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Abstract Control-based continuation (CBC) is a gen-

eral and systematic method to probe the dynamics of

nonlinear experiments. In this paper, CBC is combined

with a novel continuation algorithm that is robust to

experimental noise and enables the tracking of geomet-

ric features of the response surface such as folds. The

method uses Gaussian process regression to create a lo-

cal model of the response surface on which standard

numerical continuation algorithms can be applied. The

local model evolves as continuation explores the experi-

mental parameter space, exploiting previously captured

data to actively select the next data points to collect

such that they maximise the potential information gain

about the feature of interest. The method is demon-

strated experimentally on a nonlinear structure featur-

ing harmonically-coupled modes. Fold points present in
the response surface of the system are followed and re-

veal the presence of an isola, i.e. a branch of periodic

responses detached from the main resonance peak.

Keywords nonlinear experiment · control-based

continuation · regression-based continuation · Gaussian

process regression · active data selection

1 Introduction

Numerical continuation is a popular and well-established

method to systematically investigate the behaviour of
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nonlinear dynamical systems and perform bifurcation

analysis [1,2]. At a basic level, numerical continuation

finds the solutions of a zero-problem f(x, λ) = 0 where

x are the system states, and tracks the evolution of

the solutions as the parameter λ is varied. Based on a

mathematical model, the long-term behaviours of a sys-

tem, such as steady-states and periodic responses, can

easily be represented by such a zero-problem. Bifurca-

tions, and hence stability changes, in those behaviours

can then be detected along the solution path and in

turn tracked by adding suitable constraint condition(s)

and free parameter(s). The principles of numerical con-

tinuation are extremely general such that the method

has been applied to a wide range of problems across

engineering and the applied sciences as, for instance,

in bio-chemistry [3], physics [4], mechanics [5] and fluid

dynamics [6].

Without the need for a mathematical model, control-

based continuation (CBC) is a means to define a zero-

problem based on the inputs and outputs of an ex-

periment, thereby allowing the principles of numeri-

cal continuation to be applied to a physical system di-

rectly during experimental tests. The fundamental idea

of CBC is to use feedback control to stabilise the dy-

namics of the experiment whilst making the control sys-

tem non-invasive such that it does not modify the po-

sition in parameter space of the responses of the open-

loop experiment of interest. This non-invasiveness re-

quirement defines a zero-problem whose solutions can

be found and tracked in the experiment using the same

path-following principles and methods as in the numer-

ical context.

CBC is similar in principle to other methods such

as the famous OGY (Ott, Grebogi, Yorke) control tech-



2 L. Renson1 et al.

nique that has been extensively used to stabilise un-

stable periodic responses embedded in chaotic attrac-

tors [7]. The OGY method was coupled to continuation

algorithms in [8], but the application of this method

to general nonlinear experiments1 remains challenging

due to the particular form of control used in the OGY

technique. Other examples of control techniques used

to experimentally measure unstable responses are the

Pyragas delayed feedback control [9] and phase-locked

loops [10]. The latter has recently been applied to sev-

eral nonlinear mechanical systems [11,12,13]. Although

these methods and CBC share a number of similarities,

CBC does not assume any particular form of control.

CBC was first proposed by Sieber and Krauskopf [14],

and experimentally demonstrated on a parametrically-

excited pendulum [15]. The method has since been suc-

cessfully applied to a range of mechanical systems, in-

cluding an impact oscillator [16,17,18], oscillators with

magnetic nonlinearities [19,20] and a cantilever beam

with a nonlinear mechanism at its free tip [21]. Through

those studies, CBC proved to be a versatile technique

that can extract important nonlinear dynamic features

such as nonlinear frequency response curves [22], non-

linear normal modes [23,24] and isola [21] directly in

the experiment. However, the systematic application of

CBC to general nonlinear experiments remains chal-

lenging. Most existing continuation algorithms are ideal

only in a numerical context where the solution path

is smooth and derivatives can be evaluated to high

precision. This is not easily achievable in experiments

where solutions and derivative estimates are corrupted

by measurement noise. Schilder et al. [25] discussed the

effect of noise on continuation algorithms. In particu-

lar, the tangential prediction and orthogonal correction

steps of the commonly-used pseudo-arclength continua-

tion algorithm were shown to perform poorly in a noisy

experimental context. Similarly, continuation step size

control techniques that reduce continuation steps when

convergence is not achieved were also shown to be in-

adequate as reducing the step size usually makes noise

distortions even more apparent. Schilder et al. proposed

alternative numerical strategies that are more robust to

noise [25]. These new strategies significantly improve

the robustness of CBC as they are able to trace solu-

tion paths that are no longer smooth due to noise. These

strategies work well for low levels of noise but are not

sufficiently robust to find and track dynamic features

that are very sensitive to noise as, for instance, bifur-

1 The term “nonlinear experiment” refers to an experiment
for which any model describing its behaviour has to be non-
linear to be consistent with observations.

cations which are defined in terms of derivatives.

This paper proposes an algorithm that not only

makes CBC more robust to noise but also enables the

tracking of general dynamic features that are not di-

rectly measurable in the experiment due to perturba-

tions from noise for instance. The proposed approach is

fundamentally different from the one taken by Schilder

and co-workers. Multivariate regression techniques are

exploited to locally model the response surface of the

experiment, providing local models that are smooth and

cheap to evaluate and thus enabling the use of estab-

lished numerical continuation techniques. The proposed

method is inspired by the work reported in [20] where

a single-parameter cubic polynomial regression was ex-

ploited to capture the geometry of the response sur-

face at a fixed forcing frequency and used to detect and

track a limit-point bifurcation in parameter space. The

algorithm presented in [20] is however limited to bifur-

cation curves with simple geometries. For instance, the

algorithm cannot follow the bifurcation through a cusp.

The method proposed here overcomes this limitation.

A key difficulty in using online models is to devise a

strategy to collect the experimental data necessary to

build them. We use Gaussian Process regression (GPR)

techniques to address this challenge. GPR has many de-

sirable features, such as the ease of extension to models

with multiple inputs and outputs, the ease of expressing

uncertainty, the ability to capture a wide range of be-

haviours using a simple (hyper-)parameterisation, and

a natural Bayesian interpretation. Here, based on the

data points already captured, GPR will allow us to de-

termine where to collect new data points to maximise

the potential information they will provide about the

dynamic feature of interest. This active selection of the

data based on our current knowledge and the feature of

interest contrasts with the approaches currently found

in the literature [26,27] where data collection and iden-

tification are two activities often performed separately.

The proposed algorithm is presented in Section 2

and demonstrated on a nonlinear mechanical structure

composed of a cantilever beam with a nonlinearity at-

tached at its free end (Sections 3 and 4). The natu-

ral frequencies of the first two modes of the structure

are almost in a 3:1 ratio, which leads to strong har-

monic couplings between these modes and the presence

of complicated nonlinear dynamic behaviours. In par-

ticular, a branch of stable periodic responses detached

from the main resonance peak can be observed. Our

new algorithm is employed to track fold points present

in the response surface of the system. The obtained
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curves are found to have a complex geometry due to

the presence of the modal interaction and to reveal the

presence of the isola.

2 Tracking dynamic features using an online

regression-based continuation algorithm

The zero-problem defining the responses tracked in the

experiment is now explained (Section 2.1). The algo-

rithm used to experimentally solve and continue the

solution of this zero-problem is then presented in Sec-

tion 2.2. Detailed discussions of the important compo-

nents of this algorithm are given in Sections 2.3 – 2.5.

2.1 Definition of the zero-problem

The response surface of an experiment such as the one

considered here presents the generic form shown in Fig-

ure 1, where A is the system response amplitude and

(λ1, λ2) are parameters. Such response surface can

be easily obtained experimentally using an established

CBC algorithm [20]. In this paper, we are interested

in directly tracking geometric features of that response

surface during the experiment and, in particular, the

fold curve represented in solid black (−). Responses

that lie on that curve satisfy the scalar constraint equa-

tion

dλ2(λ1, A)

dA
= 0. (1)

The response amplitude A is a natural choice for the

parameterisation of the fold curve as it is sufficient to

uniquely defined it (at least in Figure 1). The parameter

λ1 serves as the free parameter for the continuation and,

in the present experimental context, corresponds to the

forcing frequency ω. λ2 is the external harmonic force

excitation amplitude Γ .

The choice of ω and A as independent variables in

Eq. (1) also stems from the nature of these variables in

the experiment. More precisely, the response amplitude

A is indirectly imposed by the amplitude of the refer-

ence signal of the control system used in CBC (in par-

ticular, one of its fundamental harmonic components).

As such, A and ω can both be viewed as ‘controllable

inputs’ to the experiment. In contrast to continuation

applied to a numerical system, the force amplitude Γ

is here considered as a quantity that is difficult to set

directly and hence one that is measured from the ex-

periment rather than imposed.

Fig. 1 Typical response surface that can be found in the
experiment. A is a measure of the response of the system
and λ1 and λ2 are parameters, here selected as λ1 = ω and
λ2 = Γ . Fold curve (−) and its projection (−−) in parameter
space.

2.2 Overview of the online regression-based algorithm

Finding data points experimentally that satisfy Eq. (1)

can be difficult and error prone due to the presence

of noise affecting derivative calculations. This issue is

addressed here by creating, online (i.e. while the ex-

periment is running), regression models that capture

the local dependence of the applied force amplitude as

a function of the forcing frequency and response am-

plitude. Derivatives can be effectively and accurately

calculated for these models, which in turn allows us to

find and then track the fold curve in the experiment

using standard numerical continuation algorithms.

The principal steps of the proposed algorithm are

shown in Figure 2. The algorithm is initialised by col-

lecting a user-defined number of data points n0 dis-

tributed in a regular pattern around a starting point

which is assumed to be close to a fold. This first set of

experimental data is then used to create the first GPR

model and estimate the regression hyper-parameters

(Section 2.3). Using this model, a fold point is also

found by solving Eq. (1) using a standard Newton-like

algorithm. From this first point, standard predictor-

corrector continuation algorithms can be exploited (Sec-

tion 2.4). However, unlike in numerical simulations, the

correction step is followed by a data collection step that

aims to make the solution of the zero-problem (1) ro-

bust to new data points (Section 2.5). The addition of

each new data point to the local GPR model is fol-

lowed by a correction procedure to update the solution
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Initialisation

(first GPR model)

Prediction

x̄k = xk−1 + htk−1

Correction

xk,i+1 = xk,i +∆k,i

(fixed GPR model)

Improve model

with new data

(update GPR model)

k := k + 1 (next point on the solution curve)

Fig. 2 Overall structure of the regression-based continuation algorithm proposed here. xk is the kth solution found using the
online regression-based continuation, h is the continuation step size, tk is the tangent to the solution curve at xk. ∆k,i is the
correction applied to xk,i at the ith iteration of the correction algorithm.

of Eq. (1). When no additional data is needed, a new

prediction step is performed to progress along the solu-

tion curve.

2.3 Gaussian Process Regression

The amplitude of excitation Γ is locally modelled as a

function of the response amplitude and excitation fre-

quency using GPR. A Gaussian process is a probabilis-

tic model that can be used to capture a wide range

of nonlinear functions from input-output data without

any explicit assumptions on their mathematical rela-

tionship [28]. The amplitude of excitation, Γ , is mod-

eled by the distribution2

Γ (x) ∼ GP (m(x), κ(x,x′)) , (2)

where x = (ω,A) is the vector of inputs, m(x) and

κ(x,x) are the mean and covariance functions. For the

data point i, the measured excitation amplitude, de-

noted Fi, is assumed to differ from the function values

Γi by the presence of an additive Gaussian noise with

zero mean and variance σ2
n such that

Fi = Γi(x) + εi with εi ∼ N
(
0, σ2

n

)
. (3)

This ‘noise’ captures in fact measurement errors, which

not only include measurement noise but also other inac-

curacies that arise in the collection of data points using

CBC (see Section 4).

Given a data set D with n measurements

{(x1, F1), (x2, F2), ..., (xn, Fn)} ,

grouped in an input matrix X = [x1,x2, ...,xn] and

an output vector F = [F1, F2, ..., Fn]T , the prediction

2 Rigorously, our notations should distinguish the model
output from the exact force amplitude Γ as the model is
only an approximation of the truth. However, in the present
experimental context, the exact force amplitude is unavailable
to us. As such, to keep our notations simple, the model output
will also be denoted Γ .

of the force amplitude at n? unmeasured inputs X? is

given by the mean of the predictive distribution as

Γ? = κ (X,X?)
T
κ (X,X)

−1
F. (4)

where (·)T represents the transpose operation. κ (X,X?)

corresponds to the n×n? matrix resulting from the ap-

plication of the covariance function κ (xi,x?j) for all i

and j. Similarly for κ (X,X). Note that GPR differs

from parameter estimation techniques and the regres-

sion method used in [20] because measured data points

are needed to perform predictions (see Eq. (4)).

An effective computation of Eq. (4) can be achieved

using the Cholesky factorization to decompose the co-

variance matrix κ (X,X) into a lower-triangular ma-

trix and its conjugate transpose [28]. The former is

then stored and used to efficiently compute the inverse

for different unmeasured inputs x?. The Cholesky de-

composition can also be efficiently updated when data

points are added or removed from the data set D as

in Section 2.5. Note that the inputs (ω,A) of the GPR

model are assumed to be noise-free but they are in re-
ality measured quantities corrupted by noise. It is pos-

sible to extend the GPR model used here to address

noisy inputs [29]; however this is not considered here as

it was unnecessary for the system considered.

Although GPR is a non-parametric approach that

does not make assumptions on the functional form of

the modelled function, assumptions regarding its smooth-

ness are introduced in the covariance function and the

choice of hyper-parameters θ. The covariance function

considered here is the widely-used, infinitely-differentiable

squared-exponential (SE) or radial basis function (see,

for instance, Eq. (5.1) in [28]). With two-dimensional in-

puts and observation noise, this covariance function in-

cludes four hyper-parameters θ = (σ2
n, σ

2
f , lω, lA). These

parameters have a clear physical interpretation. In par-

ticular, lω and lA represent characteristic length scales

that express the distance to be travelled along a par-

ticular axis in the input space for covariance values to

become uncorrelated. σ2
n is the variance associated with
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(a) (b)

0

4.5

|dΓ/dA|

Fig. 3 Illustration of the local model obtained using GPR at the initialisation of the algorithm. (a) and (b) correspond to
different views of the same model. The colour map represents the absolute value of Eq. (1), i.e. |dΓ/dA|. (•) Data points used
to create the model. (×) Fold point. (×) Predicted fold point. (−) Tangent vector to the solution curve at fold point (×).

measurement errors, and σ2
f is a magnitude factor. The

hyper-parameters θ of the models were obtained by

maximizing the log marginal likelihood

log p(F|X, θ) =
1

2
FTκ (X,X)

−1
F

− 1

2
log |κ (X,X) | − n

2
log 2π (5)

where the first term represents the data fit of the model

and the second term penalizes the complexity of the

model [28]. The optimization was performed using a

Quasi-Newton algorithm. Hyper-parameters were de-

termined at the start of the algorithm using the first

set of n0 data points captured. They were then kept

constant during a continuation run. We note that Gaus-

sian priors on the hyper-parameters (hyper-priors) can

be used. However, with limited knowledge of the actual

values and hence large covariances they had limited in-

fluence on the optimal θ values.

As an examples of a GPR model, Figure 3(a) shows

a local model obtained at the start of a continuation

run after collecting 25 data points (•) regularly dis-

tributed in input space (ω,A) around the estimated lo-

cation of a fold point. A projection of the model in

the two-dimensional input space is also given in Fig-

ure 3(b). The surface is coloured according to |dΓ/dA|
to highlight the regions where Eq. (1) is satisfied. Ac-

cording to the model, fold points are expected in two

distinct regions (in dark-blue). The one where the re-

sponse amplitude is higher is where the actual folds are

located. The lower one is in fact located outside the data

set and is an artifact feature created by the regression.

These artifacts do not affect the algorithm as long as

the continuation steps are small enough to stay within

the available data sets. In Section 2.5, we will discuss

how to improve such GPR models with additional ex-

perimental data but first we discuss the continuation

approach.

2.4 Numerical continuation

The continuation problem is to solve and track the so-

lutions of Eq. (1). Starting from a known solution xk−1,

the next point along the solution path is predicted to

be

x̃k = xk−1 + h tk−1 (6)

where h is the continuation step size and tk−1 is the

tangent vector to the solution curve at xk−1. The pre-

diction will not in general satisfy the zero-problem such

that the prediction must be corrected using a Newton-

like algorithm. However, to apply Newton iterations, an

extra equation has to be added to Eq. (1). The equation

used here is the so-called pseudo-arclength condition

tk−1.(x− xk−1)− h = 0, (7)

which constraints the corrections made to x̃k to be per-

pendicular to tk−1.
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Figure 3 illustrates a fold point (×) predicted from

a previously computed point (×). The tangent vector

used for this prediction is shown in green (−). It was

found that GPR models could diverge quickly from the

actual response surface outside the set of collected data

points (see Section 2.3). As such, the size of the con-

tinuation steps were taken such that the prediction and

correction iterations remained within the cloud of avail-

able data points. Note that it is possible to allow larger

continuation steps that leave the current data set by

collecting new data points after the prediction step, al-

though this is not used here. After finding a solution to

Eqs. (1) and (7), additional data points are collected to

refine this solution — this is now discussed.

2.5 Improve solution with new data

To make sure that the solution of Eq. (1) is not an arti-

fact of the model and does not critically depend on the

current data, new data points are collected after the

correction step of the continuation algorithm. To this

end, a fixed number ntest of prospective data points,

xi
? with i = 1, ..., ntest, uniformly distributed in an el-

lipse around the current solution of the continuation

problem are considered for data collection. The princi-

pal axis of this elliptical domain were chosen equal to

twice the length scale hyper-parameters lω and lA. The

data point that most influences the results is deemed

to be the most interesting point and is then experi-

mentally collected using the established CBC technique

summarised in Section 4.1.

To determine the sensitivity of the zero-problem (1)

to new experimental data, an artificial measurement of

the force amplitude, F̄i, is created for each candidate

data point xi
? using

F̄ i = Γ i
?(xi

?) +
√

var[Γ i
?(xi

?)], (8)

where Γ i
? depends on currently available data and is

given by Eq. (4). The variance at a particular input

point xi
? is given by

var[Γ i
?] = κ

(
xi
?,x

i
?

)
−κ

(
X,xi

?

)T
κ (X,X)

−1
κ
(
X,xi

?

)
,

(9)

which is independent of any previous and future mea-

surement of the force amplitude. The artificial measure-

ments are individually added to the GPR model and

their effect on the zero-problem assessed using

β =

∣∣∣∣∣dΓ̃dA (xk
)
− dΓ

dA

(
xk
)∣∣∣∣∣ (10)

where xk is the current solution of the continuation

problem, Γ̃ is the GPR model including the artificial

measurement and Γ is the GPR model without (i.e.

containing only the experimental data). β is the zero-

problem sensitivity to new data and is directly used to

assess the potential information gained by each artificial

measurement.

Figure 4 illustrates this data selection approach.

The colourmap represents the sensitivity, β, of the zero-

problem (1) to a new data point. Starting from Fig-

ure 4(a), a new data point is collected where Eq. (10)

is the largest (×). This new data point is added to the

GPR model and the correction step of the continuation

algorithm repeated. Once a solution is found, the in-

fluence of a new data point on the new GPR model is

again assessed (Figure 4(b)). The region where the first

additional data point was added is now observed to be

significantly less influenced by any new point. Accord-

ing to the model predictions, informative data points

are now located in another region where a second data

point is eventually recorded. Following the same proce-

dure, data points are collected until Eq. (10) is below a

user-defined tolerance across the whole region as in Fig-

ure 4(c). At this stage, the solution of the continuation

problem is said to be robust to new data and the con-

tinuation algorithm can perform a new prediction step.

As the continuation algorithm progresses in parameter

space, more data points are added to the GPR model.

To keep computational costs low, an overall maximum

number of data points nmax in the model is maintained

by removing data points that have less influence on the

zero-problem.

During the experiment, the set of candidate data

points is usually limited to 50 points. This is a much

smaller set of points than the one considered for the

colour maps in Figure 4. This explains why in Fig-

ure 4(b) there exist a small difference between the ap-

parent location of the maximum of Eq. (10) and the

location where the new data point has been collected

(×).

Other approaches to decide where to collect data

points could have also been used. For instance, the ef-

fect of new data points on the solution of the zero-

problem was investigated. However, this approach was

found to give similar results to the method above while

needing a solution to the nonlinear continuation prob-

lem for each candidate data point and hence being com-

putationally much more expensive. Another approach

was to select the data points for which the variance,

var[Γ?], of the predicted distribution was the largest.
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(a) (b) (c)

0 4 · 10−2 7 · 10−2

β

Fig. 4 Illustrates the new data selection process. The colourmap shows the sensitivity of the zero-problem β as estimated by
Eq. (10). (a – c) Show the evolution of Eq. (10) when new data points (×) are added to the GPR model. 4 × 10−2 is the
user-defined threshold below which no additional data point is collected.

This approach was however discarded as new data points

were being positioned at the periphery of the data set.

3 Description of the experimental set-up

The experimental set-up considered for the experimen-

tal demonstration of our algorithm is shown in Figure 5.

The main structure is a steel (ρ ≈ 7850 Kg/m3, E ≈
210 GPa) cantilever beam of length 380 mm, width

31.9 mm and thickness 1.9 mm. The beam’s free end

is attached to two linear springs arranged as shown

in Figure 5(b). This mechanism gives rise to geomet-

ric nonlinearity at large amplitudes. Previous work has

shown that the stiffness properties of this mechanism

can be approximated by a linear plus cubic term [30].

However, a mathematical model of the nonlinearity is

unnecessary for CBC. As such, neither the identifica-

tion of the nonlinear parameters nor the exploitation of

the mathematical form of the nonlinearity were used.

The length of the beam as well as the pre-tension in

the springs were carefully adjusted such that the ratio

between the natural frequencies of the first two bend-

ing modes is close to, but larger than 3. This leads to

the presence of a 3:1 modal interaction between these

modes.

The structure is excited approximately 40 mm away

from the clamp using a GW-V4 Data Physics shaker

powered by a PA30E amplifier. The force applied to the

structure is measured using a PCB208C03 force trans-

ducer connected to a Kistler signal conditioner (type

5134). The vibrations of the beam are measured at

the tip using an Omron ZX2-LD100 displacement laser

sensor. The beam structure, the first laser sensor, the

shaker and its power amplifier constitute the nonlinear

experiment tested using CBC.

The algorithm used by the CBC method and pre-

sented in Section 2 is run on a laptop computer di-

rectly connected to the real-time controller (RTC) box

via a USB cable. The RTC box consists of a Beagle-

Bone Black on which the feedback controller used by

CBC is implemented. Note that CBC algorithms do

not run in real-time, only the feedback controller does.

The BeagleBone Black is fitted with a custom data ac-

quisition board (hardware schematics and associated

software are open source and freely available [31]). All

measurements are made at 1 kHz sampling with no fil-

tering. Estimations of the Fourier coefficients of the re-

sponse, input force, and control action are calculated in

real time on the control board using recursive estima-

tors [23]; however, this was for convenience rather than

a necessity.

The z-domain transfer function of the controller used

by the CBC technique is given by

U(z)

E(z)
=

0.0053

z3 − 2.4521z2 + 1.9725z − 0.5155
, (11)

and aims to reduce the error E(z) between the beam

tip response, y (laser 1), and a control reference signal,

y∗, (see Section 4.1). The control law, which was found

to stabilise the dynamics of the experiment through-
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Laptop

Real-time controller box

Nonlinear mechanism

Beam

Shaker

Laser

Force sensor

Clamp

Fig. 5 Experimental set-up. The structure corresponds to a cantilever beam with a nonlinear mechanism attached at its free
end. The structure is excited and controlled by means of an electro-dynamic shaker. A displacement laser sensor is used to
measure the motion of the beam tip. CBC algorithms run on a laptop interconnected with the real-time controller box.

out the range of parameters considered in this study,

was designed using pole-placement techniques and a lin-

ear model of the experiment. This model was obtained

using low-amplitude broadband input-output data and

captures the first two bending modes of the beam whose

natural frequencies (damping ratios) were estimated at

11.49 Hz (0.026) and 36.45 Hz (0.022), respectively. Ad-

ditional details on the derivation of the controller can

be found in [21] where the nonlinear frequency response

curves of the present experiment were also investigated

using CBC. Note that errors in the model do not affect

the results as long as the model is sufficiently accurate

for designing a stabilising feedback controller.

4 Experimental results

The CBC technique used in this paper to collect experi-

mental data points is briefly reviewed in Section 4.1 and

exploited to map out the complete response surface of

the system of interest. The new online regression-based

algorithm is then demonstrated in Section 4.2 where it

is used to track fold points while the experiment is run-

ning. To validate the new algorithm, obtained results

are directly compared with the fold curves that can be

extracted by post-processing the response surface ob-

tained using standard CBC approach as described in

Section 4.1.

4.1 Extracting periodic responses

Considering periodic responses of the experiment, it is

assumed that the control target, y∗(t), and the control

signal, u(t), can be decomposed into a finite number m

of Fourier modes as

y∗(t) =
A∗0
2

+

m∑
j=1

A∗j cos(jωt) +B∗j sin(jωt), (12)

u(t) = Au
1 cos(ωt) +Bu

1 sin(ωt)︸ ︷︷ ︸
fundamental

(13)

+
Au

0

2
+

m∑
j=2

Au
j cos(jωt) +Bu

j sin(jωt)︸ ︷︷ ︸
higher harmonics

. (14)

CBC seeks a reference signal y∗(t) for which the con-

trol signal u is equal to zero for all times. When this

is achieved, the control signal is non invasive and does

not alter the position in parameter space of periodic re-

sponses compared to the underlying uncontrolled sys-

tem of interest. To achieve this non-invasive control

signal, the higher harmonics (Au
0 , A

u
j , B

u
j )mj=2 have to

be eliminated by finding suitable reference signal coef-

ficients (A∗0, A
∗
j , B

∗
j )mj=2. This can be performed using
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a derivative-free Picard-iteration algorithm. As for the

fundamental harmonic component of the control sig-

nal, Au
1 cos(ωt) + Bu

1 sin(ωt), it can be viewed as the

harmonic excitation applied to the experiment. If no

other external excitation is applied to the experiment,

the total harmonic excitation applied to the experiment

is simply given by Γ =
√
Au2

1 +Bu2

1 . The reader is re-

ferred to [19,20] for a more detailed discussion on this

approach that is often referred to as the simplified CBC

method.

The higher-harmonic coefficients (A∗0, A
∗
j , B

∗
j )mj=2 are

determined to cancel out the higher-harmonic coeffi-

cients of the control signal. One of the fundamental tar-

get coefficients (here B∗1) can also be set equal to zero in

order to set a phase reference between the response and

the excitation. As such, the only two adjustable inputs

to the experiment are the frequency of excitation ω and

the fundamental target coefficients A∗1. The amplitude

of the excitation Γ is viewed as a free parameter as it

is not fully determined by the user but depends on the

response y(t) and target y∗(t).

Considering a constant frequency, the response of

the experiment to harmonic input can be investigated

by increasing the free fundamental target coefficient A∗1.

The response curves collected in this way form curves

that resemble a S, as shown in Figure 6. At each data

point (•), full time series measurements containing 2000

samples, or between 22 and 29 oscillation cycles, were

made and used to estimate response and force ampli-

tudes. The number of Fourier modes considered in the

calculation of amplitudes is equal to seven throughout

the rest of the paper.

Response curves in Figure 6 were collected every

0.25 Hz between 10 Hz and 14 Hz with 0.2 mm steps in

A∗1. The S-curve obtained at 12.5 Hz is notably differ-

ent from the other S-curves and includes an additional

inflection point in its upper part. This curve lies in the

region where a modal interaction occurs between the

first two modes of the structure and marks a change

in the form of the response surface of the system. This

change in the response surface leads to the presence of

an isola as further discussed in Section 4.2.

The S-curves collected can be post-processed to ex-

tract fold curves which will then be compared to the

fold curves directly tracked during the experiment. The

post-processing approach used to extract these curves

is similar in principle to the one used in the online al-

gorithm but with the clear distinction that it does not

influence the data points collected. A GPR model in-

cluding all collected data points is created and numer-

ical continuation is exploited to follow the solutions of

Eq. (1). Figure 6 shows in gray the continuous surface

constructed from the GPR model. The darker gray re-

gion indicates where the underlying uncontrolled exper-

iment is unstable and thus unobservable without stabil-

ising feedback control.The boundary of that region is

the fold curve found using continuation. This curve is

sensitive to the spacing between the different S-curves

as well as the choice of hyper-parameters for the GPR.

In particular, the fold curve presents artifact oscillation

as discussed later. The online algorithm will overcome

these issues.

4.2 Demonstration of the online regression-based

algorithm

The online regression-based continuation algorithm pre-

sented in Section 2 is now demonstrated. Figure 7 il-

lustrates the first four steps of the algorithm which

is initialized in the neighbourhood of a fold found at

high response amplitudes on one of the S-curves col-

lected in Section 4.1 (◦). Around that starting point, 25

new data points (•) regularly distributed in frequency

and control target amplitude are collected. This first

data set is then used to estimate the hyper-parameters

of the GPR model using the marginalization approach

presented in Section 2.3. Hyper-parameters were found

to be θ = (σ2
n, σ

2
f , lω, lA) ≈ (0.02, 2.02, 0.30, 1.09). The

noise variance, σ2
n, which is found to be relatively small

compared to the other hyper-parameters, captures the

effects of measurement noise. It also encompasses po-
tential inaccuracies that could arise from the inaccurate

cancellation of the control signal higher harmonics dur-

ing data collection.

After estimation of the hyper-parameters, the first

GPR model is created (�) and a first solution to Eq. (1)

is found (×). The sequence of prediction and correction

steps of the numerical continuation algorithm can then

be started. Data points collected during the continua-

tion process are shown in green (◦) and appear to be

regularly distributed around the fold of the response

surface (see two-dimensional projections in Figure 7(b,

c)). This comes from the regular pattern used for the

generation of candidate data points and the sensitiv-

ity criterion (10) that is found to almost always have

a structure similar to the one observed in Figure 4(a,

b). Note that to collect data points at the particu-

lar response amplitudes specified by the data selection

method in Section 2.5, a second regression mapping A

to A∗1 is created during the continuation. This mapping
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Fig. 6 S-curves collected using the simplified CBC algorithm presented in Section 4.1. Gray surface is the output of a GPR
model including all recorded data points (•). The darker gray region is delimited by a fold curve. Data points in this region
correspond to unstable response of the underlying uncontrolled experiment.

is observed to be almost linear throughout the range of

parameters considered in this study (Figure 8).

In Figure 7, the red curve (− • −) represents the

solutions found by the continuation algorithm and the

force amplitude predicted at the solution by the GPR

model. For each solution point, a data point is also col-

lected (− • −) and added to the GPR model. At the

beginning of the algorithm (around 14 Hz), the forcing

amplitude estimated by the GPR model at the solu-

tion is slightly different from the force amplitude ac-

tually measured. However, the GPR model predictions

improve as more data points are added to it and the dif-

ference between the two curves (−•−, −•−) becomes

increasingly smaller, and negligible after 3 continuation

steps.

Figure 9 illustrates the results obtained when apply-

ing the continuation algorithm throughout the parame-

ter range of interest. All the data points collected during

the continuation are shown in black (•), and the curve

of fold points obtained by following the curve previ-

ously shown in Figure 7 is in red (−). Two-dimensional

projections of the fold curve are shown in Figure 9(b,

c). The curve has a complex geometry; especially in the

region between 12 – 13 Hz where it is observed to in-

crease in response amplitude at almost constant forcing

frequencies (Figure 9(b)). This feature corresponds to

the ‘saturation’ of the resonance frequency commonly

observed in nonlinear frequency response curves in the

vicinity of modal interactions [32]. Closer inspection at

this region reveals that the fold curve forms the shape of

a swallowtail catastrophe (Figure 9(c)) [33]. Although

this feature is small and appears to be more affected by

measurement uncertainties than the rest of the curve, it

was consistently observed in this region of the param-

eter space. After this interaction region, the algorithm

was found to reach and successfully pass through a cusp

(around 11 Hz).

The use of multivariate regression combined with

a predictor-corrector continuation technique makes the

online regression-based algorithm more general and ro-

bust than the bifurcation tracking algorithm proposed

in [20]. This latter standard method could not have

tracked a curve that exhibits the complex features of

the fold curve in Figure 9. The present algorithm was

however not able to systematically continue the fold

curve across the modal interaction region. In particu-

lar, when the interaction region was approached from

below, the fold curve was found to come very close to a

previously measured section of the curve. Within uncer-

tainty, this close proximity between the two portions of

the curve gives rise to a branch point singularity which
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Fig. 7 First four steps of the regression-based continuation algorithm. (◦) S-curve used to initialize the algorithm close to
a fold. Data points (•) used to estimate hyper-parameters and find the first fold point. Data points (◦) collected during the
continuation process. (− • −) and (− • −) are the fold curves found using continuation and where the force amplitude is
estimated by the GPR model and measured experimentally, respectively. (�) First local GPR model. To help visualization, the
response surface obtained in Figure 6 is superimposed to the data obtained with the new algorithm. (b, c) Show two-dimensional
projections of the data points and curves shown in (a).
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Fig. 8 Mapping between the response amplitude A (contin-
uation variable) and the fundamental target coefficient A∗

1

(experimental input). All the data points (•) presented in
this paper have been included.

cannot be addressed by our current continuation algo-

rithm. As such, the online algorithm was often found to

‘jump’ to and continue the upper part of the fold curve.

To capture the low-amplitude section of the fold curve

located between 12.5 Hz and 14 Hz (− in Figure 9),

the online algorithm was restarted around the second

fold point observed at low amplitude on the S-curve in

Figure 7.

To validate the continuation results, fold points found

at a particular force amplitude are compared to the
nonlinear frequency response (NLFR) curve obtained

for the same excitation level. To generate the NLFR

curve, the raw data points shown in Figures 6 and 9 that

correspond approximately to the chosen force ampli-

tude (within ±5%) are represented on the same graph.

The NLFR curves obtained for 2.0 N and 2.9N are

shown in Figures 10(a) and 10(b), respectively. Fold

points are in red (×). At 2N (Figure 10(a)), the res-

onance peak leans towards higher frequencies which

highlights the hardening character of the nonlinearity

in the system. The locations of the two fold points

found at that level match the folds in the NLFR. Data

points located between them are observed to be unsta-

ble periodic responses of the underlying uncontrolled

experiment. As the excitation is increased to 2.9 N

(Figure 10(b)), the resonance peak is qualitatively un-

changed but an isolated branch of high-amplitude re-

sponses disconnected from the main resonance peak has

appeared [30,21]. The presence of this isola could have

been inferred from Figure 9(c) as a third fold point ap-

pears when the force amplitude becomes larger than

approximately 2.1 N.

To further validate the fold curves obtained using

the online regression-based algorithm, results are com-

pared to the fold curve obtained by post-processing the

data points of the full response surface. In particular, a

GPR model including all the data points of Figure 6

is created, and numerical continuation is applied to

find and track the solutions of (1). Two sets of hyper-

parameters are considered to post-process the data. The

first one corresponds to the set of hyper-parameters

used by the online algorithm. The second one is ob-

tained by maximising the marginal likelihood for all the

data points of the response surface. Hyper-parameters

found in this latter case are (σ2
n, σ

2
f , lω, lA) ≈ (0.01, 2.66,

0.28, 0.73). Although different from the hyper-parameters

found at the initialization of the online continuation

algorithm, they are found to have comparable magni-

tudes.

The resulting fold curves are compared in Figure 11.

The two curves (−, −) obtained by post-processing the

response surface are almost identical, which shows that

the difference between the two sets of hyper-parameters

does not play a significant role here. These curves are

found to oscillate around the fold curve measured online

(− •−). These oscillations are artifact created by the

regression method due to the lack of data points (in

particular at resonance between successive S-curves).

These oscillations are not present in the curve obtained

directly during the experiment due to the tailored col-

lection of suitable data points during the continuation.

The blue curve is also found to reproduce the swallow-

tail catastrophe observed on the data collected online.

The post-processing applied to the data points of the re-

sponse surface could have also been applied to the data

points collected by the online regression-based contin-

uation algorithm. The fold curve obtained in this way

(not shown for conciseness) is a smooth and continu-

ous curve that is no longer affected by the ‘jump’ ob-

served during the experiment and that also reproduces

the swallowtail catastrophe. The curve is also free from

regression artifacts as collected data points were suit-

ably chosen.

To understand the sensitivity of the results to the

selection of data points collected, 300 fold curves were

numerically computed for different data sets. Each set

is based on all the data points collected using the on-

line algorithm but with 10% of the points, selected

randomly, removed. The hyper-parameters of the GPR

model were marginalized for each data set. Fold curves



Numerical Continuation in Nonlinear Experiments using Local Gaussian Process Regression 13

0

2

4

10

6

8

R
es

po
ns

e 
am

pl
itu

de
 (

m
m

)

10

5
Forcing 

amplitude (N)

Frequency (Hz)

1413.5130 12.51211.51110.5

(a)

10 11 12 13 14
Frequency (Hz)

0

2

4

6

8

R
es

po
ns

e 
am

pl
itu

de
 (

m
m

)

(b)

10 11 12 13 14
Frequency (Hz)

0

2

4

6

8

10

F
or

ce
 a

m
pl

itu
de

 (
N

)

(c)

Fig. 9 (—, —) Fold curves captured experimentally using the regression-based continuation algorithm. (•) Data points
automatically collected during continuation using the method proposed in Section 2.5. (b, c) Two-dimensional projections of
the fold curves shown in (a). The close-up in (c) shows the presence of a swallowtail catastrophe.

(−) are shown in Figure 12. Regions of larger result

variability, i.e. where the overall bifurcation curve ap-

pears thicker, are located on the lower part of the curve

(Figure 12(a)). This is expected as this region of the re-

sponse surface is significantly less curved than the reso-

nance region and hence more affected by measurement

uncertainties. Large variability is also noticeable at the

cusp as well as at the modal interaction region. In the

latter, the distinction between the upper and lower part

of the fold curve can disappear as some fold curves are

found to cross and have a branch point. However, other

continuation runs are also found to lead to disjoint fold
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Fig. 10 Nonlinear frequency response of the system obtained by selecting data points in Figures 6 and 9 that correspond
approximately (within ±5%) to (a) 2.0 N and (b) 2.9 N. Fold points (×) obtained with the regression-based continuation
algorithm of Section 2.
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Fig. 11 Comparison between the fold curve (−•−) obtained during the experiment and the fold curves (−, −) obtained by
post-processing the data points of the response surface. Hyper-parameters used to obtain (−) are identical to those used in
the experiment, whereas the hyper-parameters used for (−) result from the maximisation of the marginal likelihood for all the
data points in the response surface.

curves — one before and one after the modal interac-

tion. This important variability in the results highlights

the “flat” nature of the response surface in that region

and hence the difficulty to infer the presence of folds

(inset in Figure 12(a)). In general, the presence of un-

certainty may make it difficult to draw strong conclu-

sions on the exact nature of the dynamics in such a

region. Figure 12(b) shows the sensitivity of the results

with respect to the bifurcations parameters forcing fre-

quency and amplitude. As observed experimentally, the

swallowtail catastrophe appears to be a robust feature

of the system’s dynamics as it is present for almost all

data sets.
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(a) (b)

Fig. 12 300 fold curves (−) obtained by post-processing some of the data points measured during the online continuation.
For each curve, 10% of the data points are randomly selected and removed from the data set. Each curve is also computed
with hyper-parameters values obtained via the maximization of the marginal likelihood for the particular data set considered.

5 Conclusions

Control-based continuation is a general and system-

atic method to probe the dynamics of nonlinear exper-

iments. In this paper, CBC is combined with a novel

continuation algorithm that is robust to experimental

noise and enables the tracking of geometric features of

the response surface. The online regression-based CBC

uses Gaussian process regression to create local mod-

els of the response surface. These models are smooth

(noise-free) which enables the use of standard numeri-

cal continuation algorithms. An important aspect of the

proposed method is to interact with the experiment to

select the data points to collect such that they are the

most informative about the dynamic feature of interest.

This approach is similar in principle to an experimen-

tal design problem in statistics and could a priori be

applied to other problems such as nonlinear parameter

estimation and model selection.

The online regression-based algorithm was experi-

mentally demonstrated on a nonlinear structure with

harmonically-coupled modes by tracking fold points in

the structure response to harmonic excitation. The al-

gorithm was able to address the complex geometry of

the fold curve arising from the presence of a modal in-

teraction. However, the close proximity between two

portions of the fold curve lead, within uncertainties in

the experiment, to a branch point singularity which

could not be addressed by the current continuation al-

gorithm.

The online regression-based algorithm presented in

this paper is very general and could be exploited to

capture other types of dynamic features such as back-

bone curves (nonlinear normal modes) and nonlinear

frequency response curves. The regression algorithm used

here relies however on a unique parameterisation of the

solution curve in terms of the continuation variables. If

this assumption is not satisfied, further improvements

of the method to consider local coordinates for the re-

gression, or a larger set of continuation variables might

be necessary.

Data Statement

Experimental data collected in this study are available

at [DOI to be inserted at proofing ].

Acknowledgements L.R. has received funding from

the Royal Academy of Engineering, fellowship RF1516/15/11.

D.A.W.B. is funded by the EPSRC grant EP/K032738/1

and S.A.N. by the EPSRC fellowship EP/K005375/1.

We gratefully acknowledge the financial support of the

Royal Academy of Engineering and the EPSRC.



16 L. Renson1 et al.

Compliance with ethical standards

Conflict of interest The authors declare that they

have no conflict of interest.

References

1. Y. A. Kuznetsov. Elements of Applied Bifurcation
Theory, volume 112 of Applied Mathematical Sciences.
Springer New York, 2004.

2. R. Seydel. Practical Bifurcation and Stability Analy-
sis, volume 5 of Interdisciplinary Applied Mathematics.
Springer New York, 3rd. edition, 2010.

3. S. Godwin, D. Ward, E. Pedone, M. Homer, A.G.
Fletcher, and L. Marucci. An extended model for culture-
dependent heterogenous gene expression and prolifera-
tion dynamics in mouse embryonic stem cells. npj Sys-
tems Biology and Applications, 3(1):19, 2017.

4. B. Krauskopf, H. M. Osinga, E. J. Doedel, M. E. Hender-
son, J. Guckenheimer, A. Vladimirsky, M. Dellnitz, and
O. Junge. A survey of methods for computing (un)stable
manifolds of vector fields. International Journal of Bi-
furcation and Chaos, 15(3):763–791, 2005.
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