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Abstract: This work is mainly concerned with the exponential stability of time-changed stochastic func-
tional di�erential equations with Markovian switching. By expanding the time-changed Itô formula and the
Razumikhin theorem, we obtain the exponential stability results for the time-changed stochastic functional
di�erential equations with Markovian switching. What’s more, we get many useful stability results by
applying our new results to several important types of functional di�erential equations. Finally, an example
is given to demonstrate the e�ectiveness of the main results.
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1 Introduction
The research for stochastic di�erential equations (SDEs) is a mature �eld, which plays an important role

in modeling dynamic system considering uncertainty noise in many applied areas such as economics and
�nance, physics, engineering and so on. Many qualitative properties of the solution of stochastic functional
di�erential equations (SFDEs) have been received much attention. In particular, the stability or asymptotic
stability of SFDEs has been studied widely by more and more researchers ([1–5]).

Recently, Chlebak et al.[6] discussed sub-di�usion process and its associated fractional Fokker-Planck-
Kolmogorov equations. The fractional partial di�erential equations arewell known to be connectedwith limit
process arising from continuous-time random walks. The limit process is time-changed Lev́y process, which
is the �rst hitting time process of a stable subordinator (see [7–9] for details). The existence and stability
of SDE with respect to time-changed Brownian motion recently have received much attention([10, 11]). Wu
[12, 13] established the time-changed Itô formula of time-changed SDE, and then obtained the stability results.
Subsequently, Nane and Ni [14] established the Itô formula for time-changed Lévy noise, then discussed the
stability of the solution.

However, to the best of our knowledge, there are no results for the time-changed stochastic functional
di�erential equations with Markovian switching published till now. Motivated strongly by the above, in this
paper, we will study the stability of time-changed SFDEs with Markovian switching. By applying the time-
changed Itô formula and Lyapunov function, we present the Razumikhin-type theorem([15, 16]) of the time-
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690 | Xiaozhi Zhang and Chenggui Yuan

changed SFDEs with Markovian switching. More precisely, we consider the following SFDEs with Markovian
switching driven by time-changed Brownian motions:

dx(t) = h(xt , t, Et , r(t))dt + f (xt , t, Et , r(t))dEt + g(xt , t, Et , r(t))dBEt (1.1)

on t ≥ 0 with {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈ CbF0
([−τ, 0];Rn), where h, f , g are appropriately speci�ed later.

In the remaining parts of this paper, further needed concepts and related backgroundwill be presented in
Section 2. In Section 3, the exponential stability results of the time-changed SFDEs withMarkovian switching
will be given.Many useful types of results of stochastic delay di�erential equations and stochastic di�erential
equations are presented in Section 4 and Section 5 respectively. Finally, an example is given to show the
availability of the main results.

2 Preliminary
Throughout this paper, let (Ω,F , {F}t≥0, P) be a complete probability space with the �ltration {F}t≥0

which satis�es the usual condition(i.e. {F}t≥0 is right continuous andF contains all the P-null sets inF ). Let
{U(t), t ≥ 0} be a right continuous with left limit (RCLL) increasing Lévy process that is called subordinator
starting from 0. For a subordinator U(t), in particular, is a β-stable subordinator if it is a strictly increasing
process denoted by Uβ(t) and characterized by Laplace transform

E[exp(−sUβ(t))] = exp(−tsβ), s > 0, β ∈ (0, 1).

For an adapted β-stable subordinator Uβ(t), de�ne its generalized inverse as

Et := Eβt = inf{s > 0 : Uβ(s) > t},

which means the �rst hitting time process. And Et is continuous since Uβ(t) is strictly increasing.
Let Bt be a standard Brownian motion independent on Et, de�ne the following �ltration as

Ft =
⋂
s>t

{
σ[Br : 0 ≤ r ≤ s] ∨ σ[Er : r ≥ 0]

}
,

where σ1 ∨ σ2 denotes the σ-algebra generated by the union of σ-algebras σ1 and σ2. It concludes that the
time-changed Brownian motion BEt is a square integrable martingale with respect to the �ltration {FEt}t≥0.
And its quadratic variation satis�es < BEt , BEt >= Et.([17])

Let r(t), t ≥ 0 be a right continuous Markov chain on the probability space taking values in a �nite state
space S = {1, 2, . . . , N} with generator Γ = (γij)N×N by

P{r(t + ∆) = j|r(t) = i} =
{
rij∆ + o(∆) if i ≠ j,
1 + rij∆ + o(∆) if i = j,

where ∆ > 0, γij is the transition rate from i to j if i ≠ j and γii = −
∑
i≠j

γij.We assume that theMarkov chain r(t) is

independent on Brownianmotion, it is well known that almost each sample path of r(t) is a right-continuous
step function.

For the future use, we formulate the following generalized time-changed Itô formula.

Lemma 2.1. (The generalized time-changed Itô formula) Suppose Uβ(t) is a β-stable subordinator and Et is its
associated inverse stable subordinator. Let x(t)be aFEt adapted process de�ned in (1.1). If V : Rn×R+×R+×S →
R is a C2,1,1(Rn ×R+ ×R+ × S;R) function, let

L1V(xt , t, Et , i) = Vt(x, t, Et , i) + Vx(x, t, Et , i)h(xt , t, Et , i) +
N∑
j=1

γijV(x, t, Et , j)
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and

L2V(xt , t, Et , i) = VEt (x, t, Et , i) + Vx(x, t, Et , i)f (xt , t, Et , i)

+12 trace[g
TVxxg(xt , t, Et , i)],

then with probability one

V(x(t), t, Et , r(t)) = V(x0, 0, 0, r(0)) +
t∫

0

L1V(xs , s, Es , r(s))ds

+
t∫

0

L2V(xs , s, Es , r(s))dEs

+
t∫

0

Vx(x(s), s, Es , r(s))g(xs , s, Es , r(s))dBEs

+
t∫

0

∫
R

[V(x(s), s, Es , i0 + h(r(s), l)) − V(x(s), s, Es , r(s))]µ(ds, dl),

where µ(ds, dl) = ν(ds, dl) − m(dl)ds is a martingale measure, ν(ds, dl) is a Poisson random measure with
density dt × m(dl), in which m is the Lebesgue measure on R.

Proof Let y = [x, t1, t2]T = [x, t, Et]T , and G(y(t), r(t)) = V(xt , t, Et , r(t)). Based on the computation rules
([8]), we have

dt · dt = dEt · dEt = dt · dEt = dt · dBEt = dEt · dBEt = 0, dBEt · dBEt = dEt .

Applying the multi-dimensional Itô formula([18]) to G(y(t), r(t)) yields that

G(y(t), r(t)) = G(y(0), r(0)) +
t∫

0

Gy(y(s), r(s))dy(s) +
t∫

0

1
2dy

TGyydy +
t∫

0

N∑
j=1

γij

G(y(s), j)ds +
t∫

0

∫
R

[G(y(s), i0 + h(r(s), l), x(s)) − G(y(s), r(s))]µ(ds, dl)

= G(y(0), r(0)) +
T∫

0

[Vx Vt1 Vt2 ]

hdt + fdEt + gdBEtdt1
dt2

 + t∫
0

1
2 trace[g

TVxxg]dEt

+
t∫

0

N∑
j=1

γijV(x(s), s, Es , j)ds

+
t∫

0

∫
R

[V(x(s), s, Es , i0 + h(r(s), l)) − V(x(s), s, Es , r(s))]µ(ds, dl)

= V(x0, 0, 0, r(0)) +
t∫

0

Vx(x(s), s, Es , r(s))g(xs , s, Es , r(s))dBEs

+
t∫

0

[
VEs (x(s), s, Es , r(s)) + Vx f (xs , s, Es , r(s)) +

1
2 trace(g

TVxxg)
]
dEs

+
t∫

0

Vt(x(s), s, Es , r(s)) + Vxh(xs , s, Es , r(s)) + N∑
j=1

γijV(x(s), s, Es , j)

 ds
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+
t∫

0

∫
R

[V(x(s), s, Es , i0 + h(r(s), l)) − V(x(s), s, Es , r(s))]µ(ds, dl).

This completes the proof. 2

Corollary 2.1. Suppose Uβ(t) is a β-stable subordinator and Et is its associated inverse. Let x(t) be an FEt
adapted process de�ned in (1.1). If V : Rn × R+ × R+ × S → R is a C2,1,1(Rn × R+ × R+ × S;R) function, then for
any stopping time 0 ≤ t1 ≤ t2 < ∞

EV(x(t2), t2, Et2 , r(t2)) = EV(x(t1), t1, Et1 , r(t1)) + E
t2∫
t1

L1V(xs , s, Es , r(s))ds

+E
t2∫
t1

L2V(xs , s, Es , r(s))dEs

where L1 and L2 are de�ned in the lemma above.

In this paper, the following hypothesis is imposed on the coe�cients h, f and g.
(H1) Both h, f : Rn ×R+ ×R+ × S → Rn and g : Rn ×R+ ×R+ × S → Rn×m are Borel-measurable functions.

They satisfy the Lipschitz condition. That is, there is L > 0 such that

|h(ϕ1, t1, t2, i) − h(ϕ2, t1, t2, i)| ∨ |f (ϕ1, t1, t2, i) − f (ϕ2, t1, t2, i)|
∨|g(ϕ1, t1, t2, i) − g(ϕ2, t1, t2, i)| ≤ L||ϕ1 − ϕ2||

for all t ≥ 0, i ∈ S and ϕ1, ϕ2 ∈ C([−τ, 0];Rn).
(H2) If x(t) is an RCLL and FEt -adapted process, then h(xt , t, Et , r(t)), f (xt , t, Et , r(t)),

g(xt , t, Et , r(t)) ∈ L(FEt ), where L(FEt ) denotes the class of RCLL and FEt -adapted process.

3 Main results
In this section, we aim to establish the stability results of the system equation (1.1). Firstly, we have to

guarantee the existence of the solution of the equation (1.1).

Lemma 3.1. Under the conditions of (H1) and (H2), for any initial data {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈
CbF0

([−τ, 0];Rn), the equation (1.1) has a unique global solution.

Proof Let T > 0 be arbitrary. It is known that ([18]) there is a sequence {τk}k≥0 of stopping times such that
0 < τ0 < τ1 < · · · < τk →∞ and r(t) is constant on each interval [τk , τk+1), that is, for each k ≥ 0,

r(t) = r(τk), τk ≤ t < τk+1.

We �rst consider the equation on t ∈ [0, τ1 ∧ T], it becomes

dx(t) = h(xt , t, Et , r(0))dt + f (xt , t, Et , r(0))dEt + g(xt , t, Et , r(0))dBEt

with initial data x0 = ξ ∈ CbF0
([−τ, 0]) has a unique solution on [−τ, τ1∧T]([4, 8]). Next, for t ∈ [τ1∧T, τ2∧T],

the equation becomes

dx(t) = h(xt , t, Et , r(τ1 ∧ T))dt + f (xt , t, Et , r(τ1 ∧ T))dEt + g(xt , t, Et , r(τ1 ∧ T))dBEt

with initial data xτ1∧T given above. Again we know the equation has a unique continuous solution on [τ1 ∧
T − τ, τ2 ∧ T]. Repeating the progress, we can see the equation has a unique solution x(t) on [−τ, T]. Since T
is arbitrary, the existence and uniqueness have been proved. 2
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Now, let us consider the exponential stability of equation (1.1). We �x the Markov chain r(t) and let the initial
data ξ vary in CbF0

([−τ, 0];Rn). The solution of equation (1.1) is denoted as x(t; ξ ) throughout this paper.
Assume that h(0, t, Et , i) = 0, f (0, t, Et , i) = 0, g(0, t, Et , i) = 0, so the equation (1.1) have a trivial solution
x(t; 0) = 0. Next, we establish a new Razumikhin theorem on p-th moment exponential stability for the time-
changed SFDEs with Markovian switching.

Theorem 3.1. Let (H1) and (H2) hold. Let λ1, λ2, p, c1, c2, α be all positive numbers and q > 1. Assume that
there exists a function V(x, t, Et , i) ∈ C2,1,1(Rn × [−τ, ∞) × [0,∞) × S; R+) such that

c1|x|p ≤ V(x, t, Et , i) ≤ c2|x|p , (x, t, Et , i) ∈ Rn × [−τ, ∞) × [0,∞) × S (3.1)

and for all t > 0,

E
[
max
1≤i≤N

eαEtLjV(ϕ, t, Et , i)
]
≤ −λjE

[
max
1≤i≤N

eαEtV(ϕ(0), t, Et , i)
]
(j = 1, 2) (3.2)

provided ϕ = {ϕ(θ; −τ ≤ θ ≤ 0)} satisfying

E
[
min
1≤i≤N

eαEt+θV(ϕ(θ), t + θ, Et+θ , i)
]
≤ qE

[
max
1≤i≤N

eαEtV(ϕ(0), t, Et , i)
]

(3.3)

for all −τ ≤ θ ≤ 0. Then for all ξ ∈ CbF0
([−τ, 0], Rn)

E|x(t; ξ )|p ≤ c2c1
E||ξ ||pe−γt , t ≥ 0, (3.4)

where γ = min{λ1, λ2, log(q)/τ}. In other words, the trivial solution of equation (1.1) is pth moment exponen-
tially stable and the pth moment Lyapunov exponent is not greater than −γ.

Proof For the initial data ξ ∈ CbF0
([−τ, 0], Rn) arbitrarily and we write x(t; ξ ) = x(t) simply. Extend r(t) to

[−τ, 0) by setting r(t) = r(0), and extend Et to [−τ, 0) by setting Et = E0. Let ε ∈ (0, γ) be arbitrary then set
γ = γ − ε. De�ne

U(t) = sup
−τ≤θ≤0

E
[
eγ(t+θ+Et+θ)V(x(t + θ), t + θ, Et+θ , r(t + θ))

]
for t ≥ 0.

Since r(t) is right continuous, the fact that both Et and x(t) is continuous and E( sup
−τ≤s≤t

|x(s)|p) < ∞ for t ≥ 0,

we can see EV(x(t), t, Et , r(t)) is right continuous on t ≥ −τ. Hence U(t) is well de�ned and right continuous.
We claim that

D+U(t) := lim sup
l→0+

U(t + l) − U(t)
t ≤ 0 for all t ≥ 0. (3.5)

To show this, we know that for each t ≥ 0 , either U(t) > E[eγ(t+Et)V(x(t), t, Et , r(t))] or U(t) =
E[eγ(t+Et)V(x(t), t, Et , r(t))].
Case 1: If U(t) > E[eγ(t+Et)V(x(t), t, Et , r(t))], it follows from the right continuity of
E[eγ(t+Et)V(x(t), t, Et , r(t))] that for each l > 0 su�ciently small

U(t) > E[eγ(t+l+Et+l)V(x(t + l), t + l, Et+l , r(t + l))]. (3.6)

Noting that

U(t + l) = sup
−τ≤θ≤0

E
[
eγ(t+l+θ+Et+l+θ)V(x(t + l + θ), t + l + θ, Et+l+θ , r(t + l + θ))

]
for t ≥ 0,

if l + θ > 0, by (3.6),we have

E
[
eγ(t+l+θ+Et+l+θ)V(x(t + l + θ), t + l + θ, Et+l+θ , r(t + l + θ))

]
≤ U(t).

Therefore, U(t + l) ≤ U(t). On the other hand, if l + θ ≤ 0, we set θ′ = l + θ, then

U(t + l) = sup
l−τ≤θ′≤0

E
[
eγ(t+θ

′+Et+θ′ )V(x(t + θ′), t + θ′, Et+θ′ , r(t + θ′))
]
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≤ sup
−τ≤θ′≤0

E
[
eγ(t+θ

′+Et+θ′ )V(x(t + θ′), t + θ′, Et+θ′ , r(t + θ′))
]
= U(t).

Therefore, for each t > 0, U(t + l) ≤ U(t) and D+U(t) ≤ 0.
Case 2: If U(t) = E[eγ(t+Et)V(x(t), t, Et , r(t))], by the de�nition of U(t), one obtains that for −τ ≤ θ ≤ 0,

E
[
eγ(t+θ+Et+θ)V(x(t + θ), t + θ, Et+θ , r(t + θ))

]
≤ E
[
eγ(t+Et)V(x(t), t, Et , r(t))

]
,

it follows that

E
[
eγEt+θV(x(t + θ), t + θ, Et+θ , r(t + θ))

]
≤ e−γθE

[
eγEtV(x(t), t, Et , r(t))

]
≤ eγτE

[
eγEtV(x(t), t, Et , r(t))

]
.

If E
[
eγEtV(x(t), t, Et , r(t))

]
= 0, from (3.1) we can see that

E[eγEt+θ c1|x(t + θ)|p] ≤ 0,

which yields that x(t + θ) = 0, −τ ≤ θ ≤ 0. Since h(0, t, Et , i) = 0, f (0, t, Et , i) = 0 and g(0, t, Et , i) = 0 a.s. for
all −τ ≤ θ ≤ 0, one obtains that x(t + l) = 0 a.s. for all l > 0, hence U(t + l) = 0 and D+U(t) = 0.
On the other hand, if E

[
eγEtV(x(t), t, Et , r(t))

]
> 0, one can see that

E
[
eγEt+θV(x(t + θ), t + θ, Et+θ , r(t + θ))

]
< qE

[
eγEtV(x(t), t, Et , r(t))

]
for all −τ ≤ θ ≤ 0 since eγτ < q. It follows from the condition (3.2) that

E
[
max
1≤i≤N

eγEtLjV(ϕ, t, Et , i)
]
< −λjE

[
max
1≤i≤N

eγEtV(ϕ(0), t, Et , i)
]
, j = 1, 2.

It means that
E
[
eγEtLjV(xt , t, Et , r(t))

]
< −λjE

[
eγEtV(x(t), t, Et , r(t))

]
, j = 1, 2,

then
E
[
eγEt (γV(x(t), t, Et , r(t)) + LjV(xt , t, Et , r(t)))

]
≤ −(λj − γ)E[eγEtV(x(t), t, Et , r(t))] < 0.

By the right continuity of the process involved one can see that for all l > 0 su�ciently small,

E
[
eγEs (γV(x(s), s, Es , r(s)) + LjV(xs , s, Es , r(s)))

]
≤ 0, t ≤ s ≤ t + l.

By the generalized time-changed Itô formula, we get that

E
[
eγ(t+l+Et+l)V(x(t + l), t + l, Et+l , r(t + l))

]
− E

[
eγ(t+Et)(V(x(t), t, Et , r(t)))

]
= E

t+l∫
t

eγ(s+Es)[γV(x(s), s, Es , r(s)) + L1V(xs , s, Es , r(s))]ds

+E
t+l∫
t

eγ(s+Es)[γV(x(s), s, Es , r(s)) + L2V(xs , s, Es , r(s))]dEs

=
t+l∫
t

eγsEeγEs [γV(x(s), s, Es , r(s)) + L1V(xs , s, Es , r(s))]ds

+
t+l∫
t

eγsEeγEs [γV(x(s), s, Es , r(s)) + L2V(xs , s, Es , r(s))]dEs

≤ 0. (3.7)
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Then U(t + l) ≤ U(t) for l > 0 su�ciently small.
Since

U(t + l) = sup
−τ≤θ≤0

E
[
eγ(t+θ+l+Et+θ+l)V(x(t + l + θ), t + l + θ, Et+l+θ , r(t + l + θ))

]
,

here we set θ′ = θ + l, if l + θ > 0, then E
[
eγ(t+θ

′+Et+θ′ )V(x(t + θ′), t + θ′, Et+θ′ , r(t + θ′))
]
≤ U(t) from (3.7),

otherwise, since U(t) = E[eγ(t+Et)V(x(t), t, Et , r(t))], then

E
[
eγ(t+θ

′+Et+θ′ )V(x(t + θ′), t + θ′, Et+θ′ , r(t + θ′))
]
≤ U(t),

so, by the de�nition of supremum, U(t + l) = U(t) for l > 0 su�ciently small and D+U(t) = 0. Therefore, the
inequality (3.5) has been proved. It follows that

U(t) ≤ U(0), for t ≥ 0.

Eeγtc1|x|p ≤ Eeγ(t+Et)V(x(t), t, Et , r(t)) ≤ U(t) ≤ U(0) ≤ c2E||ξ ||p

this means
E|x|p ≤ c2c1

e−γtE||ξ ||p = c2c1
E||ξ ||pe−(γ−ε)t .

Since ε is arbitrary, the required inequality (3.4) must hold. The proof is completed. 2

4 Stochastic delay di�erential equations with Markovian switching
In this section, as a special case of equation (1.1), we consider the time-changed stochastic delay

di�erential equation with Marking switching as follows,

dx(t) = H(x(t), x(t − δ(t)), t, Et , r(t))dt + F(x(t), x(t − δ(t)), t, Et , r(t))dEt (4.1)
+G(x(t), x(t − δ(t)), t, Et , r(t))dBEt

on t ≥ 0 with x0 = ξ ∈ CbF0
([−τ, 0];Rn), where δ : R+ → [0, τ] is Borel measure while

H, F : Rn ×Rn ×R+ ×R+ × S → Rn

and
G : Rn ×Rn ×R+ ×R+ × S → Rn×m .

We impose the following hypotheses:
(H3) Both H, F : Rn ×R+ ×R+ × S → Rn and G : Rn ×R+ ×R+ × S → Rn×m are Borel-measurable functions.

They satisfy the Lipschitz condition. That is, there is L > 0 such that

|H(x, y, t1, t2, i) − H(x, y, t1, t2, i)| ∨ |F(x, y, t1, t2, i) − F(x, y, t1, t2, i)|
∨|G(x, y, t1, t2, i) − G(x, y, t1, t2, i)| ≤ L(|x − x| + |y − y|)

for all t ≥ 0, i ∈ S and x, y, x, y ∈ Rn.
(H4) If x(t) is an RCLL and FEt -adapted process, then H(x(t), x(t − δ(t)), t, Et , r(t)), F(x(t), x(t −

δ(t)), t, Et , r(t)), G(x(t), x(t − δ(t)), t, Et , r(t)) ∈ L(FEt ), where L(FEt ) denotes the class of RCLL and FEt -
adapted process.

If we de�ne, for (ϕ, t, Ei , i) ∈ C([−τ, 0];Rn) ×R+ ×R+ × S,

h(ϕ, t, Et , i) = H(ϕ(0), ϕ(−δ(t)), t, Et , i),
g(ϕ, t, Et , i) = G(ϕ(0), ϕ(−δ(t)), t, Et , i),
f (ϕ, t, Et , i) = F(ϕ(0), ϕ(−δ(t)), t, Et , i),
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then the equation (4.1) becomes the equation (1.1) and (H3) (H4) imply (H1) (H2). So, by Lemma 3.1 ,the
equation (4.1) has a unique global solution which is again denoted by x(t; ξ ). Furthermore, assume that
H(0, 0, t, Et , i) = 0, F(0, 0, t, Et , i) = 0, G(0, 0, t, Et , i) = 0.

If V ∈ C2,1,1(Rn × [−τ, ∞)× [0,∞)×S;R+), de�ne L1V and L2V fromRn ×Rn ×R+ ×R+ ×S toR respectively
by

L1V(x, y, t, Et , i) = Vt(x, t, Et , i) + Vx(x, t, Et , i)H(x, y, t, Et , i) +
N∑
j=1

γijV(x, t, Et , j),

L2V(x, y, t, Et , i) = VEt (x, t, Et , i) + Vx(x, t, Et , i)F(x, y, t, Et , i) +
1
2 trG

TVxxG(x, y, t, Et , i).

Furthermore, we denote LpFt
(Ω,Rn) as the family of all Ft-measurable Rn-valued random variables X

such that E|X|p < ∞. Meanwhile, we set

LjV(ϕ, t, Et , i) = LjV(ϕ(0), ϕ(−δ(t)), t, Et , i), j = 1, 2

Theorem 4.1. Let (H3) and (H4) hold. Let λ1, λ2, p, c1, c2, α be all positive numbers and q > 1. Assume that
there exists a function V(x, t, Et , i) ∈ C2,1,1(Rn × [−τ, ∞) × [0,∞) × S; R+) such that

c1|x|p ≤ V(x, t, Et , i) ≤ c2|x|p , (x, t, Et , i) ∈ Rn × [−τ, ∞) × [0,∞) × S (4.2)

and for all t > 0,

E
[
max
1≤i≤N

eαEtLjV(X, Y , t, Et , i)
]
≤ −λjE

[
max
1≤i≤N

eαEtV(X, t, Et , i)
]
(j = 1, 2) (4.3)

provided X, Y ∈ LpFt
(Ω,Rn) satisfying

E
[
min
1≤i≤N

eαEt+θV(Y , t − δ(t), Et−δ(t), i)
]
≤ qE

[
max
1≤i≤N

eαEtV(X, t, Et , i)
]

(4.4)

Then for all ξ ∈ CbF0
([−τ, 0], Rn)

E|x(t; ξ )|p ≤ c2c1
E||ξ ||pe−γt , t ≥ 0, (4.5)

where γ = min{λ1, λ2, log(q)/τ}. In other words, the trivial solution of equation (4.1) is pth moment exponen-
tially stable and the pth moment Lyapunov exponent is not greater than −γ.

Proof Let ϕ = {ϕ(θ) : −τ ≤ θ ≤ 0} ∈ LpFt
([−τ, 0],Rn) satisfy (3.3). For X = ϕ(0), Y = ϕ(−δ(t)) ∈ LpFt

(Ω,Rn)
satisfying

E
[
min
1≤i≤N

eαEt+θV(ϕ(−δ(t)), t − δ(t), Et−δ(t), i)
]
≤ qE

[
max
1≤i≤N

eαEtV(ϕ(0), t, Et , i)
]
.

Then, from (4.3) we have

E
[
max
1≤i≤N

eαEtLjV(ϕ, t, Et , i)
]
≤ −λjE

[
max
1≤i≤N

eαEtV(ϕ(0), t, Et , i)
]
(j = 1, 2)

which is (3.2). Hence the conditions in Theorem 3.1 are satis�ed and the conclusions follow. Applying the
Theorem 3.1, the proof is completed. 2

Theorem 4.2. Let (H3) and (H4) hold. Let p, c1, c2, α be all positive numbers and λ1j > λ2j ≥ 0, j = 1, 2.
Assume that there exists a function V(x, t, Et , i) ∈ C2,1,1(Rn × [−τ, ∞) × [0,∞) × S; R+) such that

c1|x|p ≤ V(x, t, Et , i) ≤ c2|x|p , (x, t, Et , i) ∈ Rn × [−τ, ∞) × [0,∞) × S (4.6)

and for all t > 0,

E
[
max
1≤i≤N

eαEtLjV(X, Y , t, Et , i)
]
≤ −λ1jE

[
max
1≤i≤N

eαEtV(X, t, Et , i)
]
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+λ2jE
[
min
1≤i≤N

eαEt+θV(Y , t − δ(t), Et−δ(t), i)
]
(j = 1, 2)

Then the trivial solution of equation (4.1) is pth moment exponentially stable and the pth moment Lyapunov
exponent is not greater than −γ, where γ = min{λ11 − qλ21, λ12 − qλ22, log(q)/τ} with q > 1.

Proof For t ≥ 0, q < λ1j/λ2j , j = 1, 2 and X, Y ∈ LpFt
(Ω,Rn) satisfying

E
[
min
1≤i≤N

eαEt+θV(Y , t − δ(t), Et−δ(t), i)
]
≤ qE

[
max
1≤i≤N

eαEtV(X, t, Et , i)
]
,

we can arrive that

E
[
max
1≤i≤N

eαEtLjV(X, Y , t, Et , i)
]

≤ −λ1jE
[
max
1≤i≤N

eαEtV(X, t, Et , i)
]
+ λ2jE

[
min
1≤i≤N

eαEt+θV(Y , t − δ(t), Et−δ(t), i)
]

≤ −(λ1j − qλ2j)E
[
max
1≤i≤N

eαEtV(X, t, Et , i)
]
,

that is, (4.3) is satis�ed with λj = λ1j − qλ2j , j = 1, 2. Then the conclusion follows form Theorem 4.1. 2

5 Example
Let Et be generalized inverse of an β-stable subordinator Uβ(t). Let B(t) be a scalar Brownianmotion and

{r(t)} be a right-continuous Markov chain taking values in S = {1, 2} with generator Γ = {rij}2×2, here

−γ11 = γ12 > 0, γ21 = −γ22 > 0.

Assume that B(t) and r(t) are independent. Then let us consider the following one-dimensional linear
stochastic di�erential equation with Markovian switching

dx(t) = ρ(r(t))x(t)dt + µ(r(t))x(t − δ(t))dEt + σ(r(t))x(t − δ(t))dBEt , t ≥ 0 (5.1)

where
ρ(1) = −1, ρ(2) = 1; µ(1) = −12 , µ(2) = −

1
3; σ(1) = 1, σ(2) = 1.

The equation (5.1) can be regarded as the result of

dx(t) = −x(t)dt − 1
2 x(t − δ(t))dEt + x(t − δ(t))dBEt , t ≥ 0 (5.2)

and
dx(t) = x(t)dt − 1

3 x(t − δ(t))dEt + x(t − δ(t))dBEt , t ≥ 0 (5.3)

switching to each other according to the movement of the Markovian chain r(t).
We de�ne the function V : R ×R+ ×R+ × S → R+ by

V(x, t, Et , i) = ci|x|p

with ci = 1, c2 = c ∈ (0, 34 ). The operators have the following forms

L1V(x, t, Et , i) =
{
(c − 1 − p)|x|p , i = 1,
(pc + 4 − 4c)|x|p , i = 2.
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L2V(x, t, Et , i) =
{

p(p−1)
2 |x|p−2|y|2 − 1

2p|x|
p−1|y|, i = 1,

cp(p−1)
2 |x|p−2|y|2 − 1

3 cp|x|
p−1|y|, i = 2.

Using the following inequality

aθb1−θ ≤ θa + (1 − θ)b, a, b > 0, θ ∈ (0, 1),

we can see that

L2V(x, t, Et , i) ≤
{

(p−1)(p−3)
2 |x|p + (p − 3

2 )|y|
p , i = 1,

c(p−1)(p−8)
2 |x|p + c(p − 4)|y|p , i = 2.

Choose p = 2, 2 < c < 3, then

L1V(x, t, Et , i) =
{
(c − 3)|x|p i = 1,
(4 − 2c)|x|p , i = 2

≤ −min{3 − c, 2c − 4c }max{V(x, t, Et , 1), V(x, t, Et , 2)}.

L2V(x, t, Et , i) ≤
{
−12 |x|

p + 1
2 |y|

p , i = 1,
− c3 |x|

p + 2c
3 |y|p , i = 2

≤ − 1
2c maxV(x, t, Et , 1), V(x, t, Et , 2) +

2
3 min{V(x, t, Et , 1), V(x, t, Et , 2)}.

By the Theorem4.2we conclude that the trivial solution of the equation (5.1) is pthmoment exponentially
stable.

6 Conclusions
The stochastic di�erential equations(SDEs) driven by time-changed Brownian motions is a new research

area for recent years. In this paper, we have studied the exponential stability of the time-changed SDEs
with Markovian switching, by expanding the time-changed Itô formula and the time-changed Razumikhin
theorem. Our result generalizes that of SDEs in the literature. Due to the more construction of SDEs with
time-change than the usual SDEs, our result is not a trivial generalization.
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