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Abstract 

Anodal transcranial direct current stimulation (atDCS) has demonstrated beneficial effects in 

the language domain for both healthy and brain damaged individuals. The present study 

provides evidence for the efficacy of atDCS in improvement of associative lexical learning in 

healthy adults, by employing a novel word-learning paradigm. Participants underwent single 

sessions of anodal and sham stimulation applied over the left posterior temporo-parietal 

junction, while learning ambiguous words paired with corresponding dominant, subordinate, 

and non-word meanings. The ability to recall each paired word was tested on a Cued-Recall 

task and the ability to recognize acquired non-words amongst distractors was tested using a 

Recognition task. The results revealed significant atDCS effects for non-word recall compared 

to sham stimulation in the Cued-Recall task, whilst average correct reaction times were not 

significantly different between stimulation conditions for the Recognition task. These results 

provide direct evidence that atDCS strengthens associative links produced between ambiguous 

words and non-words during initial word retrieval, indicating that these newly acquired words 

become integrated within participants’ pre-existing linguistic experience. This study 

contributes important information on healthy language processing and highlights the efficacy 

of atDCS in improvement of language recovery in clinical domains. 
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Transcranial direct current stimulation improves novel word recall in healthy adults  

1. Introduction 

Lexical ambiguity is a ubiquitous phenomenon that can interrupt sentence 

comprehension, as listeners and readers must use contextual cues to access the suitable 

meaning for ambiguous words. Particularly in English, over 80% of common English words 

are known to have two or more distinct definitions (Rodd, Gaskell, & Marslen-Wilson, 2002). 

For example, the ambiguous word “punch” could represent a verb (e.g., to strike someone with 

a forceful hit), or a noun (e.g., a cold fruit drink). An important contributor to the 

disambiguation process is the relative frequency, or dominance, of an ambiguous word’s 

meaning (Rodd et al., 2013). For instance, the verb form of “punch” is considered its high-

frequency (dominant) meaning, whereas the noun form is its low-frequency (subordinate) 

meaning. Twilley et al. (1994) demonstrated that, in the absence of context relevancy, 

participants were predisposed to retrieving the ambiguous word’s dominant meaning. Also, 

other studies have shown that an ambiguous word within a neutral context, in which either 

frequency meaning would be likely (e.g., “The woman saw the punch…”), readers were biased 

towards the dominant frequency definition and showed particular difficulties when selecting a 

sole meaning for a balanced ambiguous word; a word with two equally frequent meanings 

(Rayner & Duffy, 1986).  

In addition to meaning frequency biases, semantic relations can exist between a word 

with a single dominant meaning (e.g., “ant”) and an attached fictional meaning. For instance, 

related/strong fictional meanings associated with a previously known word that has a single 

meaning are easier to recall in comparison to an unrelated/weak semantic relation between a 

word with a single meaning and its associated fictional meaning. Rodd et al. (2012) explored 

how adults acquired new meanings for words that contained a single meaning, by examining 
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the role of semantic relatedness. Results demonstrated that strong semantic relations between 

novel and existing meanings significantly improved explicit memory recall of the new 

meanings compared to unrelated/weak semantic meanings. These findings led Rodd et al. 

(2012) to suggest that individuals integrate their pre-existing knowledge about the previously 

known word meaning with the newly learned meanings. However, studies have yet to 

investigate how adults acquire novel words associated with ambiguous words, in which a single 

word contains multiple meanings. This investigation could contribute informative language 

rehabilitation procedures for patient populations in the clinical domain.  

Since ambiguous words are the most common (80%) in the English language, training 

them with non-words would demonstrate a more ecologically valid paradigm, rather than 

pairing them with a smaller sample of words (20%) containing sole meanings. Thus, if 

language impaired patients lose some of their vocabulary after a brain injury, it would be 

beneficial to incorporate language rehabilitative procedures using ambiguous words, as they 

form the majority of the English language. Furthermore, coupling this new word learning 

paradigm with brain stimulation may facilitate the strengthening of the paired associations 

between the ambiguous word and non-word/lost word. For this purpose, we investigated the 

role of associative relations between lexical ambiguity and novel word forms, using a new 

experimental paradigm and non-invasive brain stimulation (NIBS).  

NIBS techniques, such as transcranial direct current stimulation (tDCS), have recently 

grown in popularity in hopes of enhancing neuroplasticity (Flöel & Cohen, 2010), the 

reorganization of dynamic structural and functional properties in the central nervous system 

(Pascual-Leone et al., 2005), and associated improvements in cognitive performance. tDCS 

applies weak electrical currents to the scalp, whilst modifying the excitability process of 

underlying cortical neurons (Nitsche et al., 2003). Facilitative effects on cognitive functioning 

have been reported with anodal transcranial direct stimulation (atDCS), whereby anodal 
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stimulation enables firing of task-specific neurons (Kuo & Nitsche, 2012). To date, 

mechanisms underlying these facilitative effects remain highly disputed; however, some 

researchers propose that atDCS produces extended cortical excitation increments, which result 

from modifications to N-methyl-D-aspartate (NMDA) receptor connections known to be 

involved in long-term potentiation (Nitsche & Paulus, 2000, 2001). Furthermore, its effective 

placebo stimulation (sham tDCS) acts as a control or baseline state. Rather than modulating 

neural functions, sham tDCS elicits tingling sensations on the scalp, ensuring that participants 

are blind to the stimulation condition (Gandiga et al., 2006). Thus, combining tDCS with the 

novel word learning paradigm aids the investigation of stimulation’s role in strengthening non-

existent links between novel words and previously known ambiguous words, as well as 

contribute supplementary information regarding the facilitation of memory consolidation for 

these newly acquired lexical-semantic links.  

In the language domain, numerous studies have demonstrated significant improvements 

in word-retrieval (Cattaneo, Pisoni, & Papagno, 2011; Meinzer et al., 2012, 2014a), vocabulary 

learning (Fiori et al., 2011), and lexical ambiguity processing (Peretz & Lavidor, 2013) when 

atDCS was administered over core language areas in the brain, such as left perisylvian cortices, 

left posterior temporo-parietal junction (TPJ), and right posterior TPJ, respectively. Based on 

these experiments and additional studies on post-stroke aphasic patients (de Aguiar, Paolazzi, 

& Miceli, 2015), suggestions regarding atDCS as an adjunct treatment for clinical populations 

have circulated. Specifically, it is suggested that studies with novel word learning paradigms 

in healthy individuals would aid in the optimisation of language re-learning in anomic patients 

(Basso et al., 2001), especially as tDCS permits the rare benefit of exploration of causal links 

between the brain and language processes, in contrast to other non-invasive methods, such as 

functional magnetic resonance imaging (fMRI) or electroencephalography. Here, we 
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investigated whether atDCS would mediate the strengthening of the TPJ network that subserves 

novel word acquisition. 

The aim of the study was to investigate the causal role of the left posterior TPJ in novel 

word acquisition using atDCS. This brain region has been found to play a significant role in 

new word learning in healthy individuals and post-stroke patients with language impairments 

(Cornelissen et al., 2003; Davis & Gaskell, 2009; Laine & Salmelin, 2010). To control for 

experiment induced artefacts, such as the placebo effect or sensitivity to stimulation, sham 

stimulation was implemented. Homonymous ambiguous words were trained with words 

corresponding to three levels of graded meaning frequencies; dominant, subordinate, and a 

non-word. For example, PUNCH-fight (dominant), PUNCH-drink (subordinate) and PUNCH-

fenct (non-word). Participants’ long-term memory was subsequently assessed using two tasks: 

a cued-recall memory test, which assessed ability to recall each word paired with the 

ambiguous word, and a recognition task, which assessed whether the non-words had become 

sufficiently well learned to affect speeded recognition of target non-words paired with 

distractor non-words. For the cued-recall task, hierarchical recall responses were expected; that 

is, we hypothesized that participants would recall dominant words more than subordinate 

words, and subordinate words more than non-words (Rodd et al., 2012, 2013). According to 

the complementary learning system (CLS), which assumes the ability to generalize 

familiar/trained mappings to novel items (Davis & Gaskell, 2009; French, 1999; McClosky & 

Cohen, 1989), we expected that the previously familiar mapping between the ambiguous word 

and its existing dominant and subordinate meanings would act as a complementary retrieval 

cue, aiding the recall of the non-word paired with the ambiguous word. Thus, we predicted that 

atDCS applied to the left posterior TPJ would significantly facilitate non-word recall compared 

to the control stimulation, in which atDCS reduces the amount of mapping interference that 

may occur during initial acquisition/training. Also, we expected that atDCS would not 
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significantly aid in memory recall for dominant and subordinate meanings, compared to sham, 

since the existing mappings between the ambiguous word and the respective meanings have 

been strongly solidified via linguistic representations throughout the participants’ lifetime, 

leaving little or no opportunity for atDCS strengthening. Lastly, based on studies, which have 

demonstrated that novel word forms can be rapidly learned after a few repetitions following 

consolidation (Dumay & Gaskell, 2007; Gaskell & Dumay, 2003), we expected that atDCS 

would decrease participants’ reaction times during the recognition memory task and increase 

accuracy for recognition of target non-words compared to sham stimulation.  

2. Methods 

2.1. Participants 

Twenty healthy participants were recruited from Swansea University’s student pool. 

Four were excluded due to experimenter error and apparatus malfunction, for a total of sixteen 

participants (age range = 21-34; mean age = 24.25 years; SD = 2.96; 10 females) included in 

the analyses. All participants were native English speakers with normal or corrected-to-normal 

visual acuity, self-reported no colour-blindness and completed an exclusionary questionnaire, 

ensuring a history absent of neurologic, psychiatric, and systemic pathologies incompatible 

with tDCS (e.g., epilepsy). All participants provided written informed consent, and upon study 

completion, participants were thanked for their participation and debriefed about the aims of 

the study, which was approved by the College of Human and Health Sciences Psychology 

Departmental Ethics Committee at Swansea University.  

2.2. Apparatus 

tDCS was delivered via battery-supplied direct current stimulators (HDCstim-DC 

stimulator, Magstim, Milano, Italy). Electrodes were inserted into synthetic sponges soaked in 

saline solution and secured to the scalp using a 10/20 BraiNet cap. The anode (4 x 4 cm) was 
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positioned over the left posterior temporo-parietal junction (position Cp5) and the cathode (4 

x 4 cm) was centred over the contralateral supraorbital region (position Fp2; see Fig 1). The 

positioning of electrodes was determined using the international 10-20 EEG system and though 

the sizing of electrodes were outside conventional protocol (5 x 5 cm / 5 x 7 cm), smaller and 

larger assemblies have been previously explored (Nitsche et al., 2007).  

[Insert Figure 1 here] 

During atDCS, a constant direct current of 1.5 mA (0.09 mA/cm2 current density) was 

administered throughout the acquisition phase, assuring that active stimulation was delivered 

for a total of 20 minutes whilst participants acquired the stimuli during the acquisition phase. 

The current increased and decreased in a ramp-like fashion over the first 10 seconds of 

stimulation and the last 10 seconds. The procedure during sham tDCS was identical to atDCS, 

except the current was turned off after the first 30 seconds of stimulation. Previous studies 

found significant cognitive benefits using this learning paradigm/electrode montage (Meinzer 

et al., 2012, 2014a). After completion of the acquisition phase during which participants 

underwent stimulation, electrodes were removed from participants’ scalps prior to continuation 

of the filler task, recall phase and recognition phase. 

Both computerised tasks (Cued-Recall Memory and Recognition Memory) were run on 

a Dell Intel Core2 OptiPlex 755 desktop CPU with a Dell E173FP 17” flat panel colour LCD 

monitor. All phases and participant responses were presented and collected via SuperLab 4.5. 

2.3. Stimulus Selection 

Forty ambiguous words with their dominant and subordinate word pairings were 

adopted from the study by Titone (1998) and used in the acquisition phase and cued-recall task 

during this study. Eighty pronounceable non-words were selected from Bangert, Abrams & 

Balota (2012): 40 of these were paired with ambiguous words whilst the remaining 40 served 
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as untrained distractors during the recognition task. All non-words were in accordance with 

phono-tactic and orthographic rules of English. The mean length for non-words was 4.83 letters 

(SD = .84) and the mean orthographic neighbourhood (N) size was 3.63 (SD = 3.80; Coltheart 

et al., 1977). Distractor non-words began with the same letter as its paired target word (i.e., 

CARSH and COOD). Stimuli were divided evenly into two sets, counterbalanced, and rotated 

across individuals and stimulation conditions, respectively. All stimuli presented were lower 

cased. 

2.4. Learning Tasks and Performance Measures 

During the acquisition phase, word pairs appeared simultaneously on a blank screen for 

five seconds. This phase contained three randomized conditions (20 word pairs per condition). 

Condition I comprised ambiguous words paired with their dominant (D) meanings, condition 

II involved ambiguous words paired with their subordinate (S) meanings, and condition III 

consisted of ambiguous words paired with non-words (N). Each pair was presented alongside 

its corresponding ‘condition letter’ (“D”, “S” or “N”; see Fig 2A). Pairs were presented 

randomly and repeated in four blocks (60 trials/block) without gaps. The duration of the 

acquisition phase was 20 minutes (60 trials, each lasting 5 seconds = 5 minutes/block, repeated 

4 x = 20 minutes). Prior to commencing the acquisition phase, participants were briefed on the 

meanings of “D”, “S” and “N” and were told to study and memorize all of the word pairs on 

the screen for later recall. During both Cued-Recall and Recognition tasks, the entire set of 

trained items were tested. 

During the Cued-Recall task, a previously studied ambiguous word appeared on the 

screen along with letters “D” (dominant), “S” (subordinate), and “N” (non-word). Participants 

were instructed to recall the dominant, subordinate, and non-word paired with the ambiguous 

word shown via text in the box provided (20 trials; see Fig 2B), and were given unlimited time. 

Each trial was completed by clicking the “Next >” button on the screen. 
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 In the Recognition task, participants were presented with two non-words (one 

previously studied target and one distractor) on the monitor simultaneously. Each non-word 

appeared either to the left or to the right of a centrally located fixation cross. Each non-word 

was assigned a key input from the keyboard and participants were instructed to produce fast, 

localized responses via keystrokes responding to the location of the target non-word. Thus, if 

the target non-word appeared on the left side of the screen, participants pressed ‘Q’, whereas 

if the target non-word appeared on the right side of the screen, participants pressed ‘P’ (see Fig 

2C). The location of target non-words was counterbalanced and randomized across each 

participant. 

[Insert Figure 2 here] 

2.5. Design and Procedure 

A sham-controlled, single-blinded, within-participants factorial design was employed 

with factors stimulation type (anodal vs. sham) and meaning frequency (dominant vs. 

subordinate vs. non-word). The dependent variables were the percentage of correct responses 

(CRs) for the Cued-Recall task and the average reaction times (RTs) alongside percentage 

accuracy for the Recognition task. Testing occurred in a quiet laboratory compartment in 

Swansea University, with participants seated approximately 100 cm from the computer monitor 

with a 19.2° full monitor width viewing angle. This experiment involved an acquisition, 

distractor, and test phase. Each stimulation session was carried out between 10 a.m. and 6 p.m., 

and a gap amid 7 and 14 days between each stimulation condition was implemented to control 

for learning and carry-over effects (Nitsche et al., 2008). The order of anodal and sham 

stimulation was counterbalanced across participants. Also, an equal number of participants 

were randomized to the sham versus the anodal condition first. 

All participants completed the tDCS Screening Questionnaire prior to study 

participation. This questionnaire excluded participants from the study who were incompatible 
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with tDCS. After screening was completed, participants were briefed on session goals and sat 

in front of the computer monitor with electrodes attached to their scalps. Stimulation 

commenced upon presentation of the first word pair in the acquisition phase and stopped after 

the presentation of the last word. Participants were monitored for adverse tDCS side effects, 

such as the presence/absence of headaches, neck pain, scalp pain/burns, or tingling. Directly 

after the acquisition phase, the experimenter removed the electrodes and instructed participants 

to complete the tDCS Side Effects Questionnaire, which determines the presence and severity 

of various sensations known to occur during tDCS, such as tingling (Nitsche et al., 2008). 

Subsequently, an unrelated filler task was administered, whereby participants typed into a text 

box as many countries as they could think of in three minutes. The purpose of the filler task 

was to prevent covert rehearsal of word pairs before the final test phase. 

Following the three-minute gap, the test phase began with the Cued-Recall task. During 

this task, trained ambiguous words were presented randomly in the middle of the screen, 

sequentially, in addition to condition letters “D”, “S”, and “N”. Participants were instructed to 

recall the correct dominant, subordinate, and non-word previously paired with the ambiguous 

word in the acquisition phase, via text response in a box located to the left of the condition 

letters. Participants pressed ‘Enter’ to begin a new line and clicked “Next>” to proceed to 

following trials. Spelling was considered and participants were instructed to make estimates if 

unsure of the correct word/non-word response. Raters implemented an all-or-nothing scoring 

scheme regarding incorrectly spelled words. There were 20 trials in one block without 

interruptions. This task took approximately 5 minutes to complete. 

In the Recognition task, participants viewed two non-words (distractor and target), 

simultaneously presented on the screen, and pressed ‘Q’ as fast as possible when a target non-

word appeared on the left side of the screen or ‘P’ when a target non-word appeared on the 

right side of the screen. A fixation cross (500 msec) appeared in the centre of the screen before 
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each trial. The non-word pairs appeared until the participant responded with a key press. There 

were 20 trials in one block. This task took approximately 1 minute to complete. The tDCS Side 

Effects Questionnaire was completed again 24 hours post each session and participants were 

debriefed after the second session. Results were not given after either session. 

3. Results 

3.1. Self-Report Measure 

 All participants included in the analyses tolerated atDCS and sham stimulation well, 

with minimal adverse side effects. Table 1 summarizes the reported tDCS adverse side effects 

data for each group across sub-categories. Tingling was the most common side effect reported 

during atDCS, while sleepiness was commonly reported amongst participants undergoing sham 

stimulation. Paired t-tests yielded non-significant results for total adverse side effect ratings in 

each group (anodal: M = 11.50, SD = 1.93 vs. sham: M = 11.75, SD = 2.44, t(15) = .43, p = 

.67), demonstrating a lack of differences in overall adverse side effects during stimulation 

sessions. 

[Insert Table 1 here] 

3.2. Cued-Recall Task 

A 3 x 2 repeated measures ANOVA on accuracy with factors meaning frequency 

(dominant vs. subordinate vs. non-word) and stimulation type (anodal vs. sham) revealed a 

significant main effect of Meaning Frequency [F(2,30) = 22.37, p < .001, ηp2 = .60] and a 

significant interaction of Meaning Frequency and Stimulation Type (F(2,30) = 78.58, p < .001, 

ηp2 = .84; see Fig 3). Main effect of Stimulation Type was not significant (p = .86). These 

results suggest that the level of accuracy when recalling dominant, subordinate, and non-words 

depended on the type of stimulation received during the acquisition phase.    
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[Insert Figure 3 here] 

Mean cued-recall accuracies for correct word responses and standard deviations 

between stimulation and sham conditions are shown in Table 2. Post hoc comparisons with 

Tukey’s corrections using paired t-tests revealed non-significant differences in accuracy 

between sham and stimulation for dominant cued-recall (t(15) = -.46, p = .66) and subordinate 

cued-recall (t(15) = 1.95, p = .07). However, participants showed a significant difference for 

non-word cued-recall accuracy (t(15) = 2.20, p = .04), demonstrating that atDCS facilitated 

participants’ recall memory for non-words compared to sham.  

Moreover, the percentages of correct word recall in both stimulation conditions 

demonstrated that dominant words were recalled more than subordinate words and subordinate 

words were recalled more than non-words (Table 2). Post hoc analyses using paired t-tests 

showed that participants were more accurate when recalling dominant words compared to non-

words in both conditions (sham: M = 62.50, SD = 21.76, t(15) = <.001; anodal: M = 48.75, SD 

= 28.84, t(15) = <.001), and similarly when recalling subordinate words versus non-words 

(sham: M = 49.38, SD = 22.43, t(15) = <.001; anodal: M = 46.88, SD = 23.51, t(15) = <.001). 

Also, paired t-tests revealed that participants were significantly more accurate when recalling 

dominant words compared to subordinate words; however, only in the sham condition (sham: 

M = 13.13, SD = 10.63, t(15) = <.001; anodal: M = 1.88, SD = 10.78, t(15) = .50). 

[Insert Table 2 here] 

3.3. Recognition Task 

Paired t-tests were used to assess overall recognition percentage accuracies and average 

RT differences on accurate trials for non-words between sham and stimulation conditions. 

Participants showed higher overall percentage accuracies for recognizing target non-words 

from distractors in the stimulation condition compared to sham; however, differences were not 
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significant (sham: M = 92.19, SD = 12.91 vs. anodal: M = 95.63, SD = 7.50, t(15) = 1.17, p = 

.26; see Fig 4). Similarly, although participants had faster average RTs (msec) on accurate 

trials during stimulation compared to sham (anodal: M = 1278.23, SD = 344.13 vs. sham: M = 

1306.42, SD = 303.82, t(15) = -.47, p = .64; see Fig 5), these differences were not significant.  

[Insert Figures 4 & 5 here] 

4. Discussion 

 The aim of this study was to develop a novel word learning paradigm and utilize it to 

assess the effects of atDCS on language learning. The paradigm was designed to effectively 

invoke lexical-semantic links between previously known ambiguous words and non-words, 

with objective measures of recall accuracy and memory recognition RTs following a brief 

exposure to stimulation. To achieve this, we implemented a hierarchical training approach, in 

which dominant, subordinate, and non-word meanings were trained randomly with a 

corresponding ambiguous word. Unlike Rodd et al.’s (2012) experiment, which trained 

fictional meanings with sole dominant meaning words, our task consisted of homonymous 

ambiguous words (i.e., words with multiple meanings) to which participants memorized and 

attached a novel word meaning. An important feature of the paradigm is the ability to accurately 

measure recall and recognition performance by comparing correct responses and average RTs, 

respectively, under two stimulation conditions. The benefits of gauging accuracy under two 

different stimulation conditions in this experiment are threefold: (i) to attain a measure of 

meaning frequency under both stimulation conditions, providing supplemental information 

about the significance of ‘dominance’ in ambiguous word learning; (ii) to provide causal links 

between the stimulated target region (left posterior TPJ) and new word learning; and (iii) to 

increase speeded recognition of target non-words, which reflects the effects of atDCS in 

memory consolidation.  
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This study demonstrated that the participants’ ability to recall familiar meanings 

(dominant and subordinate) for homonymous ambiguous words during both stimulation 

conditions was significantly better than their ability to recall novel words paired with the same 

ambiguous words in either condition. This dominance effect was strikingly large; for instance, 

participants were only able to recall 20% of novel words, as compared to 82% of dominant 

word meanings and 69% of subordinate word meanings when their brains were not stimulated. 

The overall low performances for non-word recall may have been a result of short-term priming 

effects on novel traces, as successful lexical priming relies on modifying pre-existing mappings 

of memory or acquiring novel memory traces (Bowers, 1994). For example, when a familiar 

ambiguous word is presented for the first time within the experiment, it would activate its 

permanent pre-existing representation in the participant’s lexicon and the activation may 

endure long enough, so that accessing the representation upon subsequent presentations would 

become easier (McKone & Trynes, 1999). Contrastingly, when non-words are presented with 

a lexically ambiguous prime, pre-existing representations are unavailable for modification and 

thus no priming results; hence, a low overall performance score for non-word recall. 

Alternatively, the acquisition theory denotes that the few non-words that are accurately recalled 

may be a result of new episode-specific memory traces that are generated from the initial 

presentation of the non-word. Thus, the priming of certain non-words results in participants’ 

reusing the training processing strategies at test for cued-recall of the acquired memory trace 

(Jacoby, 1983; Roediger, 1990), demonstrating that priming can extend to unfamiliar stimuli. 

We also found a significant difference between stimulation types (i.e., anodal and sham 

stimulation) only for non-word recall, suggesting that when the left posterior TPJ is stimulated, 

participants are better able to recall non-words as opposed to when this brain region is not 

stimulated. Since lexical-semantic links for novel words were non-existing, our results 

demonstrate that stimulation to the TPJ was the driving factor in strengthening of the newly 
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formed associations. Together with participants’ responses for dominant, subordinate, and non-

word recall across the two stimulation conditions, the results provide strong support that the 

pre-existing lexical semantic relationships between the ambiguous words and their equivalent 

dominant and subordinate meanings have been strongly mapped in participants’ linguistic 

experience, such that stimulation did not play a role in further strengthening the associative 

links between the familiar ambiguous words and their meanings. Thus, newly acquired words 

became integrated within the participants’ pre-existing knowledge of the ambiguous words and 

their corresponding meaning frequencies (i.e., dominant and subordinate).  

 Unexpected results regarding non-word recognition RTs were observed. On average, 

participants were faster at selecting the correct non-word from alternative distractors in the 

stimulation condition; however, this trend did not reach significance. A possibility for this 

occurrence stems from a phenomenon known as lexical dissociation. Previous studies of word 

form learning showed that the initial retrieval of information for novel words may dissociate 

from latter consolidation into the lexicon, despite the words being rapidly learned after multiple 

presentations (Rodd et al., 2012). For example, the non-word “fenct” can be dissociated from 

the associative impact in recognizing the existing word “fence” during lexical decision tasks, 

until consolidation has occurred. Similarly, the process of consolidation between the 

ambiguous prime and non-word may have not yet been completed after a single training session 

to procure significant RT differences. Thus, if participants failed to integrate the non-words 

into their existing lexical knowledge, albeit via lexical association, their recognition and recall 

responses would depend solely on their pre-existing lexical representation of the non-word, 

which would not exist.  

Overall, the current findings replicated previously documented atDCS facilitative 

effects (Fiori et al., 2011; Flöel et al., 2008; Meinzer et al., 2014a) demonstrating a significant 

difference for novel word recall compared to sham stimulation, when applied to the left 
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posterior TPJ. However, a few limitations regarding the stimulation of the target site in this 

study need to be acknowledged. First, the left posterior TPJ overlaps Wernicke’s area, a brain 

region thought to be responsible for word production and phonological retrieval processes 

(Davis & Gaskell, 2009). Additional areas, such as the dorsal inferior frontal cortex and the 

inferior parietal lobule have also been implicated in the aforementioned processes (Laine & 

Salmelin, 2010), and due to the moderately large size of electrodes used in this experiment, 

known distant effects of atDCS on these functionally relevant areas could have also been 

present. Therefore, a higher current density in mA/cm2 (i.e., smaller electrode sizes) may 

reduce the dispersal of the electric current via electrodes (anode to cathode) to neighbouring, 

functionally related brain regions, resulting in a more concentrated current focused on the target 

site. Second, although previous studies show strong evidence that language processing is 

strongly left lateralized in both sexes for right handed individuals (Chai et al., 2016; Frost et 

al., 1999), it cannot be completely ruled out that the cathode positioned over the right 

hemisphere contributed to the facilitating effect.  

5. Conclusions 

The presence of a lexical-semantic link between non-words and ambiguous words may 

critically depend on the participants’ experience with these words during training/acquisition, 

such that integration of these non-words into the pre-existing linguistic network emerges only 

once training has been successful. Thereby, our findings suggest that atDCS applied over the 

left posterior temporo-parietal junction improves novel word recall in healthy individuals and 

contributes important and novel information concerning the potential beneficial effects that 

non-invasive brain stimulation might have on therapeutic interventions in language recovery 

for clinical populations. While this study implemented a novel word learning paradigm, using 

stimulation as a mediator of stronger linguistic encoding, future studies can investigate this 

model further, using complementary functional imaging, in which concurrent application of 
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tDCS with fMRI will allow for the exploration of neural mechanisms underpinning behavioural 

tDCS effects, due to the high spatial resolution images produced across the brain (Meinzer et 

al., 2014b). This technique will identify stimulation induced brain activity modulations at the 

target stimulation site and in distant brain areas aforementioned that are associated with task-

related functional behavioural improvements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                               Stimulation-Induced Language Learning 
 

19 

References 

1. de Aguiar, V., Paolazzi, C. L., & Miceli, G. (2015). tDCS in post-stroke aphasia: the 

role of stimulation parameters, behavioral treatment and patient characteristics. Cortex, 

63, 296-316. 

2. Bangert, A. S., Abrams, R. A., & Balota, D. A. (2012). Reaching for Words and Non-

Words: Interactive effects of word frequency and stimulus quality on the characteristics 

of reaching movements. Psychonomic Bulletin & Review, 19(3), 513–520. 

3. Basso, A., Marangolo, P., Piras, F., & Galluzzi, C. (2001). Acquisition of new “words” 

in normal subjects: a suggestion for the treatment of anomia. Brain and Language, 77, 

45-59. 

4. Bowers, J. S. (1994). Does implicit memory extend to legal and illegal nonwords? 

Journal of Experimental Psychology: Learning, Memory, & Cognition, 20, 534-549. 

5. Cattaneo, Z., Pisoni, A., Papagno, C. (2011). Transcranial direct current stimulation 

over Broca's region improves phonemic and semantic fluency in healthy individuals. 

Neuroscience, 183, 64-70. 

6. Chai, L. R., Mattar, M. G., Blank, I. A., Fedorenko, E., & Bassett, D. S. (2016). 

Functional Network Dynamics of the Language System. Cerebral Cortex (New York, 

NY), 26(11), 4148–4159.  

7. Coltheart, M., Davelaar, E., Jonasson, J. F., & Besner, D. (1977). Access to the internal 

lexicon. In S. Dornic (Ed.), Attention & Performance VI (pp. 535-555). Hillsdale, NJ: 

Erlbaum. 

8. Cornelissen, K., Laine, M., Tarkiainen, A., Jarvensivu, T., Martin, N., & Salmelin R. 

(2003). Adult brain plasticity elicited by anomia treatment. Journal of Cognitive 

Neuroscience, 15, 444-461. 



                                                                               Stimulation-Induced Language Learning 
 

20 

9. Davis, M. H., & Gaskell, M. G. (2009). A complementary systems account of word 

learning: neural and behavioural evidence. Philosophical Transactions of the Royal 

Society of London. Series B, Biological Sciences, 364(1536), 3773-3800. 

10. Dumay, N., & Gaskell, M. G. (2007). Sleep-associated changes in the mental 

representation of spoken words. Psychological Science, 18, 35-39. 

11. Fiori, V., Coccia, M., Marinelli, C. V., Vecchi, V., Bonifazi, S., Ceravolo, M. G., … 

Provinciali, L. (2011). Transcranial direct current stimulation improves word retrieval 

in healthy and nonfluent aphasic subjects. Journal of Cognitive Neuroscience, 23(9), 

2309-2323. 

12. Flöel, A., & Cohen, L.G. (2010). Recovery of function in humans: cortical stimulation 

and pharmacological treatments after stroke. Neurobiology of Disease, 37, 243-251. 

13. Flöel A., Rösser N., Michka O., Knecht S., & Breitenstein C. (2008). Noninvasive brain 

stimulation improves language learning. Journal of Cognitive Neuroscience, 20(8), 

1415-1422. 

14. French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in 

Cognitive Sciences, 3, 128 -135. 

15. Frost, J. A., Binder, J. R., Springer, J. A., Hammeke, T. A., Bellgowan, P., Rao, S. M., 

& Cox, R. W. (1999). Language processing is strongly left lateralized in both sexes: 

Evidence from functional MRI. Brain, 122(2), 199-208.  

16. Gandiga, P. C., Hummel, F. C., & Cohen, L. G. (2006). Transcranial DC stimulation 

(tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. 

Clinical Neurophysiology, 117(4), 845-850. 

17. Gaskell, M. G., & Dumay, N. (2003). Lexical competition and the acquisition of novel 

words. Cognition, 89, 105-132. 



                                                                               Stimulation-Induced Language Learning 
 

21 

18. Jacoby, L. L. (1983). Remembering the data: Analyzing interactive processes in 

reading. Journal of Verbal Learning & Verbal Behavior, 22, 485-508. 

19. Kuo, M. F., & Nitsche, M. A. (2012). Effects of transcranial electrical stimulation on 

cognition. Clinical EEG and Neuroscience, 43(3), 192-199. 

20. Laine, M., & Salmelin, R. (2010). Neurocognition of new word learning in the native 

tongue: lessons from the ancient farming equipment paradigm. Language Learning, 60, 

25-44. 

21. McClosky, M., & Cohen, N. J. (1989). Catastrophic interference in connectionist 

networks: the sequential learning problem. In The psychology of learning and 

motivation (ed. G. H. Bower), pp. 109 –165. New York, NY, USA: Academic Press. 

22. McKone, E., & Trynes, K. (1999). Acquisition of novel traces in short-term implicit 

memory: Priming for nonwords and new associations. Memory & Cognition, 27(4), 

619-632. 

23. Meinzer, M., Antonenko, D., Lindenberg, R., Hetzer, S., Ulm, L., Avirame, K., ... Flöel, 

A. (2012). Electrical brain stimulation improves cognitive performance by modulating 

functional connectivity and task-specific activation. Journal of Neuroscience, 32(5), 

1859-1866. 

24. Meinzer, M., Jähnigen, S., Copland, D. A., Darkow, R., Grittner, U., Avirame, K., … 

Flöel, A. (2014a). Transcranial direct current stimulation over multiple days improves 

learning and maintenance of a novel vocabulary. Cortex, 50, 137–147. 

25. Meinzer, M., Lindenberg, R., Darkow, R., Ulm, L., Copland, D., & Flöel, A. (2014b). 

Transcranial Direct Current Stimulation and Simultaneous Functional Magnetic 

Resonance Imaging. Journal of Visualized Experiments, 86, 51730. 



                                                                               Stimulation-Induced Language Learning 
 

22 

26. Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., … 

Pascual-Leone, A. (2008). Transcranial direct current stimulation: state of the art. Brain 

Stimulation, 1(3), 206-223. 

27. Nitsche, M. A., Doemkes, S., Karaköse, T., Antal, A., Liebetanz, D., Lang, N., … 

Paulus, W. (2007). Shaping the Effects of Transcranial Direct Current Stimulation of 

the Human Motor Cortex. Innovative Methodology, 97(4), 3109 - 3117.  

28. Nitsche, M. A., Liebetanz, D., Antal, A., Lang, N., Tergau, F., & Paulus, W. (2003). 

Modulation of cortical excitability by weak direct current stimulation–technical, safety 

and functional aspects. Supplements to Clinical Neurophysiology, 56, 255-276. 

29. Nitsche M. A., & Paulus, W. (2000). Excitability changes induced in the human motor 

cortex by weak transcranial direct current stimulation. Journal of Physiology, 527, 633-

639. 

30. Nitsche M. A., & Paulus, W. (2001). Sustained excitability elevations induced by trans-

cranial DC motor cortex stimulation in humans. Neurology, 57, 1899-1901. 

31. Pascual-Leone, A., Amedi, A., Fregni, F., & Merabet, L. B. (2005). The plastic human 

brain cortex. Annual Review of Neuroscience, 28, 377-401. 

32. Peretz, Y., Lavidor, M. (2013). Enhancing lexical ambiguity resolution by brain 

polarization of the right posterior superior temporal sulcus. Cortex, 49(4), 1056-1062. 

33. Rayner, K., & Duffy, S. A. (1986). Lexical complexity and fixation times in reading – 

Effects of word-frequency, verb complexity, and lexical ambiguity. Memory & 

Cognition, 14, 191-201. 

34. Rodd, J., Berriman, R., Landau, M., Lee, T., Ho, C., Gaskell, M. G., & Davis, M. H. 

(2012). Learning new meanings for old words: effects of semantic relatedness. Memory 

and Cognition, 40, 1095-1108. 



                                                                               Stimulation-Induced Language Learning 
 

23 

35. Rodd, J., Cutrin, B. L., Kirsch, H., Millar, A., & Davis, M. H. (2013). Long-term 

priming of the meanings of ambiguous words. Journal of Memory and Language, 68(2), 

180-198. 

36. Rodd, J., Gaskell, G., & Marslen-Wilson, W. (2002). Making sense of semantic 

ambiguity: Semantic competition in lexical access. Journal of Memory and Language, 

46, 245-266. 

37. Roediger, H. L., III (1990). Implicit memory: Retention without remembering. 

American Psychologist, 45, 1043-1056. 

38. Titone, D. (1998). Hemispheric differences in context sensitivity during lexical 

ambiguity resolution. Brain and Language, 65, 361-394. 

39. Twilley, L. C., Dixon, P., Taylor, D., & Clark, K. (1994). University of Alberta norms 

of relative meaning frequency for 566 homographs. Memory & Cognition, 22, 111-126. 

 

 

 

 

 

 

 

 

 

 



                                                                               Stimulation-Induced Language Learning 
 

24 

Figure Captions 

FIG 1. Depiction of Electrode Positions. The illustration demonstrates a bilateral placement 

of the electrodes based on the EEG 10-20 system. ‘A’ (red) represents the placement of the 

anode over position Cp5 (TPJ) and ‘C’ (black) demonstrates the fixed position of the cathode 

over position Fp2 (contralateral supraorbital region). Significance in all figures is denoted by 

‘*’. 

FIG 2. Study Overview. Study overview. (A) Demonstrates the structure of the acquisition 

phase. Participants sat in front of a monitor and were instructed to view and memorize word 

pairs with the corresponding ‘condition letter’ for subsequent tasks. (B) Illustrates the cued-

recall memory task. An ambiguous word was presented and participants had to recall from 

memory the correct word for each condition letter. (C) Highlights the design of the recognition 

memory task. Participants saw a fixation cross followed by two non-words. Participants chose 

which non-word they previously studied in the acquisition phase via keystrokes. Since 

‘CARSH’ was the target non-word and appears on the right side of the screen, participants 

were to press the letter ‘P’ on the keyboard. Trials ended with a fixation cross indicating the 

start of a new one. 

FIG 3. Mean percentages of cued-recall accuracy and standard deviations for anodal (light 

grey) and sham (dark grey) stimulation for each of the meaning frequency conditions (dominant 

vs. subordinate vs. non-word). 

Fig 4. Mean overall recognition accuracy for selecting target non-words from paired non-word 

distractors and standard deviation bars for anodal (light grey) and sham (dark grey) stimulation. 

Fig 5. Mean average correct reaction times (in msec) on accurate trials for target non-word 

recognition, and standard deviation bars for anodal (light grey) and sham (dark grey) 

stimulation. 
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Tables 

Table 1: Means and standard deviations for adverse event rating sub-categories on tDCS 

Side Effects Questionnaire (1 = absent, 2 = mild, 3 = moderate, 4 = severe; p-values based 

on paired t-tests). 

 

 atDCSa   Shamb      p-value 

 M SD  M SD  

Headache 1.19 .54  1.25 .58         .58 

Neck Pain 1.06 .25  1.25 .58         .08 

Scalp Pain 1.06 .25  1.06 .25         1.00 

Scalp Burns 1.13 .34  1.00 .00         .16 

Tingling 1.81 .66  1.44 .51         .03 

Skin Redness 1.06 .25  1.00 .00         .33 

Sleepiness 1.56 .73  2.00 .89         .05 

Trouble Concentrating 1.31 .60  1.69 .79         .08 

Acute Mood Change 1.31 .70  1.06 .25         .16 

a n = 16. 
b n = 16. 

 

Abbreviations:  atDCS = anodal transcranial direct current stimulation. 
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Table 2: Mean cued-recall accuracy (in %) and standard deviations as a function of 

meaning frequency based on post-hoc comparisons. 

 atDCSa   Shamb  

 M SD  M SD 

CR Dominant 80.63 14.25  82.19 16.12 

CR Subordinate 78.75 16.18  69.06 23.82 

CR Non-word 31.87 24.55  19.69 20.85 

a n = 16. 
b n = 16. 
 

Abbreviations:  atDCS = anodal transcranial direct current stimulation hemisphere; CR = 
correct response.  
 
 

 


