitude and
(M1, A2) are parameters. Such response surface can
be easily obtained experimentally using an established
CBC algorithm [20]. In this paper, we are interested
in directly tracking geometric features of that response
surface during the experiment and, in particular, the
fold curve represented in solid black (—). Responses
that lie on that curve satisfy the scalar constraint equa-
tion

dAa(M, A)

=0, (1)

The response amplitude A is a natural choice for the
parameterisation of the fold curve as it is sufficient to
uniquely defined it (at least in Figure 1). The parameter
A1 serves as the free parameter for the continuation and,
in the present experimental context, corresponds to the
forcing frequency w. Ag is the external harmonic force
excitation amplitude I

The choice of w and A as independent variables in
Eq. (1) also stems from the nature of these variables in
the experiment. More precisely, the response amplitude
A is indirectly imposed by the amplitude of the refer-
ence signal of the control system used in CBC (in par-
ticular, one of its fundamental harmonic components).
As such, A and w can both be viewed as ‘controllable
inputs’ to the experiment. In contrast to continuation
applied to a numerical system, the force amplitude I"
is here considered as a quantity that is difficult to set
directly and hence one that is measured from the ex-
periment rather than imposed.

\

Fig. 1 Typical response surface that can be found in the
experiment. A is a measure of the response of the system
and A1 and Ay are parameters, here selected as A1 = w and
A2 = I'. Fold curve (—) and its projection (——) in parameter
space.

2.2 Overview of the online regression-based algorithm

Finding data points experimentally that satisfy Eq. (1)
can be difficult and error prone due to the presence
of noise affecting derivative calculations. This issue is
addressed here by creating, online (i.e. while the ex-
periment is running), regression models that capture
the local dependence of the applied force amplitude as
a function of the forcing frequency and response am-
plitude. Derivatives can be effectively and accurately
calculated for these models, which in turn allows us to
find and then track the fold curve in the experiment
using standard numerical continuation algorithms.

The principal steps of the proposed algorithm are
shown in Figure 2. The algorithm is initialised by col-
lecting a user-defined number of data points ng dis-
tributed in a regular pattern around a starting point
which is assumed to be close to a fold. This first set of
experimental data is then used to create the first GPR
model and estimate the regression hyper-parameters
(Section 2.3). Using this model, a fold point is also
found by solving Eq. (1) using a standard Newton-like
algorithm. From this first point, standard predictor-
corrector continuation algorithms can be exploited (Sec-
tion 2.4). However, unlike in numerical simulations, the
correction step is followed by a data collection step that
aims to make the solution of the zero-problem (1) ro-
bust to new data points (Section 2.5). The addition of
each new data point to the local GPR model is fol-
lowed by a correction procedure to update the solution
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Fig. 2 Overall structure of the regression-based continuation algorithm proposed here. x* is the k" solution found using the
online regression-based continuation, A is the continuation step size, t* is the tangent to the solution curve at x*. AF:% is the
correction applied to x*'¢ at the it iteration of the correction algorithm.

of Eq. (1). When no additional data is needed, a new
prediction step is performed to progress along the solu-
tion curve.

2.3 Gaussian Process Regression

The amplitude of excitation I" is locally modelled as a
function of the response amplitude and excitation fre-
quency using GPR. A Gaussian process is a probabilis-
tic model that can be used to capture a wide range
of nonlinear functions from input-output data without
any explicit assumptions on their mathematical rela-
tionship [28]. The amplitude of excitation, I, is mod-
eled by the distribution?

I'(x) ~ GP (m(x), r(x,x')), (2)

where x = (w, A) is the vector of inputs, m(x) and
k(x,x) are the mean and covariance functions. For the
data point ¢, the measured excitation amplitude, de-
noted Fj;, is assumed to differ from the function values
I'; by the presence of an additive Gaussian noise with
zero mean and variance o2 such that

F;=Ti(x)+¢ with ¢ ~N(0,02). (3)

This ‘noise’ captures in fact measurement errors, which
not only include measurement noise but also other inac-
curacies that arise in the collection of data points using
CBC (see Section 4).

Given a data set D with n measurements

{(Xl,Fl), (Xz7 FQ), ceny (Xn7 Fn)} 5

grouped in an input matrix X = [xy,X3,...,X,] and
an output vector F = [Fy, Fy, ..., F},]T, the prediction

2 Rigorously, our notations should distinguish the model
output from the exact force amplitude I as the model is
only an approximation of the truth. However, in the present
experimental context, the exact force amplitude is unavailable
to us. As such, to keep our notations simple, the model output
will also be denoted I'.

of the force amplitude at n, unmeasured inputs X, is
given by the mean of the predictive distribution as

I =r(X,X,) (X, X)"'F. (4)
where (-)7 represents the transpose operation. k (X, X,)
corresponds to the n X n, matrix resulting from the ap-
plication of the covariance function « (x;,x,;) for all
and j. Similarly for & (X, X). Note that GPR differs
from parameter estimation techniques and the regres-
sion method used in [20] because measured data points
are needed to perform predictions (see Eq. (4)).

An effective computation of Eq. (4) can be achieved
using the Cholesky factorization to decompose the co-
variance matrix & (X,X) into a lower-triangular ma-
trix and its conjugate transpose [28]. The former is
then stored and used to efficiently compute the inverse
for different unmeasured inputs x,. The Cholesky de-
composition can also be efficiently updated when data
points are added or removed from the data set D as
in Section 2.5. Note that the inputs (w, A) of the GPR
model are assumed to be noise-free but they are in re-
ality measured quantities corrupted by noise. It is pos-
sible to extend the GPR model used here to address
noisy inputs [29]; however this is not considered here as
it was unnecessary for the system considered.

Although GPR is a non-parametric approach that
does not make assumptions on the functional form of
the modelled function, assumptions regarding its smooth-
ness are introduced in the covariance function and the
choice of hyper-parameters 6. The covariance function
considered here is the widely-used, infinitely-differentiable
squared-exponential (SE) or radial basis function (see,
for instance, Eq. (5.1) in [28]). With two-dimensional in-
puts and observation noise, this covariance function in-
cludes four hyper-parameters 8 = (0.,0%,1,,14). These
parameters have a clear physical interpretation. In par-
ticular, I, and [ 4 represent characteristic length scales
that express the distance to be travelled along a par-
ticular axis in the input space for covariance values to
become uncorrelated. o2 is the variance associated with
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Fig. 3 Illustration of the local model obtained using GPR at the initialisation of the algorithm. (a) and (b) correspond to
different views of the same model. The colour map represents the absolute value of Eq. (1), i.e. |dI'/dA|. (e) Data points used
to create the model. (x) Fold point. (<) Predicted fold point. (—) Tangent vector to the solution curve at fold point (X).

measurement errors, and 012@ is a magnitude factor. The
hyper-parameters @ of the models were obtained by
maximizing the log marginal likelihood

1 _
log p(F|X, 0) = 5FTm(X, X)'F

1
— 510g|;<:,(X,X) | — glog27r (5)

where the first term represents the data fit of the model
and the second term penalizes the complexity of the
model [28]. The optimization was performed using a
Quasi-Newton algorithm. Hyper-parameters were de-
termined at the start of the algorithm using the first
set of ng data points captured. They were then kept
constant during a continuation run. We note that Gaus-
sian priors on the hyper-parameters (hyper-priors) can
be used. However, with limited knowledge of the actual
values and hence large covariances they had limited in-
fluence on the optimal 6 values.

As an examples of a GPR model, Figure 3(a) shows
a local model obtained at the start of a continuation
run after collecting 25 data points (e) regularly dis-
tributed in input space (w, A) around the estimated lo-
cation of a fold point. A projection of the model in
the two-dimensional input space is also given in Fig-
ure 3(b). The surface is coloured according to |dI"/dA]
to highlight the regions where Eq. (1) is satisfied. Ac-
cording to the model, fold points are expected in two
distinct regions (in dark-blue). The one where the re-
sponse amplitude is higher is where the actual folds are

located. The lower one is in fact located outside the data
set and is an artifact feature created by the regression.
These artifacts do not affect the algorithm as long as
the continuation steps are small enough to stay within
the available data sets. In Section 2.5, we will discuss
how to improve such GPR models with additional ex-
perimental data but first we discuss the continuation
approach.

2.4 Numerical continuation

The continuation problem is to solve and track the so-
lutions of Eq. (1). Starting from a known solution x*~1,
the next point along the solution path is predicted to
be

)N(k _ Xk—l 4 h tk:—l

(6)

where h is the continuation step size and t*~! is the
tangent vector to the solution curve at x*~!. The pre-
diction will not in general satisfy the zero-problem such
that the prediction must be corrected using a Newton-
like algorithm. However, to apply Newton iterations, an
extra equation has to be added to Eq. (1). The equation
used here is the so-called pseudo-arclength condition

thl(x —x1) —h =0, (7)

which constraints the corrections made to %X* to be per-
pendicular to tF—1.

|dI'/dA|

4.5
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Figure 3 illustrates a fold point (x) predicted from
a previously computed point (X). The tangent vector
used for this prediction is shown in green (—). It was
found that GPR models could diverge quickly from the
actual response surface outside the set of collected data
points (see Section 2.3). As such, the size of the con-
tinuation steps were taken such that the prediction and
correction iterations remained within the cloud of avail-
able data points. Note that it is possible to allow larger
continuation steps that leave the current data set by
collecting new data points after the prediction step, al-
though this is not used here. After finding a solution to
Egs. (1) and (7), additional data points are collected to
refine this solution — this is now discussed.

2.5 Improve solution with new data

To make sure that the solution of Eq. (1) is not an arti-
fact of the model and does not critically depend on the
current data, new data points are collected after the
correction step of the continuation algorithm. To this
end, a fixed number n;.s of prospective data points,
x¢ with i = 1, ..., ngest, uniformly distributed in an el-
lipse around the current solution of the continuation
problem are considered for data collection. The princi-
pal axis of this elliptical domain were chosen equal to
twice the length scale hyper-parameters [, and [ 4. The
data point that most influences the results is deemed
to be the most interesting point and is then experi-
mentally collected using the established CBC technique
summarised in Section 4.1.

To determine the sensitivity of the zero-problem (1)
to new experimental data, an artificial measurement of
the force amplitude, F;, is created for each candidate
data point x% using
F'=Ti(x,) + var[Ti(x1)], (8)
where I'! depends on currently available data and is
given by Eq. (4). The variance at a particular input
point x? is given by

var[I)] = k (x,,x%)—k (X, xi)T k(X,X) 'k (X,x1),
9)

which is independent of any previous and future mea-
surement of the force amplitude. The artificial measure-
ments are individually added to the GPR model and
their effect on the zero-problem assessed using

dr dr

5= |90 () - 22 (4 (10

where x* is the current solution of the continuation

problem, I is the GPR model including the artificial
measurement and I is the GPR model without (i.e.
containing only the experimental data). § is the zero-
problem sensitivity to new data and is directly used to
assess the potential information gained by each artificial
measurement.

Figure 4 illustrates this data selection approach.
The colourmap represents the sensitivity, 5, of the zero-
problem (1) to a new data point. Starting from Fig-
ure 4(a), a new data point is collected where Eq. (10)
is the largest (). This new data point is added to the
GPR model and the correction step of the continuation
algorithm repeated. Once a solution is found, the in-
fluence of a new data point on the new GPR model is
again assessed (Figure 4(b)). The region where the first
additional data point was added is now observed to be
significantly less influenced by any new point. Accord-
ing to the model predictions, informative data points
are now located in another region where a second data
point is eventually recorded. Following the same proce-
dure, data points are collected until Eq. (10) is below a
user-defined tolerance across the whole region as in Fig-
ure 4(c). At this stage, the solution of the continuation
problem is said to be robust to new data and the con-
tinuation algorithm can perform a new prediction step.
As the continuation algorithm progresses in parameter
space, more data points are added to the GPR model.
To keep computational costs low, an overall maximum
number of data points nyax in the model is maintained
by removing data points that have less influence on the
zero-problem.

During the experiment, the set of candidate data
points is usually limited to 50 points. This is a much
smaller set of points than the one considered for the
colour maps in Figure 4. This explains why in Fig-
ure 4(b) there exist a small difference between the ap-
parent location of the maximum of Eq. (10) and the
location where the new data point has been collected

(X)-

Other approaches to decide where to collect data
points could have also been used. For instance, the ef-
fect of new data points on the solution of the zero-
problem was investigated. However, this approach was
found to give similar results to the method above while
needing a solution to the nonlinear continuation prob-
lem for each candidate data point and hence being com-
putationally much more expensive. Another approach
was to select the data points for which the variance,
var[l], of the predicted distribution was the largest.
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Fig. 4 Illustrates the new data selection process. The colourmap shows the sensitivity of the zero-problem S as estimated by
Eq. (10). (a — ¢) Show the evolution of Eq. (10) when new data points (X) are added to the GPR model. 4 x 102 is the
user-defined threshold below which no additional data point is collected.

This approach was however discarded as new data points
were being positioned at the periphery of the data set.

3 Description of the experimental set-up

The experimental set-up considered for the experimen-
tal demonstration of our algorithm is shown in Figure 5.
The main structure is a steel (p ~ 7850 Kg/m?, E ~
210 GPa) cantilever beam of length 380 mm, width
31.9 mm and thickness 1.9 mm. The beam’s free end
is attached to two linear springs arranged as shown
in Figure 5(b). This mechanism gives rise to geomet-
ric nonlinearity at large amplitudes. Previous work has
shown that the stiffness properties of this mechanism
can be approximated by a linear plus cubic term [30].
However, a mathematical model of the nonlinearity is
unnecessary for CBC. As such, neither the identifica-
tion of the nonlinear parameters nor the exploitation of
the mathematical form of the nonlinearity were used.
The length of the beam as well as the pre-tension in
the springs were carefully adjusted such that the ratio
between the natural frequencies of the first two bend-
ing modes is close to, but larger than 3. This leads to
the presence of a 3:1 modal interaction between these
modes.

The structure is excited approximately 40 mm away
from the clamp using a GW-V4 Data Physics shaker
powered by a PA3OE amplifier. The force applied to the
structure is measured using a PCB208C03 force trans-
ducer connected to a Kistler signal conditioner (type

5134). The vibrations of the beam are measured at
the tip using an Omron ZX2-1.D100 displacement laser
sensor. The beam structure, the first laser sensor, the
shaker and its power amplifier constitute the nonlinear
experiment tested using CBC.

The algorithm used by the CBC method and pre-
sented in Section 2 is run on a laptop computer di-
rectly connected to the real-time controller (RTC) box
via a USB cable. The RTC box consists of a Beagle-
Bone Black on which the feedback controller used by
CBC is implemented. Note that CBC algorithms do
not run in real-time, only the feedback controller does.
The BeagleBone Black is fitted with a custom data ac-
quisition board (hardware schematics and associated
software are open source and freely available [31]). All
measurements are made at 1kHz sampling with no fil-
tering. Estimations of the Fourier coefficients of the re-
sponse, input force, and control action are calculated in
real time on the control board using recursive estima-
tors [23]; however, this was for convenience rather than
a necessity.

The z-domain transfer function of the controller used
by the CBC technique is given by

U(z) 0.0053 1)

E(z) 23 —2.45212% + 1.9725z — 05155’

and aims to reduce the error E(z) between the beam
tip response, y (laser 1), and a control reference signal,
y*, (see Section 4.1). The control law, which was found
to stabilise the dynamics of the experiment through-
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Fig. 5 Experimental set-up. The structure corresponds to a cantilever beam with a nonlinear mechanism attached at its free
end. The structure is excited and controlled by means of an electro-dynamic shaker. A displacement laser sensor is used to
measure the motion of the beam tip. CBC algorithms run on a laptop interconnected with the real-time controller box.

out the range of parameters considered in this study,
was designed using pole-placement techniques and a lin-
ear model of the experiment. This model was obtained
using low-amplitude broadband input-output data and
captures the first two bending modes of the beam whose
natural frequencies (damping ratios) were estimated at
11.49 Hz (0.026) and 36.45 Hz (0.022), respectively. Ad-
ditional details on the derivation of the controller can
be found in [21] where the nonlinear frequency response
curves of the present experiment were also investigated
using CBC. Note that errors in the model do not affect
the results as long as the model is sufficiently accurate
for designing a stabilising feedback controller.

4 Experimental results

The CBC technique used in this paper to collect experi-
mental data points is briefly reviewed in Section 4.1 and
exploited to map out the complete response surface of
the system of interest. The new online regression-based
algorithm is then demonstrated in Section 4.2 where it
is used to track fold points while the experiment is run-
ning. To validate the new algorithm, obtained results
are directly compared with the fold curves that can be
extracted by post-processing the response surface ob-

tained using standard CBC approach as described in
Section 4.1.

4.1 Extracting periodic responses

Considering periodic responses of the experiment, it is
assumed that the control target, y*(¢), and the control
signal, u(t), can be decomposed into a finite number m
of Fourier modes as

Ao “

y*(t) = + Z Aj cos(jwt) + B} sin(jwt), (12)
j=1
u(t) = AY cos(wt) + BY sin(wt) (13)
fundamental

+ 7 + ZQ Aj cos(jwt) + Bj sin(jwt).  (14)
j

higher harmonics
CBC seeks a reference signal y*(¢) for which the con-
trol signal u is equal to zero for all times. When this
is achieved, the control signal is non invasive and does
not alter the position in parameter space of periodic re-
sponses compared to the underlying uncontrolled sys-
tem of interest. To achieve this non-invasive control
signal, the higher harmonics (Af, A}, B}')7, have to
be eliminated by finding suitable reference signal coef-
ficients (Ag, A5, BY)JLy. This can be performed using
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a derivative-free Picard-iteration algorithm. As for the
fundamental harmonic component of the control sig-
nal, AY cos(wt) + Bi'sin(wt), it can be viewed as the
harmonic excitation applied to the experiment. If no
other external excitation is applied to the experiment,
the total harmonic excitation applied to the experiment

\/AY + By, The reader is re-
ferred to [19,20] for a more detailed discussion on this

approach that is often referred to as the simplified CBC
method.

is simply given by I' =

The higher-harmonic coefficients (Ag, A}, B7)T", are
determined to cancel out the higher-harmonic coeffi-
cients of the control signal. One of the fundamental tar-
get coefficients (here B}) can also be set equal to zero in
order to set a phase reference between the response and
the excitation. As such, the only two adjustable inputs
to the experiment are the frequency of excitation w and
the fundamental target coefficients Aj. The amplitude
of the excitation I is viewed as a free parameter as it
is not fully determined by the user but depends on the
respounse y(t) and target y*(t).

Considering a constant frequency, the response of
the experiment to harmonic input can be investigated
by increasing the free fundamental target coefficient A7.
The response curves collected in this way form curves
that resemble a S, as shown in Figure 6. At each data
point (e), full time series measurements containing 2000
samples, or between 22 and 29 oscillation cycles, were
made and used to estimate response and force ampli-
tudes. The number of Fourier modes considered in the
calculation of amplitudes is equal to seven throughout
the rest of the paper.

Response curves in Figure 6 were collected every
0.25 Hz between 10 Hz and 14 Hz with 0.2 mm steps in
A}. The S-curve obtained at 12.5 Hz is notably differ-
ent from the other S-curves and includes an additional
inflection point in its upper part. This curve lies in the
region where a modal interaction occurs between the
first two modes of the structure and marks a change
in the form of the response surface of the system. This
change in the response surface leads to the presence of
an isola as further discussed in Section 4.2.

The S-curves collected can be post-processed to ex-
tract fold curves which will then be compared to the
fold curves directly tracked during the experiment. The
post-processing approach used to extract these curves
is similar in principle to the one used in the online al-
gorithm but with the clear distinction that it does not
influence the data points collected. A GPR model in-

cluding all collected data points is created and numer-
ical continuation is exploited to follow the solutions of
Eq. (1). Figure 6 shows in gray the continuous surface
constructed from the GPR model. The darker gray re-
gion indicates where the underlying uncontrolled exper-
iment is unstable and thus unobservable without stabil-
ising feedback control.The boundary of that region is
the fold curve found using continuation. This curve is
sensitive to the spacing between the different S-curves
as well as the choice of hyper-parameters for the GPR.
In particular, the fold curve presents artifact oscillation
as discussed later. The online algorithm will overcome
these issues.

4.2 Demonstration of the online regression-based
algorithm

The online regression-based continuation algorithm pre-
sented in Section 2 is now demonstrated. Figure 7 il-
lustrates the first four steps of the algorithm which
is initialized in the neighbourhood of a fold found at
high response amplitudes on one of the S-curves col-
lected in Section 4.1 (o). Around that starting point, 25
new data points (e) regularly distributed in frequency
and control target amplitude are collected. This first
data set is then used to estimate the hyper-parameters
of the GPR model using the marginalization approach
presented in Section 2.3. Hyper-parameters were found
to be 8 = (02,0%,1,,14) ~ (0.02,2.02,0.30,1.09). The
noise variance, o;, which is found to be relatively small
compared to the other hyper-parameters, captures the
effects of measurement noise. It also encompasses po-
tential inaccuracies that could arise from the inaccurate
cancellation of the control signal higher harmonics dur-
ing data collection.

After estimation of the hyper-parameters, the first
GPR model is created (M) and a first solution to Eq. (1)
is found (). The sequence of prediction and correction
steps of the numerical continuation algorithm can then
be started. Data points collected during the continua-
tion process are shown in green (o) and appear to be
regularly distributed around the fold of the response
surface (see two-dimensional projections in Figure 7(b,
c)). This comes from the regular pattern used for the
generation of candidate data points and the sensitiv-
ity criterion (10) that is found to almost always have
a structure similar to the one observed in Figure 4(a,
b). Note that to collect data points at the particu-
lar response amplitudes specified by the data selection
method in Section 2.5, a second regression mapping A
to A} is created during the continuation. This mapping
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Fig. 6 S-curves collected using the simplified CBC algorithm presented in Section 4.1. Gray surface is the output of a GPR
model including all recorded data points (e). The darker gray region is delimited by a fold curve. Data points in this region
correspond to unstable response of the underlying uncontrolled experiment.

is observed to be almost linear throughout the range of
parameters considered in this study (Figure 8).

In Figure 7, the red curve (— ® —) represents the
solutions found by the continuation algorithm and the
force amplitude predicted at the solution by the GPR
model. For each solution point, a data point is also col-
lected (— @ —) and added to the GPR model. At the
beginning of the algorithm (around 14 Hz), the forcing
amplitude estimated by the GPR model at the solu-
tion is slightly different from the force amplitude ac-
tually measured. However, the GPR model predictions
improve as more data points are added to it and the dif-
ference between the two curves (—e —, — e —) becomes
increasingly smaller, and negligible after 3 continuation
steps.

Figure 9 illustrates the results obtained when apply-
ing the continuation algorithm throughout the parame-
ter range of interest. All the data points collected during
the continuation are shown in black (e), and the curve
of fold points obtained by following the curve previ-
ously shown in Figure 7 is in red (—). Two-dimensional
projections of the fold curve are shown in Figure 9(b,
¢). The curve has a complex geometry; especially in the
region between 12 — 13 Hz where it is observed to in-
crease in response amplitude at almost constant forcing

frequencies (Figure 9(b)). This feature corresponds to
the ‘saturation’ of the resonance frequency commonly
observed in nonlinear frequency response curves in the
vicinity of modal interactions [32]. Closer inspection at
this region reveals that the fold curve forms the shape of
a swallowtail catastrophe (Figure 9(c)) [33]. Although
this feature is small and appears to be more affected by
measurement uncertainties than the rest of the curve, it
was consistently observed in this region of the param-
eter space. After this interaction region, the algorithm
was found to reach and successfully pass through a cusp
(around 11 Hz).

The use of multivariate regression combined with
a predictor-corrector continuation technique makes the
online regression-based algorithm more general and ro-
bust than the bifurcation tracking algorithm proposed
n [20]. This latter standard method could not have
tracked a curve that exhibits the complex features of
the fold curve in Figure 9. The present algorithm was
however not able to systematically continue the fold
curve across the modal interaction region. In particu-
lar, when the interaction region was approached from
below, the fold curve was found to come very close to a
previously measured section of the curve. Within uncer-
tainty, this close proximity between the two portions of
the curve gives rise to a branch point singularity which
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(experimental input). All the data points (e) presented in
this paper have been included.

cannot be addressed by our current continuation algo-
rithm. As such, the online algorithm was often found to
‘jump’ to and continue the upper part of the fold curve.
To capture the low-amplitude section of the fold curve
located between 12.5 Hz and 14 Hz (— in Figure 9),
the online algorithm was restarted around the second
fold point observed at low amplitude on the S-curve in
Figure 7.

To validate the continuation results, fold points found
at a particular force amplitude are compared to the
nonlinear frequency response (NLFR) curve obtained
for the same excitation level. To generate the NLFR
curve, the raw data points shown in Figures 6 and 9 that
correspond approximately to the chosen force ampli-
tude (within +5%) are represented on the same graph.
The NLFR curves obtained for 2.0 N and 2.9N are
shown in Figures 10(a) and 10(b), respectively. Fold
points are in red (x). At 2N (Figure 10(a)), the res-
onance peak leans towards higher frequencies which
highlights the hardening character of the nonlinearity
in the system. The locations of the two fold points
found at that level match the folds in the NLFR. Data
points located between them are observed to be unsta-
ble periodic responses of the underlying uncontrolled
experiment. As the excitation is increased to 2.9 N
(Figure 10(b)), the resonance peak is qualitatively un-
changed but an isolated branch of high-amplitude re-
sponses disconnected from the main resonance peak has
appeared [30,21]. The presence of this isola could have
been inferred from Figure 9(c) as a third fold point ap-

pears when the force amplitude becomes larger than
approximately 2.1 N.

To further validate the fold curves obtained using
the online regression-based algorithm, results are com-
pared to the fold curve obtained by post-processing the
data points of the full response surface. In particular, a
GPR model including all the data points of Figure 6
is created, and numerical continuation is applied to
find and track the solutions of (1). Two sets of hyper-
parameters are considered to post-process the data. The
first one corresponds to the set of hyper-parameters
used by the online algorithm. The second one is ob-
tained by maximising the marginal likelihood for all the
data points of the response surface. Hyper-parameters
found in this latter case are (02, 0]20, lw,la) = (0.01, 2.66,
0.28, 0.73). Although different from the hyper-parameters
found at the initialization of the online continuation
algorithm, they are found to have comparable magni-
tudes.

The resulting fold curves are compared in Figure 11.
The two curves (—, —) obtained by post-processing the
response surface are almost identical, which shows that
the difference between the two sets of hyper-parameters
does not play a significant role here. These curves are
found to oscillate around the fold curve measured online
(— @ —). These oscillations are artifact created by the
regression method due to the lack of data points (in
particular at resonance between successive S-curves).
These oscillations are not present in the curve obtained
directly during the experiment due to the tailored col-
lection of suitable data points during the continuation.
The blue curve is also found to reproduce the swallow-
tail catastrophe observed on the data collected online.
The post-processing applied to the data points of the re-
sponse surface could have also been applied to the data
points collected by the online regression-based contin-
uation algorithm. The fold curve obtained in this way
(not shown for conciseness) is a smooth and continu-
ous curve that is no longer affected by the ‘jump’ ob-
served during the experiment and that also reproduces
the swallowtail catastrophe. The curve is also free from
regression artifacts as collected data points were suit-
ably chosen.

To understand the sensitivity of the results to the
selection of data points collected, 300 fold curves were
numerically computed for different data sets. Each set
is based on all the data points collected using the on-
line algorithm but with 10% of the points, selected
randomly, removed. The hyper-parameters of the GPR
model were marginalized for each data set. Fold curves
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(—) are shown in Figure 12. Regions of larger result
variability, i.e. where the overall bifurcation curve ap-
pears thicker, are located on the lower part of the curve
(Figure 12(a)). This is expected as this region of the re-
sponse surface is significantly less curved than the reso-
nance region and hence more affected by measurement

uncertainties. Large variability is also noticeable at the
cusp as well as at the modal interaction region. In the
latter, the distinction between the upper and lower part
of the fold curve can disappear as some fold curves are
found to cross and have a branch point. However, other
continuation runs are also found to lead to disjoint fold
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Fig. 11 Comparison between the fold curve (— @ —) obtained during the experiment and the fold curves (—, —) obtained by

post-processing the data points of the response surface. Hyper-parameters used to obtain (—) are identical to those used in
the experiment, whereas the hyper-parameters used for (—) result from the maximisation of the marginal likelihood for all the

data points in the response surface.

curves — one before and one after the modal interac-
tion. This important variability in the results highlights
the “flat” nature of the response surface in that region
and hence the difficulty to infer the presence of folds
(inset in Figure 12(a)). In general, the presence of un-
certainty may make it difficult to draw strong conclu-
sions on the exact nature of the dynamics in such a

region. Figure 12(b) shows the sensitivity of the results
with respect to the bifurcations parameters forcing fre-
quency and amplitude. As observed experimentally, the
swallowtail catastrophe appears to be a robust feature
of the system’s dynamics as it is present for almost all
data sets.
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Fig. 12 300 fold curves (—) obtained by post-processing some of the data points measured during the online continuation.
For each curve, 10% of the data points are randomly selected and removed from the data set. Each curve is also computed
with hyper-parameters values obtained via the maximization of the marginal likelihood for the particular data set considered.

5 Conclusions

Control-based continuation is a general and system-
atic method to probe the dynamics of nonlinear exper-
iments. In this paper, CBC is combined with a novel
continuation algorithm that is robust to experimental
noise and enables the tracking of geometric features of
the response surface. The online regression-based CBC
uses Gaussian process regression to create local mod-
els of the response surface. These models are smooth
(noise-free) which enables the use of standard numeri-
cal continuation algorithms. An important aspect of the
proposed method is to interact with the experiment to
select the data points to collect such that they are the
most informative about the dynamic feature of interest.
This approach is similar in principle to an experimen-
tal design problem in statistics and could a priori be
applied to other problems such as nonlinear parameter
estimation and model selection.

The online regression-based algorithm was experi-
mentally demonstrated on a nonlinear structure with
harmonically-coupled modes by tracking fold points in
the structure response to harmonic excitation. The al-
gorithm was able to address the complex geometry of
the fold curve arising from the presence of a modal in-
teraction. However, the close proximity between two
portions of the fold curve lead, within uncertainties in
the experiment, to a branch point singularity which
could not be addressed by the current continuation al-

gorithm.

The online regression-based algorithm presented in
this paper is very general and could be exploited to
capture other types of dynamic features such as back-
bone curves (nonlinear normal modes) and nonlinear
frequency response curves. The regression algorithm used
here relies however on a unique parameterisation of the
solution curve in terms of the continuation variables. If
this assumption is not satisfied, further improvements
of the method to consider local coordinates for the re-
gression, or a larger set of continuation variables might
be necessary.
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