

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:

Proceedings in honour of the 100th birthday of Kurt Schuette

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa51297

Book chapter :

Setzer, A. (n.d). An Upper Bound for the Proof Theoretic Strength of Martin-Löf Type Theory with W-type and one

Universe. Proceedings in honour of the 100th birthday of Kurt Schuette,

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa51297
http://www.swansea.ac.uk/library/researchsupport/ris-support/

An Upper Bound for the Proof Theoretic
Strength of Martin-Löf Type Theory

with W-type and one Universe

Anton Setzer ∗

Dept. of Computer Science, Swansea University,
Singleton Park, Swansea SA2 8PP, UK

email: a.g.setzer@swansea.ac.uk

July 17, 2019

Abstract

We present an upper bound for the proof theoretic strength of Martin-Löf’s
type theory with W-type and one universe. This proof, together with the well
ordering proof carried out in [Set98b] shows that the proof theoretic strength
of this theory is precisely ψΩ1ΩI+ω, which is slightly more than the strength
of Feferman’s theory T0, the classical set theory KPI, and the subsystem of
analysis (∆1

2 − CA) + (BI). The strength of the intensional and extensional
version, and of the version à la Tarski and à la Russell are shown to be the
same. The proof is carried out by interpreting the type theories in question
in an extension of Kripke-Platek set theory KPI+. We show that validity of
Π1

1-sentences is preserved in this interpretation.

Dedicated to the master of proof theory, Kurt Schütte

1 Introduction

1.1 Proof theory and Type Theory

Proof theory and type theory are two answers of mathematical logic to the crisis of
the foundations of mathematics at the beginning of the 20th century. Proof theory

∗Supported by CORCON (Correctness by Construction, FP7 Marie Curie International Re-
search Project, PIRSES-GA-2013-612638), COMPUTAL (Computable Analysis, FP7 Marie Curie
International Research Project, PIRSES-GA-2011-294962), CID (Computing with Infinite Data,
Marie Curie RISE project, H2020-MSCA-RISE-2016-731143), CA COST Action CA15123 Euro-
pean research network on types for programming and verification (EUTYPES), EPSRC grant
GR/S30450/01 and EPSRC grant EP/G033374/1; part of this research was done while the author
was visiting the university of Leeds as part of the EC Twinning Project “Proofs and Computation”.

1

was established by Hilbert in order to prove the consistency of theories by using
finitary methods. When Gödel showed that Hilbert’s program cannot be carried out
as originally intended, the focus of proof theory changed towards analysing theories
and determining the minimum ordinal in a natural ordinal notation system such that
transfinite induction up to this ordinal proves the consistency of the theory. That
ordinal is called the proof theoretic strength, which turned out to be an excellent
measure for the strength of theories.
On the other hand, type theories were designed to provide a new framework for
mathematics, the consistency of which can be justified, as far as possible, by itself
(see [Set15] for a discussion about why a justification of the consistency of mathe-
matical theories is needed, what can be achieved, and what the limitations are).
Both directions of mathematical logic have become quite important because of their
applicability to computer science. Proof theoretic methods can be used for instance
to extract programs from proofs, to analyse term rewriting systems and for theoret-
ical questions the area of logic programming.
On the other hand many machine assisted theorem provers, such as Agda, Coq,
Idris, Lego, and Epigram, are based on type theory. One reason why type theory is
an excellent basis theory is that in type theory algorithms and proofs are essentially
the same. Therefore proving becomes very similar to programming, and techniques
from software engineering can be used to develop proofs.
Therefore it seems to be interesting to apply proof theory to type theory. In par-
ticular, the question mainly answered in this article is: what is the precise proof
theoretic strength of Martin-Löf’s type theory? This is interesting because the an-
swer determines the exact place of Martin-Löf’s type theory on the proof theoretic
scale. This allows to compare it with other theories, the strength of which is already
known.
More precisely, in this article we are dealing with the strength of Martin-Löf’s type
theory with one universe and W-type. This work was first presented in our PhD
thesis [Set93]1. There are two directions to be proved. One is to determine a
lower bound, which is presented in [Set98b]. This was done by carrying out a well
ordering proof directly in Martin-Löf Type Theory. In this article we present a
refined version of the upper bound. We embed type theory in a Kripke-Platek style
set theory, KPI+, the strength of which can then be determined easily using standard
proof theoretic techniques. We show that validity of Π1

1-sentences is preserved in
this interpretation.

1In that thesis we were using the formulation of [TD88] of intensional type theory, which trivially
embeds into extensional type theory for which an upper bound is obtained in the current article.
In [Set98b] we transferred the well-ordering proof from [Set93] to the formulation of intensional
type theory as it is used in the Martin-Löf Type Theory community. We introduce that theory
and embed it into extensional type theory in the current article in Sect. 3. The transfer of the
well-ordering proof was possible since the equality type was used in the well-ordering proof in
[Set98b] only for natural numbers.

2

1.2 Related Work

An overview over the state of the art of proof theory of Martin-Löf Type Theory can
be found in [Set04] and [Set08a]. As mentioned before [Set98b] contains the lower
bound for the proof theoretic strength of the theories discussed in this article. A
more easy readable introduction to well ordering proofs in Martin-Löf type theory
can be found in [Set98a].
In [GR94] Griffor and Rathjen were, independent of the author and in parallel, fol-
lowing another approach towards determining the proof theoretic strength of Martin-
Löf’s type theory by embedding constructive set theory into type theory. [GR94]
contains an excellent review of all the research carried out in the past in this area.
We refer the interested reader to that article and only mention the main new results
concerning type theory obtained in [GR94]. Griffor and Rathjen showed, that the
theory ML1V, Martin-Löf’s type theory with one universe and Aczel’s iterative set
V or elimination rules for the universe or both has the strength of Kripke-Platek
set theory KPω. They showed, that type theory with one universe and the W-type
restricted to elements of the universe only, which they called ML1W, has strength
(∆1

2 − CA) + (BI). Adding elimination rules for the universe and/or Aczel’s iterative
set V is shown to yield the same strength. In [GR94] the obvious generalisation of
these results to n universes and ω universes together with their strength is mentioned
as well (no detailed proof is given).
In [Set00] the author has introduced the Mahlo universe, which is significantly
stronger than the type theory with W and finitely many universes, and determined
a lower bound for its proof theoretic strength. In [Set08b] the basic model construc-
tion for type theory with one universe and W-type and with one Mahlo universe and
the W-type was given. That article concentrated mainly on the universe construc-
tions and presented the main constructions, whereas the current article contains
full details for the upper bound of Martin-Löf Type Theory with W-type and one
universe. In the current article we show as well that all Π1

1-sentences provable in the
type theory in question can be shown in KPI+.
The author has developed an autonomous Mahlo universe [Set11], a Π3-reflecting
universe, and a Πn-reflecting universe, but these constructions have not been pub-
lished yet.

1.3 Overview

The article is organised as follows: In Sect. 2 we introduce the versions of extensional
Martin-Löf’s type theory for which we prove the upper bound. To make a precise def-
inition of the substitution, we introduce sets of b-objects, g-terms, g-types, R-terms
and R-types, which should contain all the terms and types occurring in Martin-Löf’s
type theory (g-terms and g-types correspond to the Tarski-formalisation, R-terms
and R-types to the Russel-formalisation). These concepts will be needed afterwards
for the interpretation of the theory MLe

1WT,U in KPI+. Then we define the rules
for the extensional Martin-Löf Type Theories with a universe à la Tarski (MLe

1WT,

3

MLe
1WT,U) and à la Russell (MLe

1WR, MLe
1WR,U) considered in this paper. In Sect. 3

we introduce intensional variants MLi
1WT, MLi

1WT,U, MLi
1WR, MLi

1WR,U of those
theories. We carry out the well-known result that they embed in a straightfor-
ward way into the extensional versions of those theories. In Sect. 4 we compare the
Tarski and the Russel-versions and show that all of them can be embedded into the
strongest Tarski version ML := MLe

1WT,U. In Sect. 5 we introduce Kripke-Platek
set theory and the extension KPI+ used for modelling the type theories in question
in this article.
Having introduced the relevant theories we now develop an interpretation of ML
in the extension of Kripke-Platek style called KPI+. This embedding is a quite
general and flexible method, which can be adopted to variations of Martin-Löf’s
type theory. In Sect. 6, we show, how to interpret terms and types in KPI+. Types
will be introduced as sets of pairs of terms, which are considered to be equal in
that type. We see, how much strength is needed in order to interpret the W-type
and the universe, which correspond to the proof theoretic strength added by those
constructions. In Sect. 7 we prove basic properties of this interpretation, such as
monotonicity of operators, that one obtains equivalence relations, and substitution
lemmas.
In Sect. 8 we prove that the interpretation is correct, that is

If ML ` r : A then KPI+ ` 〈r, r〉 ∈ A∗

Furthermore, we conclude, that the extended version |MLe
1WT,U| can be interpreted

as well.
In Sect. 9 we interpret sentences of Arithmetic A as Â in MLe

1WT and prove, that

for Π1
1-sentences A we get that MLe

1WT ` a ∈ Â implies KPI+ ` A. We con-
clude in Sect. 10 that |ML| ≤ |KPI+|. To complete the proof, we show |KPI+| ≤
ψΩ1(ΩI+ω), which implies because of the embedding of the Martin-Löf type theo-
ries used into ML, that |MLe

1WT,U|, |MLe
1WT|, |MLe

1WR,U|, |MLe
1WR|, |MLi

1WT,U|,
|MLi

1WT|, |MLi
1WR,U|, |MLi

1WR| ≤ ψΩ1(ΩI+ω). By [Set98b], this bound is sharp.

2 Definition of the Formal System of Extensional

Martin-Löf’s type Theory

In this section we will introduce the formulations of extensional Martin-Löf Type
Theory, both a là Tarski and a là Russell, which we will embed into KPI+. In Sect. 3
we will introduce intensional type theory and show that it embeds into extensional
type theory. Therefore the upper bound for extensional type theory is an upper
bound for intensional type theory as well.

Definition 2.1 (a) The symbols of extensional Martin-Löf ’s type theory, are in-
finitely many variables zi (i ∈ ω); the symbols ⇒, :, ,, (,), =, ∈, λ; the term

constructors (with their arity in parenthesis) 0 (0), r (0), N̂ (0), Ak
n (for each

n < k, with arity 0), N̂k (for each k ∈ ω, with arity 0), S (1), i (1), j (1), p0

4

(1), p1 (1), p (2), sup (2), R (2), Ap (2), +̂ (2), Π̂ (2), Σ̂ (2), Ŵ (2), D (3),

P (3), Î (3), Cn (n ∈ ω, arity n+ 1); the type constructors with their arity Nk

(for each k ∈ ω, arity 0), N (0), U (0), T (1), + (2), Π (2), Σ (2), W (2)
and I (3).
To make it easier to remember the meaning of the symbols, we give the fol-
lowing hints: r is the (unique) element of an identity type I; Ak

n is the nth
element of the finite type Nk with k elements, Ck the Casedistinction for Nk;
O is the zero, S the Successor, P Primitive recursion or induction over the
natural numbers N; i stands for left inclusion, j for right inclusion, D is the
case distinction for a type A + B, which is the disjoint union of A and B;
p0 and p1 are the projections, p the pairing for the Σ-type; R the Recursion
operator over a W-type; Ap the application of a function (as an element of a

Π-type) to an argument; N̂, N̂k, Î, +̂, Σ̂, Π̂, Ŵ are codes for the types N, Nk,
I, +, Σ, Π, W, respectively, as elements of the universe U, which become, if
the Tarski-operator T is applied to them, the corresponding type.

(b) We usually write “symbols of Martin-Löf Type Theory” for “symbols of exten-
sional Martin-Löf Type Theory”, when there is no confusion.

(c) The b-objects are variables, λx.b and C(b1, . . . , bn), if C is an n-ary term or
type constructor and b, b1, . . . , bn are b-objects.
The set of free variables of a b-object FV(b) are defined as usual. We write +,
+̂ infix (that is (a+b) for +(a, b)) (x)t for λx.t, (x, y)t for (x)(y)t, (x, y, z)t for

(x)(y, z)t, and if S ∈ {Σ,Π,W, Σ̂, Π̂, Ŵ}, Sx ∈ s.t := S(s, (x)t). Furthermore,
we write sometimes r s or rs for Ap(r, s).
We have the usual conventions about omitting brackets, especially the scope
of λx. is as long as possible, for instance λx.s t should be read as λx.(s t).
We define for b-objects b1, . . . , bn, b and variables x1, . . . , xn the simultaneous
substitution b[x1/b1, . . . , xn/bn] as usual (using the convention, that if xi =
xj then the first substitution applies) and “b[x1/b1, . . . , xn/bn] is an allowed
substitution”.
α-equality (=α) is defined as usual.

(d) The set of g-terms (for generalised terms) is inductively defined as: variables x

are g-terms; if n < k, n, k ∈ N, then Ak
n is a g-term; and if k ∈ N, then N̂k is

a g-term; if r, s, t are g-terms, x, y, z, x′ ∈ VarML, x 6= y 6= z 6= x, then 0, r, N̂,
S(r), λx.r, p(r, s), sup(r, s), i(r), j(r), P(r, s, (x, y)t), Ap(r, s), p0(r), p1(r),

R(r, (x, y, z)s), D(r, (x)s, (x′)t), Π̂x ∈ r.s, Σ̂x ∈ r.s, Ŵx ∈ r.s, r+̂s, Î(r, s, t)
are g-terms; if n ∈ N and r, s1, . . . , sn are g-terms, then Cn(r, s1, . . . , sn) is a
g-term.
Let TermCl be the set of closed g-terms.

(e) The g-types are Nk (k ∈ ω), N, U, and, if A,B are g-types, x ∈ VarML, r, s
g-terms, then Πx ∈ A.B, Σx ∈ A.B, Wx ∈ A.B, A + B, I(A, r, s), T(r) are

5

g-types.

(f) A g-context-piece is a string x1 : A1, . . . , xn : An, where n ≥ 0, xi different
variables, Ai g-types.
A g-context is a g-context-piece x1 : A1, . . . , xn : An, s.t.
FV(Ai) ⊂ {x1, . . . , xn−1}.
A g-judgement is A = B : type or s = t : A where A, B are g-types, s, t are
g-terms. A g-dependent judgements is Γ ⇒ θ where Γ is a g-context and θ a
g-judgement.

(g) R-terms (for Russel-terms) are defined as the g-terms, except, that we replace

Π̂, Σ̂, Ŵ, +̂, Î by Π,Σ,W,+, I respectively.
R-types are defined by the same definition as the g-types, but referring to
R-terms instead of g-terms, and replacing that “T(r) is a g-type” by “r is
an R-type for r an R-term”. R-context-pieces, -contexts, -judgements, and
-dependent judgements are defined as the corresponding g-constructions, but
referring to R-terms and -types instead of the g-terms and -types.

(h) We treat the usual judgements A : type and s : A as abbreviations:
(A : type) :≡ (A = A : type), (s : A) :≡ (s = s : A).

(i) We abbreviate [~x/~t] := [x1/t1, . . . , xn/tn] if ~x = x1, . . . , xn and ~t = t1, . . . , tn.
[x1/t1, . . . , xn/tn] \ {y} := [~x/~t] \ {y} is the result of omitting in [~x/~t] the xi/ti
s.t. xi = y, and [~x/~t] \ {y1, . . . , ym} := (· · · (([~x/~t] \ {y1}) \ {y2}) · · · \ {ym}).

Definition 2.2 of extensional Martin-Löf Type Theory with W-type and one Uni-
verse.
We will define the rules, which are of the form

Γ1 ⇒ Θ1 · · · Γn ⇒ Θn(Rule)
Γ⇒ Θ

where Γ1, . . . ,Γn,Γ are g-context-pieces, Θ1, . . . ,Θn,Θ are g-judgements (n = 0 is
allowed) in the version à la Tarski, and R-context-pieces and R-judgements in the
version à la Russell.
Then we define for ML = MLe

1WT (the extensional version à la Tarski) or ML =
MLe

1WT,U (the extensional version à la Tarski with additional rules for the universe),
ML ` Γ⇒ Θ inductively by:
If (Rule) is a rule of ML as above, ∆ is a g-context-piece such that ∆,Γ1, , . . . ,
∆,Γn, ∆,Γ are g-contexts, and if ML ` ∆,Γi ⇒ Θi for i = 1, . . . , n, then ML `
∆,Γ⇒ Θ.
Analogously we define MLe

1WR ` Γ⇒ Θ (the extensional version à la Russell) and
MLe

1WR,U ` Γ ⇒ Θ MLe
1WR,U ` Γ ⇒ Θ (the version à la Russell corresponding

to MLe
1WT,U), but referring to R-context-pieces, R-contexts etc.instead of g-context-

pieces, g-contexts etc.
We will write Θ for ⇒ Θ as a premise of a rule.

6

In the following, let A,B,A′, B′ be g-types (or R-types in the formulation à la Rus-
sell), a, b, r, s, t, ri, si, ti, a

′, b′, r′, s′, t′, r′i, s
′
i, t
′
i, t
′′ be g-terms (or R-terms) θ, θ′ be g-(or

R-)judgements Γ′ be a g-(R-)context-pieces.
Furthermore, let x, y, z, u ∈ VarML. Additionally assume for all rules, that all sub-
stitution mentioned explicitly are allowed. For instance in the rule (N=

S), assume
that
s1[x/t, y/P(t, s0, (x, y)s1)] and A[z/S(t)] are allowed substitutions.

General Rules

A : type
(ASS)

x : A⇒ x : A

A : type Γ′ ⇒ Θ
(THIN)

x : A,Γ′ ⇒ Θ

t = t′ : A(SYM)
t′ = t : A

A = B : type
B = A : type

x : A,Γ′ ⇒ Θ ⇒ t : A
(SUB)

Γ′[x/t]⇒ Θ[x/t]

t = t′ : A t′ = t′′ : A(TRANS)
t = t′′ : A

A = B : type B = C : type
A = C : type

x : A,Γ′ ⇒ B : type ⇒ t = t′ : A
(REPL1)

Γ′[x/t]⇒ B[x/t] = B[x/t′] : type

x : A,Γ′ ⇒ s : B ⇒ t = t′ : A
(REPL2)

Γ′[x/t]⇒ s[x/t] = s[x/t′] : B[x/t]

t = t′ : A A = B : type
(REPL3)

t = t′ : B

x : A,Γ′ ⇒ θ
(ALPHA)

x : A′,Γ′ ⇒ θ

A : type

A = A′ : type
t : A

t = t′ : A
(if A=αA

′, t=αt
′)

Formation Rules

(NF
k) Nk : type (k ∈ N) (NF) N : type

A = A′ : type

x : A⇒ B = B′ : type
(ΠF)

Πx ∈ A.B = Πx ∈ A′.B′ : type

A = A′ : type

x : A⇒ B = B′ : type
(ΣF)

Σx ∈ A.B = Σx ∈ A′.B′ : type

7

A = A′ : type

x : A⇒ B = B′ : type
(WF)

Wx ∈ A.B = Wx ∈ A′.B′ : type

A = A′ : type

B = B′ : type
(+F)

A+B = A′ +B′ : type

A = A′ : type t = t′ : A s = s′ : A
(IF)

I(A, t, s) = I(A′, t′, s′′) : type

Introduction Rules

(NI
k) Ak

n : Nk (n < k, n, k ∈ N) (NI) 0 : N t = t′ : N
S(t) = S(t′) : N

x : A⇒ B : type

x : A⇒ t = t′ : B(ΠI)
λx.t = λx.t′ : Πx ∈ A.B

x : A⇒ B : type

s = s′ : A
t = t′ : B[x/s]

(ΣI)
p(s, t) = p(s′, t′) : Σx ∈ A.B

x : A⇒ B : type r = r′ : A s = s′ : B[x/r]→Wx ∈ A.B
(WI)

sup(r, s) = sup(r′, s′) : Wx ∈ A.B

A : type

B : type

s = s′ : A(+I
1)

i(s) = i(s′) : A+B

A : type

B : type

s = s′ : B(+I
2)

j(s) = j(s′) : A+B

t = t′ : A(II)
r : I(A, t, t′)

Elimination Rules

x : Nk ⇒ A : type t = t′ : Nk si = s′i : A[x/Ak
i](i = 0 . . . k − 1)

(NE
k)

Ck(t, s0, . . . , sk−1) = Ck(t
′, s′0, . . . , s

′
k−1) : A[x/t]

(k ∈ N)

x : N⇒ A : type

s = s′ : A[x/0]
r = r′ : N

x : N, y : A⇒ t = t′ : A[x/S(x)]
(NE)

P(r, s, (x, y)t) = P(r′, s′, (x, y)t′) : A[x/r]

x : A⇒ B : type s = s′ : Πx ∈ A.B r = r′ : A
(ΠE)

Ap(s, r) = Ap(s′, r′) : B[x/r]

8

x : A⇒ B : type

r = r′ : Σx ∈ A.B
(ΣE

0)
p0(r) = p0(r′) : A

x : A⇒ B : type

r = r′ : Σx ∈ A.B
(ΣE

1)
p1(r) = p1(r′) : B[x/p0(r)]

x : A⇒ B : type

u : Wx ∈ A.B ⇒ C : type

r = r′ : Wx ∈ A.B
x : A, y : B →Wx ∈ A.B, z : Πv ∈ B.C[u/Ap(y, v)]⇒ t = t′ : C[u/sup(x, y)]

(WE)
R(r, (x, y, z)t) = R(r′, (x, y, z)t′) : C[u/r]

A : type

z : A+B ⇒ C : type

x : A⇒ s = s′ : C[z/i(x)]

B : type

r = r′ : A+B
y : B ⇒ t = t′ : C[z/j(y)]

(+E)
D(r, (x)s, (y)t) = D(r′, (x)s′, (y)t′) : C[z/r]

s : A t : A r : I(A, s, t)
(IE)

s = t : A

Equality Rules

x : Nk ⇒ A : type si : A[x/Ak
i](i = 0 . . . k − 1)

(N=
k)

Ck(A
k
n, s0, . . . , sk−1) = sn : A[x/Ak

n]
(n < k, n, k ∈ N)

x : N⇒ A : type s : A[x/0] x : N, y : A⇒ t : A[x/S(x)]
(N=

0)
P(0, s, (x, y)t) = s : A[x/0]

x : N⇒ A : type

s : A[x/0]
r : N

x : N, y : A⇒ t : A[x/S(x)]
(N=

S)
P(S(r), s, (x, y)t) = t[x/r, y/P(r, s, (x, y)t)] : A[x/S(r)]

x : A⇒ B : type

λx.t : Πx ∈ A.B
r : A(Π=)

Ap(λx.t, r) = t[x/r] : B[x/r]

x : A⇒ B : type t : Πx ∈ A.B
(Πη)

λx.Ap(t, x) = t : Πx ∈ A.B
(if x 6∈ FV(t))

A : type p(r, s) : Σx ∈ A.B
(Σ=

0)
p0(p(r, s)) = r : A

9

x ∈ A⇒ B : type p(r, s) : Σx ∈ A.B
(Σ=

1)
p1(p(r, s)) = s : B[x/r]

x ∈ A⇒ B : type t : Σx ∈ A.B
(Σ=

2)
t = p(p0(t), p1(t)) : Σx ∈ A.B

x : A⇒ B : type

u : Wx ∈ A.B ⇒ C : type

r : A
s : B[x/r]→Wx ∈ A.B

x : A, y : B →Wx ∈ A.B, z : (Πv ∈ B.C[u/Ap(y, v)])⇒ t : C[u/sup(x, y)]
(W=)

R(sup(r, s), (x, y, z)t) = t[x/r, y/s, z/λv.R(Ap(s, v), (x, y, z)t)] : C[u/sup(r, s)]

(If v 6∈ FV(s) ∪ FV((x, y, z)t))

z ∈ A+B ⇒ C : type r : A x : A⇒ s : C[z/i(x)] y : B ⇒ t : C[z/j(y)]
(+=

0)
D(i(r), (x)s, (y)t) = t[x/r] : C[z/i(r)]

z ∈ A+B ⇒ C : type r : B x : A⇒ s : C[z/i(x)] y : B ⇒ t : C[z/j(y)]
(+=

1)
D(j(r), (x)s, (y)t) = t[y/r] : C[z/j(r)]

A : type s : A t : A r : I(A, s, t)
(I=)

r = r : I(A, s, t)

Rules for the Universe (à la Tarski)

Formation Rules for the Universe

(UI) U : type
a = a′ : U(TI)

T(a) = T(a′) : type

Introduction Rules for the Universe

(N̂I
k) N̂k : U (k ∈ ω) (N̂I) N̂ : U

a = a′ : U x : T(a)⇒ b = b′ : U
(Π̂I)

Π̂x ∈ a.b = Π̂x ∈ a′.b′ : U

a = a′ : U x : T(a)⇒ b = b′ : U
(Σ̂I)

Σ̂x ∈ a.b = Σ̂x ∈ a′.b′ : U

10

a = a′ : U x : T(a)⇒ b = b′ : U
(ŴI)

Ŵx ∈ a.b = Ŵx ∈ a′.b′ : U

a = a′ : U b = b′ : U
(+̂

I
)

a+̂b = a′+̂b′ : U

a = a′ : U s = s′ : T(a) t = t′ : T(a)
(̂II)

Î(a, s, t) = Î(a′, s′, t′) : U

Equality rules for the Universe

(N̂=
k) T(N̂k) = Nk : type (k ∈ ω) (N̂=) T(N̂) = N : type

a : U x : T(a)⇒ b : U
(Π̂=)

T(Π̂x ∈ a.b) = Πx ∈ T(a).T(b) : type

a : U x : T(a)⇒ b : U
(Σ̂=)

T(Σ̂x ∈ a.b) = Σx ∈ T(a).T(b) : type

a : U x : T(a)⇒ b : U
(Ŵ=)

T(Ŵx ∈ a.b) = Wx ∈ T(a).T(b) : type

a : U b : U(+̂
=

)
T(a+̂b) = T(a) + T(b) : type

a : U t : T(a) s : T(a)
(̂I=)

T(̂I(a, t, s)) = I(T(a), t, s) : type

The rules of MLe
1WT are all rules mentioned above (using g-terms, g-types etc.).

The rules of MLe
1WT,U are all rules of MLe

1WT and additionally the following rules:

Σ̂x ∈ a.b : U
(Σ̂E)

a : U
Σ̂x ∈ a.b : U

x : T(a)⇒ b : U
Π̂x ∈ a.b : U

(Π̂E)
a : U

Π̂x ∈ a.b : U
x : T(a)⇒ b : U

Ŵx ∈ a.b : U
(ŴE) a : U

Ŵx ∈ a.b : U
x : T(a)⇒ b : U

a+̂b : U
(+̂

E
) a : U

a+̂b : U
b : U

Î(a, s, t) : U
(̂I=)

a : U

Î(a, s, t) : U

s : T(a)

Î(a, s, t) : U

t : T(a)

The rules of MLe
1WR are the same as the rules of MLe

1WT, but referring to R-terms,

11

R-types etc. and replacing the Rules for the Universe by:

Rules for the Universe à la Russell

Formation Rules for the Universe

(UI) U : type
a = a′ : U(TI)
a = a′ : type

Introduction Rules for the Universe

(NU
k) Nk : U (k ∈ ω) (NU

k) N : U

a = a′ : U x : a⇒ b = b′ : U(ΠU)
Πx ∈ a.b = Πx ∈ a′.b′ : U

a = a′ : U x : a⇒ b = b′ : U(ΣU)
Σx ∈ a.b = Σx ∈ a′.b′ : U

a = a′ : U x : a⇒ b = b′ : U(WU)
Wx ∈ a.b = Wx ∈ a′.b′ : U a = a′ : U b = b′ : U(+U)

a+ b = a′ + b′ : U

a = a′ : U t = t′ : a s = s′ : a(IU)
I(a, t, s) = I(a′, t′, s′) : U

The rules of MLe
1WR,U are all rules of MLe

1WR and additionally the following rules:

Σx ∈ a.b : U
(ΣU,E)

a : U
Σx ∈ a.b : U
x : a⇒ b : U

Πx ∈ a.b : U
(ΠU,E)

a : U
Πx ∈ a.b : U
x : a⇒ b : U

Wx ∈ a.b : U
(WU,E)

a : U
Wx ∈ a.b : U
x : a⇒ b : U

a+ b : U
(+U,E)

a : U
a+ b : U
b : U

I(a, s, t) : U
(IU,E)

a : U
I(a, s, t) : U

s : a
I(a, s, t) : U

t : a

3 Intensional Martin-Löf Type Theory and its Em-

bedding into Extensional Type Theory

In this section we introduce the intensional version of Martin-Löf Type Theory, and
repeat the standard proof how to interpret it in extensional type theory. The well-
ordering proof in [Set98b] was carried out in that theory. We note that [TD88] has

12

a different way of formulating intensional type theory, which we used in [Set93], and
which is trivially a sub theory of extensional type theory.
Definition 3.1 (a) The symbols and constructors of intensional Martin-Löf type

theory are the symbols and constructors of extensional Martin-Löf type theory,
but replacing r by refl of arity 1 and adding a constructor J of arity 3.

(b) The set of bint-objects, gint-terms, gint-types, gint-context pieces, gint-contexts,
gint-judgements, gint-dependent judgements, Rint-terms, Rint-types, Rint-context
pieces, Rint-contexts, Rint-judgements, Rint-dependent judgements, are defined
as the corresponding b-/g-/R-constructions, but replacing r by refl, adding J as
a constructor for terms, omitting that r is a gint-term, and adding the clause
for refl, J for gint-terms as follows: If r, s, t, t′ are gint-terms x ∈ VarML, then
refl(r) and J(r, s, t, (x)t′) are gint-terms.

Definition 3.2 of intensional Martin-Löf Type Theory with W-type and one Uni-
verse.
The rules for MLi

1WT (the intensional version à la Tarski) and MLi
1WR (the inten-

sional version à la Russell) and their extensions MLi
1WT,U and MLi

1WR,U are the
rules for MLe

1WT, MLe
1WR, MLe

1WT,U, MLe
1WR,U, respectively, but referring to gint-

objects and Rint-objects instead of g-objects and R-objects, and replacing the rules
(II), (IE), and (I=) by the following rules:

Intensional Equality Rules

t : A(II)
refl(t) : I(A, t, t)

A : Set
x : A, y : A, z : I(A, x, y)⇒ C : type

r = r′ : A
s = s′ : A

t = t′ : I(A, r, s)

z′ : A⇒ u = u′ : C[x/z′, y/z′, z/refl(z′)]
(IE)

J(r, s, t, (z′)u) = J(r′, s′, t′, (z′)u′) : C[x/r, y/s, z/t]

A : type

x : A, y : A, z : I(A, x, y)⇒ C : type

r : A
z′ : A⇒ u : C[x/z′, y/z′, z/refl(z′)]

(I=)
J(r, r, refl(r), (z′)u) = u[z′/r] : C[x/r, y/r, z/refl(r)]

Definition 3.3 We define a translation φ of bint-, gint- and Rint-constructions into
the corresponding respective b-, g- and R-constructions by recursively replacing

• refl(r) by r,

13

• J(r, s, t, (z′)u) by u[z′/r].

Lemma 3.4 If MLi
1WT, MLi

1WR, MLi
1WR,U, or MLi

1WT,U proves Γ⇒ θ, then the
corresponding respective extensional version MLe

1WT, MLe
1WR, MLe

1WR,U, MLe
1WT,U,

proves φ(Γ)⇒ φ(θ).

Proof: By induction on the derivation. For all unchanged rules this follows by
applying the same rule to the IH. All what remains to show is that for the intensional
equality rules, the translation of the conclusion is derivable in extensional type
theory from the translated assumptions using the extensional equality rules.
In case of (II) this is obvious (the translated conclusion is r : I(A, t, t)). In case of
IE one needs to show that the assumptions imply the translated conclusion which
is u[z′/r] = u′[z′/r′] : C[x/r, y/s, z/t]. From t = t′ : I(A, r, s) one concludes t :
I(A, r, s), therefore r = s : A and therefore I(A, r, s) = I(A, r, r). Therefore t =
t′ : I(A, r, r), and t = r : I(A, r, s). It follows C[x/r, y/s, z/t] = C[x/r, y/r, z/r].
We have u[z′/r] = u′[z′/r′] : C[x/r, y/r, z/r] and therefore u[z′/r] = u′[z′/r′] :
C[x/r, y/s, z/t].
In case of (I=) the translated conclusion is u[z′/r] = u[z′/r] : C[x/r, y/r, z/r] which
follows from the last translated assumption by substitution.

4 Embedding of the Russell Version of Martin Löf

Universes into the Tarski Version

In this section we prove, that Martin-Löf Type Theory à la Russell MLe
1WR,U can

be embedded into Martin-Löf Type Theory à la Tarski MLe
1WT,U. Therefore, the

upper bound proved for MLe
1WT,U is an upper bound for MLe

1WR and MLe
1WR,U as

well, and as well for MLe
1WT (since it is a proper sub theory). By Lemma 3.4 it is

as well an upper bound for MLi
1WT, MLi

1WT,U, MLi
1WR and MLi

1WR,U.

Definition 4.1 (a) Define for C constructors,

ψ(N) :≡ N̂
ψ(Nk) :≡ N̂k,

ψ(Π) :≡ Π̂,

ψ(Σ) :≡ Σ̂,

ψ(W) :≡ Ŵ,
ψ(+) :≡ +̂,

ψ(I) :≡ Î
ψ(C) :≡ C otherwise

(b) Define ψ : R-term→ g-term by recursion on the b-objects:
ψ(x) :≡ x (x ∈ VarML),
ψ(λx.t) :≡ λx.ψ(t),
ψ(C(t1, . . . , tn)) :≡ ψ(C)(φ(t1), . . . , φ(tn)) (for constructors C).

(c) Define the function ρ : R-type→ g-type by recursion on the g-types:
ρ(Sx ∈ r.s) :≡ Sx ∈ ρ(r).ρ(s) (S ∈ Σ,Π,W),
ρ(r + s) :≡ ρ(r) + ρ(s), ρ(I(r, s, t)) :≡ I(ρ(r), ψ(s), ψ(t)),
ρ(C) :≡ C for C ∈ {N,Nk,U}, ρ(t) :≡ T(ψ(t)), otherwise.

(d) If Γ = x1 : A1, . . . , xn : An is a g-context-piece, then
ρ(Γ) :≡ x1 : ρ(A1), . . . , xn : ρ(An)

14

(e) If r, s are g-terms, A is a g-type, then
ρ(r = s : A) :≡ (ψ(r) = ψ(s) : ρ(A)),
ρ(A = B : type) :≡ (ρ(A) = ρ(B) : type).

(f) Define µ : g-type→ g-type by recursion on the g-types:

µ(T(sx ∈ r.s)) :≡ Sx ∈ µ(T(r)).µ(T(s)) (where s = Σ̂, Π̂, Ŵ and S = Σ,Π,W
respectively),

µ(T(r+̂s)) :≡ µ(T(r)) + µ(T(s)), µ(T(̂I(r, s, t)))) :≡ I(µ(T(r)), s, t),

µ(T(N̂)) :≡ N µ(T(N̂k)) :≡ Nk

µ(r + s) :≡ µ(r) + µ(s), µ(I(r, s, t)) :≡ I(µ(r), s, t),
µ(Sx ∈ r.s) :≡ Sx ∈ µ(r).µ(s) (S ∈ {Σ,Π,W})
µ(t) :≡ t, otherwise.

Lemma 4.2 Assume r, s, t, si b-objects, xi ∈ VarML.

(a) FV(t) = FV(ψ(t)) = FV(ρ(t)) = FV(µ(t)).

(b) If t[x1/s1, . . . , xn/sn] allowed, then ψ(t)[x1/ψ(s1), . . . , xn/ψ(sn)],
µ(t)[x1/ψ(s1), . . . , xn/ψ(sn)], ρ(t)[x1/ψ(s1), . . . , xn/ψ(sn)] are allowed.

(c) If t is an R-term, then ρ(t) = µ(T(ψ(t))).

(d) If t, si are b-objects, then ψ(t[x1/s1, . . . , xn/sn]) = ψ(t)[x1/ψ(s1), . . . , xn/ψ(sn)].
If t is a g-type, si are g-terms, then µ(µ(t)) = µ(t),
µ(t[x1/s1, . . . , xn/sn]) = µ(µ(t)[x1/s1, . . . , xn/sn]),
If t is an R-type, si are R-terms, then
ρ(t[x1/s1, . . . , xn/sn]) = µ(ρ(t)[x1/ψ(s1), . . . , xn/ψ(sn)]).

(e) If t is a g -judgement, -context, -context-piece, or dependent judgement, then
ρ(t) is an R-judgement, -context, -context-piece, or dependent judgement, re-
spectively.

(f) If r=αs, thenψ(r)=αψ(s), ρ(r)=αρ(s), µ(r)=αµ(s).

(g) If r is a g-term and b-term, then ψ(r) = r.
If r is a g-type and b-type, then ρ(r) = r.

Lemma 4.3 In all versions of Martin-Löf Type Theory, we have the following useful
derived rule:

Γ, x : A,Γ′ ⇒ θ Γ⇒ A = A′ : type

Γ, x : A′,Γ′ ⇒ θ

Proof:
Let y be a fresh variable. Then by (THIN) Γ, y : A′, x : A,Γ′ ⇒ θ, easily we have
Γ, y : A′ ⇒ y : A, By (SUB) Γ, y : A′,Γ′[x/y] ⇒ θ[x/y], and by change of the
variable we obtain the assertion.

Lemma 4.4 Let MLT be MLe
1WT or MLe

1WT,U and Γ,Γ′ be g-context-pieces, a, b, t
g-terms, A,B g-types, x a variable. The following applies:

15

(a) If MLT ` Γ⇒ s : A, or MLT ` Γ⇒ s = t : A then MLT ` Γ⇒ A : type.

(b) If MLT ` Γ ⇒ Sx ∈ A.B : type (S ∈ {Σ,Π,W}), then MLT ` Γ ⇒ A,
MLT ` Γ, y : A⇒ B[x/y] : type, for all y ∈ VarML \X for some finite set X.

(c) If MLT ` Γ⇒ A+B : type then MLT ` Γ⇒ A : type, MLT ` Γ⇒ B : type.

(d) If MLT ` Γ⇒ I(A, b, c) : type, then MLT ` Γ⇒ b : A, MLT ` Γ⇒ c : A.

(e) If MLT ` Γ⇒ T(b) : type then MLT ` Γ⇒ b : U.

(f) If MLT ` Γ⇒ A = B : type, then MLT ` Γ⇒ A : type, MLT ` Γ⇒ B : type.

(g) If MLT ` Γ, x : A,Γ⇒ θ then MLT ` Γ⇒ A : type.

Note that (f) is trivial, but will be needed in the following as an additional premise
for the induction.
Proof: We first change the calculus, treating A : type no longer as an abbreviation
for A = A : type. For every instance of a rule with conclusion A = A : type we
add a rule with conclusion A : type where any premise B = B : type is replaced by
B : type, and any premise s = s : B is replaced by s : B. Furthermore, add the
rules

x : A,Γ′,Γ′′ ⇒ B : type ⇒ t = t′ : A
(REPL1)

Γ′[x/t],Γ′′[x/t′]⇒ B[x/t′] : type

A : type
(ALPHA1)

A′ : type
if A=αA

′

A : type
(REFL)

A = A : type

If for this calculus the theorem is provable, then this calculus is equivalent to the
original: If we have a proof in the original calculus, then embed it into the calculus,
by applying, whenever we need the removed rules the weak inferences. If we have
a proof in the new calculus, the result is a proof in the original calculus, since we
only added derived rules.
Now the proof follows by induction on the length of the (new) derivation. The only
difficult case is (SUB), where the difficulty are the the second conclusion in the cases
(b): let the conclusion be for instance Γ,Γ′[x/t] ⇒ (Σx′ ∈ A.B)[x/t] : type. By IH
Γ,Γ′, y : A⇒ B[x′/y] : type for y 6∈ X, therefore Γ,Γ′[x/t], y : A[x/t]⇒ B[x′/y][x/t]
for x 6= y, x 6∈ X (the substitution is allowed). Then for y 6∈ X ∪ {x}, if x = x′ or
x 6∈ FV(B), it follows (Σx′ ∈ A.B)[x/t] = Σx′ ∈ A[x/t].B and we have the assertion,
otherwise x′ 6∈ FV(t) and B[x′/y][x/t] = B[x/t][x′/y] : type.
Similarly we argue in (REPLi), the other rules are easy.

16

Lemma 4.5 (a) MLe
1WT,U ` Γ ⇒ r = s : U , then MLe

1WT,U ` Γ ⇒ T(r) =
µ(T(r)) : type and MLe

1WT,U ` Γ⇒ T(s) = µ(T(s)) : type

(b) MLe
1WT,U ` Γ ⇒ A = B : type , then MLe

1WT,U ` Γ ⇒ A = µ(A) : type and
MLe

1WT,U ` Γ⇒ B = µ(B) : type

Proof:
(a): Induction on the definition of r being a b-object. If for instance MLe

1WT,U `
Γ ⇒ Σ̂x ∈ a.b : U, then by the additional rules of MLe

1WT,U it follows Γ ⇒ a : U
and Γ, x : T(a) ⇒ b : U, by IH therefore Γ ⇒ T(a) = µ(T(a)) : type, Γ, x : T(a) ⇒
T(b) = µ(T(b)) : type, by type introduction follows the assertion, similarly for the
other terms, for which µ(T(t)) does something.
(b) Similar, using Lemma 4.4 instead of the new rules.

Lemma 4.6 If MLe
1WR,U ` Γ⇒ θ then MLe

1WT,U ` ρ(Γ)⇒ ρ(θ).
Especially, if Γ⇒ θ is a dependent judgement of both MLe

1WR,U and MLe
1WT,U, then

we have:
If MLe

1WR,U ` Γ⇒ θ then MLe
1WT,U ` Γ⇒ θ.

Proof: Induction on the derivation.
In most rules, the assertion follows by the same rules.
Difficult rules: (SUB), (REPLi): Use 4.2 (d), 4.5 and 4.3.
Equality rules and extensional equality rules: use for the substitution part the same
argument.
Second and third rule in (UI): we conclude T(ψ(A)), and using 4.5 and an easy
argument follows the assertion.
Universe introduction rules (possibly extensional): easy.

Notation 4.7 In the following we will write ML for MLe
1WT,U.

5 Definition of KPI+

We introduce now the Kripke-Platek set theory KPI+, in which we will interpret
afterwards ML. For more details on it, the reader should refer to [Bar75], [Jäg79],
[Jäg83], [JP82], [Jäg86], and [Poh82].

Definition 5.1 Definition of Kripke-Platek set theory:

(a) Let LKP be the classical first-order language, with terms being variables, atomic
formulas being u ∈ v, ¬(u ∈ v), Ad(u), ¬Ad(u). The set of Variables should
be VarKP = {ui|i ∈ N} (a meta-set), ui 6= uj for i 6= j.
The formulas are built from atomic formulas by ∧, ∨, ∀, ∃. We define ¬A
by the deMorgan’s laws. The quantifier in ∀x.φ (∃x.φ) is bounded, if φ of the
form x ∈ v → B (x ∈ v ∧ B) with x 6= v. A ∆0-formula is a formula with no
unbounded quantifier.
We abbreviate
A→ B :≡ ((¬A) ∨B),

17

∀x ∈ v.B :≡ ∀x.x ∈ v → B,
∃x ∈ v.B :≡ ∃x.(x ∈ v ∧B),
(u = v) :≡ ((∀x ∈ u.x ∈ v) ∧ (∀x ∈ v.x ∈ u)),
u /∈ v :≡ ¬(u ∈ v),
tran(u) :≡ ∀x ∈ u.∀y ∈ x.y ∈ u,
infinite(u) :≡ ∃x ∈ u.(x = x) ∧ ∀x ∈ u.∃y ∈ u.x ∈ y.
Inacc(x) :≡ Ad(x) ∧ ∀y ∈ x.∃z ∈ x.y ∈ z ∧ Ad(z).
Inaccn(x) :≡ ∃x0, . . . , xn.Inacc(x0) ∧ Ad(x1) ∧ Ad(x2) ∧ · · · ∧ Ad(xn) ∧ x0 ∈
x1 ∧ x1 ∈ x2 ∧ · · · ∧ xn−1 ∈ xn ∧ x = xn.

ψ a formula, then ψu means the replacing of every unbounded quantifier ∀v by
∀v ∈ u and ∃v by ∃v ∈ u.
Note, that Inacc(x) expresses, that x is an admissible, closed under admissibles,
the ordinal of which is an inaccessible, and Inaccn(x), that x is an admissible,
which is at least the nth admissible above an x s.t. Inacc(x).

(b) Definition of axiom schemes:

(Ext) ∀x.∀y.∀z.x = y → (x ∈ z → y ∈ z) ∧ (Ad(x)→ Ad(y))
(Foud) ∀~z.[∀x.(∀y ∈ x.φ(y, ~z)→ φ(x, ~z))→ ∀x.φ(x, ~z)]

(φ an arbitrary formula)
(Pair) ∀x.∀y.∃z.x ∈ z ∧ y ∈ z.
(Union) ∀x.∃z.∀y ∈ x.∀u ∈ y.u ∈ z.
(∆0 − sep) ∀~z.∀w.∃y.[(∀x ∈ y.(x ∈ w ∧ φ(x, ~z)))

∧∀x ∈ w.φ(x, ~z)→ x ∈ y]
(φ a ∆0-formula).

(∆0 − coll) ∀~z.∀w.[(∀x ∈ w.∃y.φ(x, y, ~z))
→ ∃w′.∀x ∈ w.∃y ∈ w′.φ(x, y, ~z)]

(φ a ∆0-formula).
(Ad.1) ∀x.Ad(x)→ tran(x) ∧ ∃w ∈ x.infinite(w).
(Ad.2) ∀x.∀y.Ad(x) ∧ Ad(y)→ x ∈ y ∨ x = y ∨ y ∈ x.
(Ad.3) ∀x.Ad(x)→ ψx,

(ψ an instance of (Pair), (Union), (∆0 − sep),
(∆0 − coll)).

(Lim) ∀x.∃y.Ad(y) ∧ x ∈ y.
(inf) ∃x.infinite(x).
(+n) ∃x.Inaccn(x).

(c) KPI+ is the theory
(Ext) + (Foud) + (Pair) + (Union) + (∆0 − sep) + (∆0 − coll) + (inf)
+(Ad.1− 3) + {(+n)|n ∈ ω}.
So KPI+ is a theory, which guarantees the existence of one recursive inacces-
sible, and of finitely many admissibles above it.

18

Definition 5.2 (a) Ord is the class of ordinals.

(b) α(a) :=
⋃

(a ∩Ord).

(c) Ad1 :=
⋂
{x|Ad(x)}, Ad2 :=

⋂
{x|Ad(x) ∧ Ad1 ∈ x}, AdI :=

⋂
{x|Inacc(x)},

AdI,n :=
⋂
{x|Inaccn(x)}. Note, that Ad1, Ad2, AdI, AdI,n can be defined,

since there exists b s.t. Ad(b) or Inacc(b) or Inaccn(b), and therefore we can
replace the class by {x ∈ b ∪ {b}| · · · }.

(d) Ω1 := α(Ad1), I := α(AdI), In := α(AdI,n).

(e) ad(u) :=
⋂

({c ∈ AdI|Ad(c) ∧ u ∈ c} ∪ {AdI}),
α+(u) := α(ad(u)).

Remark 5.3 In KPI+ we have

(a) Ad(Ad1), Ad(Ad2), Inacc(I), Inaccn(In).

(b) u ∈ AdI → ad(u) ∈ AdI ∧ Ad(ad(u)) ∧ u ∈ ad(u).

6 Interpretation of Terms and Types

A type A will be interpreted basically as a set of pairs of closed terms: 〈t, s〉 ∈ A∗
means that t and s are equal elements of this types. We will define A∗ as the set of
terms, which are by an introductory rule elements of this type, and close it under
the reduction rule. For instance, if A∗ and B∗ are already defined, then

(A+B)∗ := +∗(A∗, B∗)

where again
+∗(u, v) = Compl(+basis(u, v))

+basis(u, v) := {〈i(a), i(a′)〉|〈a, a′〉 ∈ u} ∪ {〈j(b), j(b′)〉|〈b, b′〉 ∈ v}

Compl(u) := {〈r, s〉|∃r′, s′.〈r′, s′〉 ∈ u ∧ r→redr
′ ∧ s→reds

′}

Since we only want to interpret finitely many types, namely those types, which occur
in a certain derivation, we interpret dependent types as Σ-functions, the arguments
of which are represented by the free variables of the type, in such a way, that
A∗[x1/t1, . . . , xn/tn] = (A[x1/t1, . . . , xn/tn])∗.
The Π-type has an introductory rule with a premise, where dependency occurs. The
intended meaning of the premise x : A⇒ t = t′ : B is

∀r, r′.〈r, r′〉 ∈ A∗ → 〈t[x/r], t′[x/r′]〉 ∈ B∗

Furthermore, we know

〈r, r′〉 ∈ A∗ ⇒ B∗[x/r] = B′∗[x/r′]

19

Since we have to close it under α-conversion we can therefore define (Πx ∈ A.B)∗ :=
Π∗(A∗, (x)B∗), where Π∗(u, f) = Compl(Πbasic(u, f)) and

Πbasis(u, f) := {〈λy.t, λy′.t′〉|∀〈r, r′〉 ∈ u.〈t[y/r], t′[y′/r′]〉 ∈ f(r) ∧ f(r) = f(r′)})

The condition f(r) = f(r′) has been added for technical reasons.
In order to make proofs about the terms easy, we will have deterministic reduction-
rules. We will allow e.g. Ap(λx.r, s)→redr[x/s] only, if s is in normal form. Further-
more, we do not allow any reductions of λx.r, so giving reduction rules generally
only for closed terms This simple approach is possible, since, from the definition of
(Πx ∈ A.B)∗, we see, that, if 〈λx.t, λx.t〉 ∈ (Πx ∈ A.B)∗, and if t→ t′ in a general
sense for open terms, t[x/r]→redt

′[x/r] for closed terms r. But now, if B∗ is closed
under →red, we conclude 〈λx.t, λx.t′〉 ∈ (Πx ∈ A.B)∗.
The interpretation of the W-type, which represents an inductive definition, is done
in the usual way: we take some operator on sets and iterate it up to the closure
ordinal, which is the next admissible above the components A and B of it. By the
introduction rule, we get as the operator F such that

FW(u, f)(v) = Compl({〈sup(s, λy.t), sup(s′, λy′.t′)〉|〈s, s′〉 ∈ u
∧∀〈r, r′〉 ∈ f(s).〈t[y/r], t′[y′/r′]〉 ∈ v})

(Wx ∈ A.B)∗ := Fα
W(A∗, (x)B∗). We can choose as α any admissible ordinal s.t. A∗

and (x)B∗ are elements of Lα. We will take as α In, the nth admissible above I, and
n is the maximum of lev(A) and lev(B), which is the number of nestings of W-types
in A and B. Although this ordinal is usually too big, it suffices for our construction.
In the introduction rules for the elements of the universe, e.g.

a : U x : T(a)⇒ b : U
(Π̂I)

Π̂x : a.b : U

we introduce simultaneously the elements a of the universe and its interpretation
T(a) as a type. We will therefore first define a set Û of triples 〈a,A, b〉, where a and
b are terms, considered as equal elements of the universe, such that T(a)∗ = T(b)∗ =
A. Therefore

U∗ = {〈a, b〉|∃A.〈a,A, b〉 ∈ Û}

and T(a)∗ = f(a), where

f = {〈a,A〉|∃b.〈a,A, b〉 ∈ Û}

Û is again the fixed point of an operator Ũ, so Û = Ũα for some admissible α.
Since U is closed under the W-type, in the definition of Ũ we need to go to the next
admissible. Therefore, α must be closed under the step to the next admissible. We
can choose α := I, which is a recursive inaccessible, i.e. an admissible closed under
the step to the next admissible. Here we see, why we need the theory KPI+: We

20

need, one admissible, closed under admissibles, and finitely many admissibles above
it.
We want to interpret an intuitionistic theory in a classical one, using some realisa-
tion. Now if we have a realisation interpretation as indices for recursive functions
there is naturally a very easy realisation of ¬∀x.∃y.φ(x, y), if ∀x.∃y.φ(x, y) is arith-
metical formula, such that from x we cannot compute a y such that ϕ(x, y) holds:
every term λx.t does it since there is no realisation of ∀x.∃y.φ(x, y). Therefore there
are false recursive realisations. But proofs carried out in an intuitionistic theory
like Martin-Löf Type Theory should not prove false statements. The reason, why it
does not prove any, is, that we can apply the realising term λu.s of ¬∀x.∃y.φ(x, y),
in some sense to non intuitionistic proofs as well. In order to fix this, we allow to
add to our model a constructor, which has a non recursive reduction rule, and gives
us the y depending on the x. Then we have a realising term t for ∀x.∃y.φ(x, y), and
can apply any proof λu.s of ¬∀x.∃y.φ(x, y) to it to get an element of type ⊥ which
is empty. Therefore, adding non recursive constructors, we can achieve that there
is no realising term of a false formula.
We want to extend our result even for Π1

1-sentences. Here again we have the
problem, that the powerset of the natural numbers, N → U, does not represent
all sets in KPI+. We will not be able to get a result, where we conclude from
ML ` ∀X ∈ (N → U).φ(X), that KPI+ ` ∀x.x ⊂ ω → φ′(x) for the translation φ′

of φ, but only, if we have, that x is an element of the first admissible. (We could
easily extend it for x being an element of the first recursive inaccessible admissible
without any trouble, but the result is enough to get an upper bound for the provable
proof theoretic strength).)
Anyway, this text serves only to motivate the introduction of non recursive con-
structors. We have to quantify over all possible choices of new constructors. We will
have either constructors, that give as a natural number (functions ωl → ω for some
l), or functions, that gives us an element of the universe, in order to get elements

of the powerset of N, but we only need the elements N̂0 (for is not element) and N̂1

(for is an element).

Definition 6.1 (a) We assume, that we have chosen some Gödel-numbers dSe
for all symbols S of ML.

(b) A triple 〈dCe, l, f〉 is a constructor definition, if C, l are natural numbers (C is
a Gödel number for the constructor), such that C is different from the Gödel-
numbers for the symbols, l > 0 and f is a function f : ωl−1 → ω or l = 0∧ f :
ω → {dN̂0e, dN̂1e}. In this situation we define arity(C) := max{l − 1, 0}.

(c) A constructor extension set is a finite set of constructor definitions, such that
the Gödel-numbers for the constructors are different. We write CES(a0) for
a0 being a constructor extension set and a0 ∈ Ad2.

(d) The a0-extended g-terms, g-types, b-objects are defined as the g-terms, g-types,
b-objects, but having in addition for each element 〈C, l, f〉 of a0 a term con-

21

structor ConstrC of arity arity(C), and allowing to form a g-term
ConstrC(r1, . . . , rn) for g-terms ri and n = arity(C). For simplicity we write
usually C instead of Constrc. Let TermCl,a0 be the set of closed a0-extended
g-terms.

(e) ∀CES(a0).φ(a0) :≡ ∀a0 ∈ Ad2.CES(a0)→ φ(a0)

Assumption 6.2 As long as there is no other CES mentioned, let a0 be a CES s.t.
a0 ∈ Ad2. Most of the next definitions will depend on a0, which we will not mention
in the following. If we have to mention it, we will add it as a subscript.

Definition 6.3 (a) We choose some Gödelization of a0-extended b-terms, but will
omit the Gödel-brackets.

(b) The introductory term constructors are the term constructors 0, r, N̂, S, i, j,

p, sup, +̂, Π̂, Σ̂, Ŵ, Î; N̂k for k ∈ ω, and Ak
n for n < k ∈ ω .

(c) Let →red,imma0
or short →red,imm be the relation between closed a0-extended g-

terms, defined by
p0(p(r, s))→red,immr p1(p(r, s))→red,imms
Ap(λx.r, s)→red,immr

′[x/s] where r′ =α r s.t. r′[x/s] is allowed and r′ is cho-
sen minimal w.r.t. the choice of variables substituted in lexicographic order.
Cn(An

i , r1, . . . , rn)→red,immri
D(i(r), s, t)→red,imms r D(j(r), s, t)→red,immt r
(note that we write r s for Ap(r, s))
P(0, s, t)→red,imms P(S(r), s, t)→red,immt r P(r, s, t)
R(sup(r, s), t)→red,imm(t r s (λzi.R(s zi, t))), where i is minimal such that
zi 6∈ FV(s) ∪ FV(t)
C(Sn1(0), . . . , Snl(0))→red,imma0

Sf(n1,...,nl)(0), (if 〈C, l + 1, f〉 ∈ a0),

C(Sn(0))→red,imma0
f(n) (if 〈C, 0, f〉 ∈ a0, and f : ω → {N̂0, N̂1})

(d) We define inductively a set of (indices for) terms in normal-form Termnf , a
subset of the closed a0-extended g-terms:
If C is an introductory n-ary term constructor, t1, . . . , tn ∈ Termnf , then
C(t1, . . . , tn) ∈ Termnf .
If C is a n-ary term constructor (possibly an extended term constructor) that
is not introductory, t1, . . . , tn ∈ Termnf , and there exists no t such that
C(t1, . . . , tn)→red,immt, then C(t1, . . . , tn) ∈ Termnf .
If t ∈ Term, x ∈ VarML, FV(t) ⊂ {x}, then λx.t ∈ Termnf .

(e) We define for a0-extended g-terms t, the next reduced term tred.
For t ∈ Termnf . t

red := t.
If C is a n-ary (possibly extended) term constructor, ri ∈ TermCl, ∃i.ri 6∈
Termnf , then C(r1, . . . , rn)red := C(rred1 , . . . , rredn).
If t := C(r1, . . . , rn) 6∈ Termnf , ri ∈ Termnf , then t→red,immt

′ for some t′,
tred := t′.

22

We define r →red s if and only if there exists a sequence 〈s0, . . . , sn〉 such that
r = s0, s = sn and ∀i < n.si+1 = (si)

red.

Lemma 6.4 (a) KPI+ ` ∀r, s, s′ ∈ TermCl.(r→reds ∧ r→reds
′) → (s→reds

′ ∨
s′→reds).

(b) KPI+ ` ∀r, s, s′ ∈ TermCl.(r→reds ∧ r→reds
′ ∧ s, s′ ∈ Termnf)→ s = s′.

(c) If C is a n-ary constructor, then

KPI+ ` ∀r1, . . . , rn, r
′
1, . . . , r

′
n.

(r1→redr
′
1 ∈ Termnf ∧ · · · ∧ rn→redr

′
n ∈ Termnf)

→ (C(r1, . . . , rn)→redC(r′1, . . . , r
′
n))

(d) KPI+ ` ∀t, t′, s ∈ TermCl.(t→reds ∧ t=αt
′)→ ∃s′ ∈ TermCl.t

′→reds
′ ∧ s=αs

′.

(e) KPI+ ` ∀t, t′ ∈ TermCl.t=αt
′ → (t ∈ Termnf ⇐⇒ t′ ∈ Termnf).

Definition 6.5 If F is a Σ function, we define by recursion on α ∈ Ord

Fα :=

∅ if α = 0,

F (F β) if α = β + 1,⋃
β<α,β∈Ord F

β if α ∈ Lim.

Definition 6.6 (a) Let Compl be the Σ-function

Compl(u) := {〈r, s〉 ∈ Termcl × Termcl|∃r′, s′ ∈ Terma,nf .

r→redr
′ ∧ s→redas

′ ∧ 〈r′, s′〉 ∈ u}

(b) Nbasis
k := {〈Ak

n,A
k
n〉|n < k}, N∗∗k := Compl(Nbasis

k), which are Σ-functions,
depending on the parameter k.

(c) Nbasis := {〈Sn(0), Sn(0)〉|n < ω}, N∗∗k := Compl(Nbasis).

(d)

Πbasis(u, f) := {〈λx.s, λx′.s′〉 ∈ Termnf × Termnf |
∀〈r, r′〉 ∈ u.〈s[x/r], s′[x′/r′]〉 ∈ f(r) ∧ f(r) = f(r′)}

(more precisely we have to write:

Π∗(u, f) := {〈t, t′〉 ∈ Termnf × Termnf |
∃x, x′ ∈ VarML, r, r

′ ∈ Term.t = λx.s ∧ t′ = λx′.s′ ∧
∀r, r′ ∈ TermCl.〈r, r′〉 ∈ u→
〈s[x/r], s[x′/r′]〉 ∈ f(r) ∧ f(r) = f(r′)}

similarly in the following definitions)
Π∗(u, f) := Compl(Πbasis(u, f)).

23

(e)

Σbasis(u, f) := {〈p(r, s), p(r′, s′)〉 ∈ Termnf × Termnf |
〈r, r′〉 ∈ u ∧ 〈s, s′〉 ∈ f(r) ∧ f(r) = f(r′)}

Σ∗(u, f) := Compl(Σbasis(u, f)).

(f) Let λ∗(u) := {〈t, u〉|t ∈ TermCl}.

(g) W∗(u, f, α) := FW(u, f)α,
where FW(u, f)(v) = Compl(F basis

W (u, f)(v)), and

F basis
W (u, f)(v) := {〈sup(r, s), sup(r′, s′)〉 ∈ Termnf × Termnf |

〈r, r′〉 ∈ u ∧ 〈s, s′〉 ∈ Πbasis(f(r), λ∗(v)) ∧ f(r) = f(r′)}

(h)

+basis(u, v) := {〈i(r), i(r′)〉 ∈ Termnf × Termnf |〈r, r′〉 ∈ u}
∪ {〈j(r), j(r′)〉 ∈ Termnf × Termnf |〈r, r′〉 ∈ v}

+∗(u, v) := Compl(+basis(u, v)).

(i)
Ibasis(u, s, t) := {〈r, r〉 ∈ Termnf × Termnf |〈s, t〉 ∈ u}

I∗(u, s, t,) := Compl(Ibasis(u, s, t)).

We will interpret each g-type occurring in a proof of Martin-Löf’s type theory as a
Σ-function, with arguments represented by the free variables of the type. More pre-
cisely, if FV(A) = {z1, . . . , zn}, (zi as in the definition 2.1 of VarML) the arguments
of the interpretation A∗ will have arguments given by the variables {u1, . . . , un} (ui
as in definition 5.1 (a) of VarKP). We introduce the following abbreviation:

Definition 6.7 (a) If A is a Σ function in KPI+, ui as in the definition 5.1 (a)
of VarKP zi as in the definition 2.1 of VarML, r1, . . . , rm extended b-objects,

A[zi1/r1, . . . , zin/rn] := A[ui1/rj1 , . . . , uin/rjn],

where on the right-hand side we have the real substitution in KPI+ in such
a way, that, if a variable occurs more than once, only the first occurrence is
carried out. If we introducing symbols for Σ-functions, this substitution is the
application of the Σ-function to the arguments in the ordering as specified by
the definition of the function.
We will write A[~x/~n] for A[x1/n1, . . . , xn/nn].

(b) In the situation as above let (zi)A be the Σ-function with the same arguments
as A except ui s.t. ((zi)A)[~x/~r] = {〈u,A[zi/u, ~x/~r]〉|u ∈ TermCl}.

24

Definition 6.8 We define for every g-type A the Σ-function A∗ together with
lev(A) ∈ ω.
If FV(A) = {z1, . . . , zn}, (zi as in definition 2.1 of VarML), A∗ will have arguments
given by the variables {u1, . . . , un} (ui as in definition 5.1 (a) of VarKP). We will
define it by giving the values A∗[~x/~s].
Let for A ⊆ Termnf × Termnf , t possibly depending on r
λ〈r, ·〉 ∈ A.t := {〈r, t〉 | 〈r, r〉 ∈ A}.
For k ∈ ω, N∗k[] := N∗∗k , lev(Nk) := 0.
N∗[] := N∗∗, lev(N) := 0.
Let A,B be g-types, m := max{lev(A), lev(B)}.
lev(Πx ∈ A.B) := m,
(Πx ∈ A.B)∗[~x/~s] := Π∗(A∗[~x/~s], λ〈r, ·〉 ∈ A∗[~x/~s].B∗[~x/~s, x/r]),
lev(Σx ∈ A.B) := m,
(Σx ∈ A.B)∗[~x/~s] := Σ∗(A∗[~x/~s], λ〈r, ·〉 ∈ A∗[~x/~s].B∗[~x/~s, x/r]),
lev(Wx ∈ A.B) := m+ 1,
(Wx ∈ A.B)∗[~x/~s] := W∗(A∗[~x/~s], λ〈r, ·〉 ∈ A∗[~x/~s].B∗[~x/~s, x/r], Im),
lev(A+B) := m, (A+B)∗[~x/~s] := +∗(A∗[~x/~s], B∗[~x/~s]),
lev(I(A, s, t)) := lev(A), (I(A, s, t))∗[~x/~s] := I∗(A∗[~x/~s], s[~x/~s], t[~x/~s]).

lev(U) := 1, U∗[] := ∼(Û),

lev(T(t)) := 0, (T(t))∗[~x/~s] := func(Û)(t[~x/~s]),

where Û, ∼(u), func(u) will be defined in the next definition.

Definition 6.9

(a) ∼(u) := {〈s, s′〉 ∈ TermCl × TermCl|∃v ∈ TC(u).〈s, v, s′〉 ∈ u}.

(b) func(u) := {〈s, v〉 ∈ TermCl × TC(u)|∃s′ ∈ TermCl.〈s, v, s′〉 ∈ u}.

(c) ComplU(u) := {〈r, b, r′〉 ∈ TermCl × TC(u)× TermCl|∃s, s′ ∈ Termnf .
r→reds ∧ r′→reds

′ ∧ 〈s, b, s′〉 ∈ u}.

(d) Ũ(u) := ComplU(Ũbasis(u)), where

Ũbasis(u) :=

{〈N̂k,N∗∗k , N̂k〉 ∈ ad(u)|k ∈ ω}
∪ {〈N̂,N∗∗, N̂〉}
∪ {〈Π̂x ∈ r.s,Π∗(b, f), Π̂x′ ∈ r′.s′〉|φ(r, x, s, r′, x′, s′, b, f, u) ∧ b, f ∈ ad(u)}
∪ {〈Σ̂x ∈ r.s,Σ∗(b, f), Σ̂x′ ∈ r′.s′〉|φ(r, x, s, r′, x′, s′, b, f, u) ∧ b, f ∈ ad(u)}
∪ {〈Ŵx ∈ r.s,W∗(b, f, α+(u)), Ŵx′ ∈ r′.s′〉|

φ(r, x, s, r′, x′, s′, b, f, u) ∧ b, f ∈ ad(u)}
∪ {〈r+̂s,+∗(b, c), r′+̂s′〉 ∈ ad(u)|ψ+(r, s, r′, s′, b, c, u) ∧ b, c ∈ ad(u)}
∪ {〈̂I(r, s, t), I∗(b, s, t), Î(r′, s′, t′)〉 ∈ ad(u)|

ψi(r, s, t, r
′, s′, t′, b, u) ∧ b ∈ ad(u)}

25

and
φ(r, x, s, r′, x′, s′, b, f, u)

:= r, r′ ∈ Termnf ∧ s, s′ ∈ Term
∧FV(s) ⊂ {x} ∧ FV(s′) ⊂ {x′} ∧ 〈r, b, r′〉 ∈ u∧
(∀〈t, t′〉 ∈ b.〈s[x/t], f(t), s′[x′/t′]〉 ∈ u)

(note that f(t) =
⋃
{c ∈ TC(f)|〈t, c〉 ∈ f})

ψ+(r, s, r′, s′, b, c, u) := r, s, r′, s′ ∈ Termnf ∧ 〈r, b, r′〉 ∈ u ∧ 〈s, c, s′〉 ∈ u,

ψi(r, s, t, r
′, s′, t′, b, u) := r, s, t, r′, s′, t′ ∈ Termnf ∧ 〈r, b, r′〉 ∈ u ∧

〈s, s′〉 ∈ b ∧ 〈t, t′〉 ∈ b,

(e) Û := ŨI.

7 Properties of the Interpretation

Lemma 7.1 (a) ∀v ⊂ v′.F ∗W(b, f)(v) ⊂ F ∗W(b, f)(v′).

(b) ∀γ < δ.W∗(b, f, γ) ⊂W∗(b, f, δ)

(c) (b ∈ a ∧ f ∈ a ∧ Ad(a))→ ∀γ > α(a).W∗(b, f, γ) = W∗(b, f, α(a)).

Proof: (a) immediate, (b) follows from (a) by induction on δ.
(c) It is sufficient to show, with α := α(u), v := W∗(b, f, α), that FW(b, f)(v) ⊂ v.
Since Compl(v) ⊂ v it is sufficient to prove F basis

W (b, f)(v) ⊂ v).
Now, if 〈sup(r, t), sup(r′, t′)〉 ∈ F basis

W (b, f)(v), then t = λx.s, t′ = λx′.s′, and ∀u, u′ ∈
TermCl.〈u, u′〉 ∈ f(r)→ ∃δ ∈ Ord ∩ α.〈s[x/u], s′[x′/u′]〉 ∈W∗(b, f, δ)
Since Ad(a), we have (∆0 − coll)a, therefore for some ρ < α, ∀t, t′ ∈ TermCl.〈t, t′〉 ∈
f(r)→ ∃δ < ρ.〈s[x/t], s′[x′/t′]〉 ∈W∗(b, f, δ).
Now it follows 〈sup(r, λx.s), sup(r′, λx′.s′)〉 ∈W∗(b, f, ρ) ⊂ v and the assertion.

Definition 7.2 (a) equiv(u) :⇔
∀r, s, t, r′, s′ ∈ TermCl.(〈r, s〉 ∈ u→ 〈s, r〉 ∈ u)∧
((〈r, s〉 ∈ u ∧ 〈s, t〉 ∈ u)→ 〈r, t〉 ∈ u).

(note that we do not claim reflexivity)

(b) equivfun(f) :⇔ ∀x ∈ dom(f).equiv(f(x)).

(c) Cor(u) :⇔
∀r, r′, r′′ ∈ TermCl.∀b, b′.(〈r, b, r′〉 ∈ u→ [〈r′, b, r〉 ∈ u ∧ equiv(b)
∧[〈r′, b′, r′′〉 ∈ u→ (〈r, b, r′′〉 ∈ u ∧ b = b′)]])

Remark 7.3 (a) (Cor(u)∧〈r, b, r′〉 ∈ u∧〈r, b′, r′′〉 ∈ u)→ (b = b′∧〈r, b, r′′〉 ∈ u).

(b) If Cor(u) then with ∼:= ∼(u), f := func(u) we have ∼ is a symmetric
and transitive relation, f is a function s.t. ∀a, b.a ∼ b → f(a) = f(b) and
equivfun(f).

26

Lemma 7.4 (a) (equiv(u) ∧ u ⊂ Termnf × Termnf)→ equiv(Compl(u)).

(b) (equiv(u) ∧ equiv(v) ∧ equivfun(f) ∧ k ∈ ω ∧ s, t ∈ TermCl)→
(equiv(Nbasis) ∧ equiv(Nbasis

k) ∧ equiv(Πbasis(u, f)) ∧ equiv(Σbasis(u, f)) ∧
equiv(F basis

W (u, f)(v)) ∧ equiv(+basis(u, v)) ∧ equiv(ibasis(u, s, t))).

(c) (equiv(u) ∧ equiv(v) ∧ equivfun(f) ∧ α ∈ Ord ∧ k ∈ ω ∧ s, t ∈ TermCl)→
(equiv(N∗) ∧ equiv(N∗k) ∧ equiv(Π∗(u, f)) ∧ equiv(Σ∗(u, f))
∧ equiv(F ∗W(u, f)(v)) ∧ equiv(W∗(u, f, α))
∧ equiv(+∗(u, v)) ∧ equiv(i∗(u, s, t))).

Lemma 7.5 Assume r, s, t, r′, s′, t′ ∈ Term, x, x′ ∈ VarML, b, f, u sets.

(a) (φ(r, x, s, r′, x′, s′, b, f, u) ∧ Cor(u))→
(b ∈ ad(u) ∧ ∃f ∈ ad(u).∀〈t, t′〉 ∈ b.f(t) = f(t′) = f ′(t) = f ′(t′)).

(b) ψ+(r, s, r′, s′, b, c, u)→ b, c ∈ ad(u).

(c) ψi(r, s, t, r
′, s′, t′, b, u)→ b ∈ ad(u).

(d) Cor(u)→ Ũ(u) ∈ ad(ad(u)).

(e) ∀γ ∈ Ord ∩ I.Ũγ ∈ AdI.

Proof:
(a) b ∈ TC(u) ∈ ad(u).
Let f ′ := {〈t, c〉 ∈ TermCl × TC(u)|〈t, t〉 ∈ b ∧ 〈s[x/t], c, s[x/t]〉 ∈ u}.
f ′ ∈ ad(u). Furthermore, if 〈t, t′〉 ∈ b, it follows 〈s[x/t], f(t), s′[x/t′]〉 ∈ u, by Cor(u)
〈s[x/t], f(t), s[x/t]〉 ∈ u, f(t) = f ′(t), and, since
〈s′[x/t], f(t), s[x/t]〉 ∈ u ∧ 〈s′[x/t], f(t′), s[x/t′]〉 ∈ u, it follows f(t) = f(t′).
(b), (c),(d): easy.
(e): Induction on γ, using (d) and 5.3 (b).

Lemma 7.6 Assume r, s, t, r′, s′, t′, r′′, s′′, t′′ ∈ Term, x, x′, x′′ ∈ VarML,
b, b′, f, f ′, u, u′ sets.

(a) φ(r, x, s, r′, x′, s′, b, f, u) ∧ Cor(u)→ φ(r′, x′, s′, r, x, s, b, f, u).

(b) (φ(r, x, s, r′, x′, s′, b, f, u) ∧ φ(r′, x′, s′, r′′, x′′, s′′, b′, f ′, u′) ∧ Cor(u ∪ u′))→
φ(r, x, s, r′′, x′′, s′′, b, f, u ∪ u′) ∧ b = b′∧
∀〈t, t′〉 ∈ b.f(t) = f ′(t) = f(t′) = f ′(t′)

(c) ψ+(r, s, r′, s′, b, c, u) ∧ Cor(u)→ ψ+(r′, s′, r, s, b, c, u).

(d) (ψ+(r, s, r′, s′, b, c, u) ∧ ψ+(r′, s′, r′′, s′′, b′, c′, u′) ∧ Cor(u ∪ u′)→
(ψ+(r, s, r′′, s′′, b, c, u ∪ u′) ∧ b = b′ ∧ c = c′))

(e) ψi(r, s, t, r
′, s′, t′, b, u) ∧ Cor(u)→ ψi(r

′, s′, t′, r, s, t, b, u).

27

(f) (ψi(r, s, t, r
′, s′, t′, b, u) ∧ ψi(r′, s′, t′, r′′, s′′, t′′, b′, u′) ∧ Cor(u ∪ u′)→

(ψi(r, s, t, r
′′, s′′, t′′, b, u ∪ u′) ∧ b = b′))

Lemma 7.7 (a) (Cor(u) ∧ ∼(u) ⊂ Termnf × Termnf)→ Cor(ComplU(u)).

(b) Cor(u)→ Cor(Ũ(u)),

(c) u ⊂ u′ ∧ Cor(u′)→ Ũ(u) ⊂ Ũ(u′),

(d) Cor(Û).

Lemma 7.8 If A g-type, then KPI+ ` ∀s1, . . . , sn ∈ TermCl.equiv(A∗[~x/~s])

Proof: Induction on the definition of types.

Definition 7.9 Let A,B g-types, s, t g-terms, FV(A), FV(B), FV(s), FV(t) ⊂
{x1, . . . , xn}, r1, . . . , rn, s1, , . . . , sn be extended g-terms.

(a) (A = B : type)∗[~x/~r;~s] :⇔ (A = B : type)∗[x1/r1; s1, . . . , xn/rn; sn] :⇔
(A∗[~x/~r] = B∗[~x/~s]).

(b) (t = t′ : A)∗[~x/~r;~s] :⇔ (t = t′ : A)∗[x1/r1; s1, . . . , xn/rn; sn] :⇔
〈t[~x/~r], t′[~x/~s]〉 ∈ A∗[~x/~r].

We will not mention the variables x1, . . . , xn explicitly, if they are the variables,
mentioned in the context, writing (A = B : type)∗[~r;~s] and (t = t′ : A)∗[~r;~s].
Note that s : A, A : type abbreviate s = s : A, A = A : type, therefore (s : A)∗[~r;~s],
(A : type)∗[~r;~s] are defined as well.

Lemma 7.10 (Substitution Lemma).
Let C,D be g-types, r, s, ti, t

′
i g-terms, xi, yi ∈ VarML. Then:

(a) If r[~x/~t] is an allowed substitution, FV(r[~x/~t]) ⊂ {y1, . . . , yn}, then
KPI+ ` ∀~r ∈ TermCl.r[~x/~t][~y/~r] = r[x1/t1[~y/~r], . . . , xn/tn[~y/~r], ~y/~r].
(Note that, if variables occur more than once in [~y/~r], only the first substitution
is relevant.)

(b) If C[~x/~t] is an allowed substitution, FV(C[~x/~t]) ⊂ {y1, . . . , yn}, then
KPI+ ` ∀~r, r′ ∈ TermCl.C[~x/~t]∗[~y/~r] = C∗[x1/t1[~y/~r], . . . , xn/tn[~y/~r], ~y/~r].

(c) If A[~x/~t], B[~x/~t′] are allowed substitutions,
FV(A[~x/~t]),FV(B[~x/~t′]) ⊂ {y1, . . . , yn}, then
KPI+ ` ∀~r, ~s ∈ TermCl.(A = B : type)∗[~x/(~t[~y/~r]); (~t′[~y/~s]), ~y/~r;~s] ⇐⇒

(A[~x/~t] = B[~x/~t′] : type)∗[~y/~r;~s].

(d) If A[~x/~t], r[~x/~t] are allowed substitutions, FV(A[~x/~t]),FV(r[~x/~t]) ⊂ {y1, . . . , yn},
then
KPI+ ` ∀~r, ~s ∈ TermCl.(r : A)∗[~x/(~t[~x/~r]); (~t[~x/~s]), ~x/~r;~s] ⇐⇒

(r[x/t] : A[x/t])∗[~x/~r;~s].

28

(e) If A[~x/~t], r[~x/~t], s[~x/~t′] are allowed substitutions, FV(A[~x/~t]), FV(r[~x/~t]),
FV(s[~x/~t′]) ⊂ {y1, . . . , yn}, then
KPI+ ` ∀~r, ~s ∈ TermCl.(r = s : A)∗[~x/(~t[~x/~r]); (~t′[~x/~s]), ~x/~r;~s] ⇐⇒
(r[~x/~t] = s[x/~t′] : A[x/~t])∗[~x/~r;~s].

Proof by induction on the definition of the terms and types.

Lemma 7.11 For every g-type A FV(A) ⊂ {x1, . . . , xn}, it follows

(a) ∀~r, r, r′, s, s′ ∈ TermCl.(r→redr
′)→ (s→reds

′)
→ 〈r, s〉 ∈ A∗[~x/~r]→ 〈r′, s′〉 ∈ A∗[~x/~r].

(b) ∀~r, r, r′ ∈ TermCl.〈r, r′〉 ∈ A∗[~x/~r]→ ∃s, s′ ∈ Termnf .r→reds ∧ r′→reds
′.

Proof: easy, since for each type, Compl was applied to some set.

Definition 7.12 (a) Stable(a) := ∀r, s, r′, s′ ∈ TermCl.〈r, s〉 ∈ a → r=αr
′ →

s=αs
′ → 〈r′, s′〉 ∈ a

(b) For every g-type A with FV(A) = {x1, . . . , xn} we define
Flex(A) := ∀r1, . . . , rn, s1, . . . , sn ∈ TermCl.v(r1=αs1 ∧ · · · ∧ rn=αsn)→

A∗[~x/~r] = A∗[~x/~s]

Lemma 7.13 For every g-type C,D with FV(C) = {x1, . . . , xn} and C=αD we
have

(a) KPI+ ` Flex(C)

(b) KPI+ ` ∀r1, . . . , rn ∈ TermCl.Stable(C∗[~x/~r])

(c) KPI+ ` ∀r1, . . . , rn ∈ TermCl.C
∗[~x/~r] = D∗[~x/~r].

Proof Easy, simultaneously by induction on the definition of g-types. In the case
C ≡ U,T(t) we define

StableU(u) := ∀s, s′, t, t′ ∈ TermCl.∀b ∈ TC(u).

s=αs
′ ∧ t=αt

′ ∧ pair(s, b, t) ∈ u
→ (pair(s′, b, t′) ∈ u ∧ Stable(b))

We conclude StableU(u)→ StableU(Ũ(u)) and therefore StableU(Û), from which we
obtain the assertion for C = U and C = T(t). The other cases are straightforward.

In order to state our Main Lemma, we need to express, that, if we assume elements
of the types of the context, the interpretation of the conclusion Θ of a judgement of
Martin-Löf is valid. Since we need, that this is independent of the choice of equal
elements of Ai, we will introduce the following abbreviation:

29

Definition 7.14 Let Γ ≡ x1 : A1, . . . , xk : Ak be a g-context.

∀Γ=(~r;~s).φ :≡ ∀r1, . . . , rk, s1, . . . , sk ∈ TermCl.(〈r1, s1〉 ∈ A∗1[] ∧
〈r2, s2〉 ∈ A∗2[x1/r1] ∧ · · · ∧ 〈rk, sk〉 ∈ A∗k[x1/r1, . . . , xk−1/rk−1])→ φ

“Assume Γ=(~r;~s)” means:
“Assume r1, . . . , rk, s1, . . . , sk ∈ TermCl such that 〈r1, s1〉 ∈ A∗1[]∧

〈r2, s2〉 ∈ A∗2[x1/r1] ∧ · · · ∧ 〈rk, sk〉 ∈ A∗k[x1/r1, . . . , xk−1/rk−1]”.

8 Main Lemma

In this section we prove the Main Lemma, which expresses that if ML ` r : A, then
KPI+ ` 〈r, r〉 ∈ A∗. We have to go through all judgements.

Lemma 8.1 (Main Lemma)
Let Γ,∆ be g-context-pieces, x, xi ∈ VarML, Ai, A,B g-types, t, t′ g-terms, θ a g-
judgement. Assume Γ = x1 : A1, . . . , xn : An.

(a) If ML ` Γ⇒ t = t′ : A, then

(i) KPI+ ` ∀Γ=(~r;~s).(t = t′ : A)∗[~x/~r;~s].

(ii) KPI+ ` ∀Γ=(~r;~s).(A : type)∗[~x/~r;~s].

(b) If ML ` Γ⇒ A = A′ : type, then

KPI+ ` ∀Γ=(~r;~s).(A = A′ : type)∗[~x/~r;~s].

(c) If ML ` Γ, x : A,∆⇒ θ, then

KPI+ ` ∀Γ=(~r;~s).(A : type)∗[~x/~r;~s].

Proof of the Main Lemma:
We proof simultaneously (a) - (c) by induction on the derivation. We write IH 3
for the Induction-hypothesis for the 3rd premise, etc. IH 3(c) for the Induction-
hypothesis (c) for the 3rd premise of the rule etc.
If there is more than one rule of one category (as in the case of (TRANS)), we refer
to them by (TRANS)1, (TRANS)2, etc.
Let Γ = x1 : A1, . . . , xn : An, Γ′ = y1 : B1, . . . , ym : Bm.
If ~r = r1, . . . , rn, i ≤ n, then r̂i := r1, . . . , ri−1 (r̂1 is empty).
If θ is t = t′ : A or A = B : type, let θ′ = (A : type) (the judgement treated in the
cases (i) of (a),(b), or which follows from the assertion in (c).
Distinction by the last rule applied.
Assume that lemma is proved for the premises of a rule, as stated in the definition,
weakened by the context Γ.
We treat only some examples of the rules, covering the more complicated ones.

30

Case (SYM)1 Assume Γ=(~r;~s). From 〈ri, si〉 ∈ A∗i [r̂i] it follows 〈si, ri〉 ∈ A∗i [r̂i]
and by IH (a,ii) 〈si, ri〉 ∈ A∗i [ŝi]. By IH (a,i) it follows 〈t[~s], t′[~r]〉 ∈ A∗[~s], and by IH
(a,ii) A∗[~r] = A∗[~s], and by 7.8 it follows (t′ = t : A)∗[~r;~s].
(a,ii) follows from IH (a,ii).
Case (SYM)2 Assume Γ=(~r;~s). As for (SYM)1 we have 〈si, ri〉 ∈ A∗i [ŝi], by IH
A∗[~s] = B∗[~r] and therefore the assertion.

Case (SUB) Assume Γ=(~r;~r′), 〈si, s′i〉 ∈ Bi[x/t]
∗[~r, ŝi]. Now by Lemma 7.10

Bi[x/t]
∗[~r, ŝi] = B∗i [x/t[~r, ŝi], ~r, ŝi] = B∗i [x/t[~r], ~r, ŝi]

By IH 2 (a,i) 〈t[~r], t′[~r′]〉 ∈ A∗[~r], therefore

θ∗[~x/~r;~r′, x/t[~r]; t′[~r′], ~y/~s;~s′],

and by Lemma 7.10 θ[x/t]∗[~x/~r;~r′, ~s;~s′], similarly for θ′.
Proof for (c): If ,,y : B” in Γ, the assertion follows by IH.
If ,,y : B” in Γ′[x/t], it follows by IH B∗[~r, x/~t[~r], ŝi] = B∗[~r′, x/t[~r′], ŝ′i], and by 7.10
the assertion.

Case (REPL1) Assume Γ=(~r;~r′), 〈si, s′i〉 ∈ Bi[x/t]
∗[~r, ŝi]. We have 〈t[~r], t′[~r′]〉 ∈

A∗[~r]. By 7.10, it follows B∗i [~x/~r, x/t[~r], ŷi/ŝi] = Bi[x/t]
∗[~r, ŝi]. Therefore we have

〈si, s′i〉 ∈ B∗i [~x/~r, x/t[~r], ŷi/ŝi]. Then by IH 1
B∗[~x/~r, x/t[~r], ~y/~s] = B∗[~x/~r′, x/t′[~r′], ~y/~s′], and by 7.10 follows the assertion.
Proof for (c): From IH 2 it follows, arguing as for the rule (SYM), the assertion for
Γ⇒ t′ = t : A and further, arguing as for (TRANS) the assertion for Γ⇒ t = t : A,
which is the same as for Γ⇒ t : A and now the proof follows as in (SUB).

Case (REPL2) Assume Γ=(~r, ~r′), 〈si, s′i〉 ∈ Bi[x/t]
∗[~r, ŝi]. Then 〈t[~r], t′[~r′]〉 ∈

A∗[~r], and by IH 1(a,i)

(s = s : B)∗[~x/~r;~r′, x/t[~r]; t′[~r′], ~y/~s;~s′]

and by 7.10 follows the assertion for (a,i). (a,ii) follows as in (REPL1), using that
we get the assertion for Γ⇒ t = t : A, and (c) follows exactly as in (REPL1).

Case (ALPHA): Immediate by the IH since if A=αA
′, t=αt

′, A[~s] = A′[~s],
t[~r′]=αt

′[~r′] and 〈t[~r], t[~r′]〉 ∈ A∗[~r] ⇐⇒ 〈t[~r], t′[~r′]〉 ∈ A∗[~r].
Case (ΠT,=) Assume Γ=(~r;~r′). By IH (c) A∗[~r] = A′∗[~r′], and, if 〈r, s〉 ∈ A∗[~r], it
follows 〈r, r〉, 〈s, s〉 ∈ A∗[~r], therefore by IH B∗[~r, x/r] = B′∗[~r′, x/r], B∗[~r, x/s] =
B′∗[~r′, x/s], Πx ∈ A.B∗[~r] = (Πx ∈ A′.B′)∗[~r′].
Case (NI,=)2: Assume Γ=(~r;~r′). By IH we have for some k ∈ ω t[~r]→redSk(0) and
t′[~r′]→redSk(0), therefore S(t)[~r]→redSk+1(0), S(t′)[~r′]→redSk+1(0), and we have the
assertion.

Case (ΠI,=): Assume Γ=(~r;~r′), 〈r, r′〉 ∈ A∗[~r]. Then by IH (a,i)
〈t[x/r, ~r], t′[x/r′, ~r′]〉 ∈ B∗[x/r, ~r] = B∗[~r, x/r], 〈(λx.t)[~x/~r], (λx.t′)[~x/~r′]〉 ∈ (Πx ∈
A.B)∗[~r].
(a,ii) follows as in (ΠT,=

1), since from IH (a,ii) follows (b) for x : A⇒ B : type.

31

Case (WI,=): Let n := max{lev(A), lev(B)}, Wx ∈ A.B∗.
Assume Γ=(~r;~r′). Let F := FW(A∗[~x/~r], (x)B∗[~x/~r]). Then by IH 〈r[~r], r′[~r′]〉 ∈
A∗[~r], s[~r]→redλx.t, s

′[~r′]→redλx
′.t′, B∗[x/r[~r], ~r] = B∗[x/r′[~r′], ~r′], and

∀〈u, u′〉 ∈ B[x/t]∗[~x/~r](= B∗[x/t[~r], ~x/~r])∃γ < In.〈t[x/u], t′[x/u′]〉 ∈ F γ

By (∆0− coll) and Ad(LIn) there exist a δ < In such that the γ can be chosen to be
< δ. Then 〈sup(r, s)[~r], sup(r, s)[~r′]〉 ∈ F γ+1 ⊂Wx ∈ A.B∗[~r].
(a,ii) follows as in (WT,=).

Case(NE,=): Assume Γ=(~r;~r′). Then by IH 1 〈r[~r], r′[~r′]〉 ∈ N∗, therefore
r[~r]→redSn(0), r′[~r]→redSn(0) for some n < ω. Furthermore, by IH 2 and 7.11 (b)
exist s̃, s̃′ ∈ Termnf such that s[~r]→reds̃, t[~r]→reds̃

′, 〈s̃, s̃′〉 ∈ A[x/0]∗[~r] = A∗[x/u,~r].
Let [~x′/~s] := [~x/~r] \ {x, y}, [~x′/~s′′] := [~x/~r′] \ {x, y}.
Let P0(r) := P(r, s̃, λx.λy.(t[~x′/~s])). P1(r) := P(r, s̃′, λx.λy.(t′[~x′/~s′])). Then

P(r, s, (x, y)t)[~r]→redP0(Sn(0)), P(r′, s′, (x, y)t′)[~r′]→redP1(Sn(0))

We have A[z/r]∗[~r] = A∗[z/r[~r], ~r] = A∗[z/Sn(0), ~r], and therefore assertion (a,i).
We show: ∀m ∈ ω.〈P0(Sm(0)), P1(Sm(0))〉 ∈ A∗[z/Sm(0), ~r].
If m = 0, P0(Sm(0))→reds̃, P1(Sm(0))→reds̃

′, 〈s̃, s̃′〉 ∈ A∗[z/0, ~r].
If m = k + 1, it follows by IH P0(Sk(0))→reds̃, P1(Sk(0))→reds̃

′,
s̃, s̃′ ∈ Termnf , 〈s̃, s̃′〉 ∈ A∗[z/Sk(0), ~r] = A[z/x]∗[x/Sk(0), ~r].
P0(Sm(0))→redt[~x

′/~s, x/Sk(0), y/s̃], P1(Sm(0))→redt
′[~x′/~s′′, x/Sk(0), y/s̃′].

Now 〈Sk(0), Sk(0)〉 ∈ N∗, therefore by IH 3 it follows

〈t[~x′/~s, x/Sk(0), y/s̃], t′[~x′/~s′′, x/Sk(0), y/s̃′]〉 ∈ A[z/S(x)]∗[~r] = A∗[z/Sm(0), ~r],

and the side induction is finished.
(a,ii) is easy.

Case(ΠE,=): Assume Γ=(~r;~r′). By IH 1,2 there exist r̃, r̃′ ∈ Termnf such that
r[~r]→redr̃1, r′[~r′]→redr̃

′ 〈r̃1, r̃
′〉 ∈ A∗[~r], and there are t, t′ ∈ Term and Variables

x, x′ ∈ VarML such that

s[~r]→redλx.r, s
′[~s]→redλx

′.r′, 〈λx.r, λx′.r′〉 ∈ (Πx ∈ A.B)basis[~r].

Therefore
Ap(s, r)[~r]→redAp(λx.t, r̃)→redt[x/r̃, ~r],

Ap(s′, r′)[~r′]→redt
′[x′/r̃, ~r′]

〈t[x/r̃, ~r], t′[x′/r̃′, ~r′]〉 ∈ B∗[x/r̃, ~r].

As before we conclude
〈r[~r], r[~r]〉 ∈ A∗[~r]

〈r̃, r1[~r]〉 ∈ A∗[~r]

B∗[x/r̃, ~r] = B∗[x/r[~r], ~r] = B[x/r]∗[~r],

32

and we have IH (a,i).
(a,ii) follows as before

Case(ΣE,=): Assume Γ=(~r;~r′). By IH 1 exist s, s′, t, t′ ∈ Termnf such that

r[~r]→redp(s, t), r′[~r′]→redp(s′, t′), 〈s, s′〉 ∈ A∗[~r], 〈t, t′〉 ∈ B∗[x/s, ~r].

Then p0(r[~r])→reds, p0(r′[~r′])→reds
′, and we are done for the first rule, and

p1(r[~r])→redt, p1(r′[~r′])→redt
′, and since from 〈s, s′〉 ∈ A[~r], it follows

〈s, s′〉 ∈ A[~r], 〈p0(r)[~r], s〉 ∈ A[~r],

therefore by IH 2

B∗[x/s, ~r] = B∗[x/p0(r)[~r], ~r] = B[x/p0(r)]∗[~r]

follows (a,i) for the second rule.
(a,ii) is in (ΣE,=)1 trivial, in (ΣE,=)2 we use the proof of (ΣE,=)1 and argue as before.

Case(WE,=): Assume Γ=(~r;~r′), n := max{lev(A), lev(B)},
F := FW(A∗[~r], (x)B∗[~r]). By IH r[~r]→redr̃, r

′[~r′]→redr̃
′, 〈r̃, r̃′〉 ∈ F δ(~r, ·). for some

δ < α. Let
[~x′/~s] := [~x/~r] \ {x, y, z},

[~x′/~s′] := [~x/~r′] \ {x, y, z},

R0(r) := R(r, (x, y, z)t)[~r](= R(r, λx.λy.λz.(t[~s])))

R1(r) := R(r, (x, y, z)t′)[~r′].

We show by induction on γ,

(+) ∀γ < α.∀〈s̃, s̃′〉 ∈ F γ.〈R0(s̃), R1(s̃′)〉 ∈ C∗[u/s̃, ~r]

Since C[u/t]∗[~r] = C∗[u/r[~r], ~r] = C∗[u/r̃, ~r] = C∗[u/r̃′, ~r′] (using arguments as
before), follows the assertion.
The case γ = 0 is trivial, and if γ ∈ Lim follows the assertion by IH
Let now
γ = γ′ + 1, u′ := F γ′ , 〈s̃, s̃′〉 ∈ F (u′).
If s̃→reds, s̃

′→reds
′, 〈s, s′〉 ∈ F basis(~r′, ·), 〈R0(s), R1(s′)〉 ∈ C∗[u/s, ~r], it follows

〈R0(s̃), R1(s̃′)〉 ∈ C∗[u/s, ~r], further, like similar arguments before,

C∗[u/s, ~r] = C∗[u/s̃, ~r] = C∗[u/s̃′].

We therefore assume 〈s̃, s̃′〉 ∈ F basis(~r, u′).

Let 〈s̃, s̃′〉 = 〈sup(a, λx.s), sup(a′, λx′.s′)〉, 〈a, a′〉 ∈ A∗[~r]. Let 〈r′′, r′′′〉 ∈ B∗[x/a, ~r].
Then r′′→redb, r

′′′→redb
′ for 〈b, b′〉 ∈ B∗[x/a, ~r], b, b′ ∈ Termnf , and we have

〈s[x/r′′], s′[x′/r′′′]〉 ∈ u′ and

(∗) 〈s[x/b], s′[x′/b′]〉 ∈ u′

33

Since u′ ⊂ (Wx ∈ A.B)∗[~r] it follows from the first of these assertions

〈λx.s, λx′.s′〉 ∈ (B →Wx ∈ A.B)∗[~r]

Furthermore, for 〈b, b′〉 ∈ B∗[x/r, ~r],

(R0((λx.s)v))[v/r′′]→redR0(s[x/b])(v 6∈ FV(λx.s))

(R1((λx.s′)v′))[v′/r′′′]→redR1(s′[x/b′])(v′ 6∈ FV(λx.s))

and by side IH, it follows

〈(R0((λx.s)v))[v/r′′], (R1((λx′.s′)v))[v′/r′′′]〉 ∈ C∗[u/(s[x/b]), ~r]
= C∗[u/(s[x/r′′]), ~r]

Now we have 〈ri, ri〉 ∈ Ai[r̂i], Ap(λx.s, r′′)→reds[x/b], and by (∗),
u′ ⊂ (Wx ∈ A.B)∗[~r], equiv((Wx ∈ A.B)∗[~r]) and 7.11 it follows

〈s[x/b],Ap(λx.s, r′′)〉 ∈ (Wx ∈ A.B)∗[~r]

therefore

C[u/Ap(y, v)]∗[v/r′′, y/λx.s, ~x/~r] = C∗[u/Ap(λx.s, r′′), ~r] = C∗[u/(s[x/b]), ~r]

further

C[u/Ap(y, v)]∗[v/r′′, y/λx.s, ~x/~r] = C[u/Ap(y, v)]∗[v/r′′′, y/λx.s, ~x/~r],

and we have

〈λv.R0((λx.s)v), λv′.R1((λx′.s′)v′)〉 ∈ (Πv ∈ B.C[u/Ap(y, v)])∗[y/λx.s, ~x/~r]

Now by IH 2 it follows

〈t[x/r, y/λx.s, z/λv.R0((λx.s)v), ~r], t′[x/r′, y/λx′.s′, z/λv′.R1((λx.s′)v′), ~r′]〉
∈ C[u/sup(x, y)]∗[x/r, y/λx.s, ~r]

Since

C[u/sup(x, y)]∗[x/r, y/λx.s, ~r] = C∗[u/sup(r, λx.s), ~r] = C∗[u/s, s],

and

R0(s)→red(λx.λy.λz.t[~x′/~s])r(λx.s)(λv.R0((λx.s)v))

→redt[x/r, y/λx.s, z/(λv.R0((λx.s)v))]

R1(s′)→redt
′[x/r′, y/λx.s′, z/(λv′.R1((λx′.s′)v′))]

follows (+), and we are done. (a,ii) follows as in the case (NE,=
k).

34

Case (+E,=): Assume Γ=(~r;~r′). By IH r[~r]→redi(r̃) ∈ Termnf ,
r′[~r′]→redi(r̃′) ∈ Termnf and 〈r̃, r̃′〉 ∈ A∗[~r] or r[~r]→redj(r̃) ∈ Termnf ,
r′[~r′]→redj(r̃′) ∈ Termnf and
〈r̃, r̃′〉 ∈ B∗[~r]. Let [~x′/~s] := [~x/~r] \ {x}. In the first case we have

D(r, (x)s, (y)t)[~r]→red(λx.(s[~s]))r̃→reds[x/r̃, ~x/~r],

D(r′, (x)s′, (y)t′)[~r]→reds
′[x/r̃′, ~x/~r′],

〈s[x/r̃, ~r], s′[x/r̃′, ~r′]〉 ∈ C[z/i(x)]∗[x/r̃, ~r] = C∗[z/i(r̃), ~r]

and using arguments as before

C∗[z/i(r̃), ~r] = C∗[z/r[~r], ~r] = C[z/r]∗[~r]

and we are done. The second assertion follows in the same way.
(a,ii) follows as before.
Case (IE): Assume Γ=(~r;~r′). By IH 1 follows (I(A, s, t))∗[~r] 6= ∅, 〈s[~r], t[~r]〉 ∈ A∗[~r].
Furthermore, by IH 3 〈t[~r], t[~r′]〉 ∈ A∗[~r], and by equiv(A∗[~r]) follows (a,i). (a,ii) is
trivial.

Case (Π=), (Σ=
0), (Σ=

1): By using the proof for the elimination rules we see, that if
the conclusion is r = s : C, we conclude assuming Γ=(~r;~r′), that (r = r : C)[~r;~r′],
further (r[~r′]→redt ∈ Termnf)→ (s[~r′]→redt), therefore follows (r = s : C)[~r;~r′].

Case (Πη):Assume Γ=(~r, ~r′) By IH we have

〈t[~r], t[~r′]〉 ∈ (Πx ∈ A.B)∗[~r],

therefore t[~r]→redλx.s, t[~r
′]→redλx

′.s′,

〈λx.s, λx′.s′〉 ∈ (Πx ∈ A.B)basis[~r],

Assume 〈r, r′〉 ∈ A∗[~r]. Then r→redr̃, r
′→redr̃

′, 〈r̃, r̃′〉 ∈ A∗[~r], r̃, r̃′ ∈ Termnf .

Ap(t, x))[~r][x/r] = Ap(t[~r], r)→redAp(λx.s, r̃)→reds[x/r̃],

and since
〈s[x/r̃], s′[x′/r̃′]〉 ∈ B∗[x/r̃, ~r] = B∗[x/r, ~r],

follows
〈Ap(t, x)[~r][x/r], s′[x′/r̃′]〉 ∈ B∗[x/r, ~r],

therefore
〈λx.Ap(t, x)[~r], λx′.s′〉 ∈ (Πx ∈ A.B)∗[~r],

〈λx.Ap(t, x)[~r], t[~r]〉 ∈ (Πx ∈ A.B)∗[~r].

Case (Σ=
2): Assume Γ=(~r;~r′). By IH t[~r]→redr, t[~r

′]→redr
′ for some 〈r, r′〉 ∈ Σx ∈

A.B∗[~r] ∩ (Termnf × Termnf), p(p0(t), p1(t))[~r]→redr and we are done.

35

Case (I=): Assume Γ=(~r;~r′). By IH we conclude 〈t0[~r], t0[~r′]〉 ∈ I(A, t1, t2)∗[~r], there-
fore t0[~r′]→redr, 〈r, r〉 ∈ I(A, t1, t2)∗[~r], 〈t0[~r], r〉 ∈ I(A, t1, t2)∗[~r]. (a,ii) is trivial.

Case other equality rules: Let r̃ = s̃ : A be the conclusion of the rules. By us-
ing several times the general rules, elimination rules and in case W= the intro-
duction rules we can conclude r̃ = r̃ : A, and s̃ = s̃ : A. (For (W=) we ar-
gue that Γ, v : B[x/t0] ⇒ Ap(t1, v) : Wx ∈ A.B, by (WE,=) Γ, v : B[x/t0] ⇒
R(Ap(s′, v), (x, y, z)t′) : C[u/Ap(s′, v)], by ΠI,= Γ ⇒ λv.R(Ap(s′, v), (x, y, z)t′) :
Πv ∈ B.C[u/Ap(s′, v)], by (ALPHA) for the zi, that we need, and it follows
Γ ⇒ λzi.R(Ap(s′, zi), (x, y, z)t′) : Πv ∈ B.C[u/Ap(s′, v)], and now by (SUB) fol-
lows the assertion). Now, assuming Γ=(~r, ~r′), and using the proofs above we can
conclude 〈r[~r], r[~r′]〉 ∈ A∗[~r] and A∗[~r] = A∗[~r′], so (a,i). In all the cases, we have,
if the right side is written as t[x1/r1, . . . , xn/tn], if xi corresponds to the type Bi

(read off from the rule) follows easily by IH and using the proofs of several rules
handled before the assertion for Γ⇒ ri : Bi, therefore ri[~r]→redr̃i ∈ Termnf for some
r̃i, 〈r̃i, ri[~r]〉 ∈ Bi[~r], further r̃[~r]→redt[x1/r̃1, · · ·xnr̃n, ~r]. We conclude

〈t[x1/r̃1, . . . , xn/r̃n, ~r], t[x1/r1[~r], . . . , xn/rn[~r], ~r]〉 ∈ A∗[~r].

Now using equiv(A∗[~r]) and Lemma 7.11 we conclude

〈r̃[~r], s̃[~r]〉 ∈ A∗[~r], 〈s̃[~r], s̃[~r′]〉 ∈ A∗[~r],

and have (a,i).

Case (UI): trivial.
(TI,=) we have by IH, assuming Γ=(~r;~r′),

〈a[~r], a′[~r′]〉 ∈ U∗

therefore,
〈a[~r], b, a′[~r′]〉 ∈ Û

for some b, by CorU(Û),

〈a[~r], b, a[~r]〉 ∈ Û, 〈a[~r′], b, a[~r′]〉 ∈ Û,

and
T(a)∗[~r] = b = T(a′)∗[~r′]

Case (Π̂I,=): Assume Γ=(~r;~r′). By IH a[~r]→redã, a′[~r′]→redã
′,

∃γ < I∃b′ ∈ TC(Ũγ)(〈ã, b′, ã〉, 〈ã′, b′, ã〉 ∈ Ũγ),

and
∀〈t, t′〉 ∈ b′ → ∃δ < I.∃c ∈ TC(Ũδ).

(〈b[x/t, ~r], c, b′[x/t′, ~r′]〉 ∈ Ũδ).

36

Since Ad(LI) (here is the central point where we need (∆0− coll) and an admissible

a which is closed under the step to the next admissible), and TC(Ũβ) ∈ LI (β < I),
there is a ρ < I, such that γ < ρ and δ can be chosen < ρ. There are now b, f
such that ([~x′/~s] := [~x/~r]\{x}, [~x′/~s′] := [~x/~r′]\{x}) φ(ã, x, b[~s], ã′, x, b[~s′], b, f, Ũρ),

(note that the c we used above is correct by Cor(Û)) and by 7.5 (a) follows

〈Π̂x ∈ a.b,Π∗(b, f), Π̂x ∈ a′.b′〉 ∈ Ũρ+1.

Case (Π̂=): Assume Γ=(~r;~r′) and chose b′, f, ρ as in (Π̂I,=). Then T(a)∗[~r′] = b′, and

if 〈t, t′〉 ∈ b′, T(b)∗[x/t, ~r] = f(t) = f(t′) = T(b)∗[x/t′, ~r′]. Since we have Cor(Û) (by
Lemma 7.5 (d)) it follows

T((Π̂x ∈ a.b))∗[~r] = Π∗(T(a)[~r], (x)T(b)[~r]) = (Πx ∈ T(a).T(b))∗[~r].

In the case of (Ŵ=) we conclude as before, that

FW(T(a)∗[~r], (x)T(b)∗[~r]) = FW(T(a)∗[~r′], (x)T(b)∗[~r‘])

and, since
α+(Ũρ) < I, (ρ chosen as in (Π̂I,=)) it follows by 7.1

T(Ŵx ∈ a.b)∗[~r] = F
α+(Ũρ)
W (T(a)∗[~r], (x)(T(b))∗[~r]) = F I

W(T(a)∗[~r], (x)(T(b))∗[~r]) =
(Wx ∈ T(a).T(b))∗[~r′]

Case (Σ̂E): Assume Γ=(~r;~r′). By IH exists c, α ≺ I such that

〈(Σ̂x ∈ a.b)[~r], c, (Σ̂x ∈ a.b)[~r′]〉 ∈ Ũα.

Let α be chosen minimal. Then, α = α′ + 1, and with u := Ũα′
there exist r, r′ ∈

Termnf , c, c
′, f, f ′ such that a[~r]→redr, a[~r′]→redr

′, 〈r, c, r′〉 ∈ u and (with [~x′/~s] :=
[~x/~r]\{x}, [~x′/~s′] := [~x/~r′]\{x}) ∀〈t, t′〉 ∈ c.〈s[~s][x/t], f(t), s[~s′][x/t′]〉 ∈ u. Therefore
T(a[~r])∗ = c = T(a[~r′])∗, and for 〈t, t′〉 ∈ T(a[~r])∗, 〈s[x/t, ~r], s[x/t′, ~s′]〉 ∈ U∗[].

(Π̂E), (ŴE), (+̂
E
) are checked in the same way. For (̂IE) we observe, that a[~r]→redã,

a[~r′]→redã
′, s[~r]→reds̃, s[~r

′]→reds̃
′, t[~r]→redt̃, t[~r

′]→redt̃
′, and 〈ã, c, ã′〉 ∈ u, for some

u as before, T(a)∗[~r] = c, 〈s̃, s̃′〉 ∈ c, 〈t̃, t̃′〉 ∈ c, and since c is closed under →red

follows the assertion.

9 Π1
1-Soundness of the Interpretation of Martin-

Löf Type Theory into KPI+

In this section we want to evaluate the results we have found out to get the proof
theoretic strength of Martin-Löf’s type theory. We will interpret the language of
analysis (Lanalysis, introduced in 9.1) in LML and LKP (definition9.6) and prove that
it permutes with the interpretation of Martin-Löf’s type theory in KPI+ (Lemmata

37

9.8 and 9.9). Next we observe that every proof of ML can be interpreted in KPI+

(Lemma 9.10). This preserves Π1
1-sentences, where second order quantifiers in Kripke

Platek set theory refer to elements of Ad2. In the next section we will analyse
the strength of KPI+ and obtain the desired upper bound for the type theories in
question.

Definition 9.1 Definition of the language of Peano Arithmetic Lanalysis: we have
first order variables vi (i ∈ ω, varanalysis := {vi|i ∈ ω}); second order variables
Vi (i ∈ ω, VARanalysis := {Vi|i ∈ ω}); further we have symbols for each primitive
recursive function, =, ∧, ∨, →, ∀, ∃, ⊥, and ., , , (,).
Terms are first-order variables and f(t1, . . . , tn) if ti are terms and f is a symbol for
a n-ary primitive recursive function.
Prime formulas are ⊥, equations r = s, and r ∈ X for r, s terms, X ∈ VARanalysis.
Formulas are prime formulas and A → B, A ∧ B, A ∨ B, ∀x.A, ∃x.A, if A,B
formulas, x ∈ varanalysis ∪ VARanalysis.
A ∆1

0 formula is a formula, not containing bounded second-order quantifiers, and a
Π1

1-formula is ∀X.φ, where φ is a ∆1
0-formula.

Remark 9.2 We could omit that A ∧ B, A ∨ B, ∃x.A are formulas in the above
definition and simplify the correctness theorem below. We keep those sets since the
proof of Lemma 9.9 gives some insights about how the interpretation works.

Assumption 9.3 After renaming all variables, we assume, we have additional new
variables Ui of KPI+ (i ∈ ω) and Zi of ML (i ∈ ω), s.t. in the step from a g-type to
A∗, Zi becomes Ui and in 6.7 (a), if xi = Zj, then on the right side we put Uj.

Definition 9.4 (a) Let Cset
i be new Gödelnumbers for new constructors ConstrCseti

(for which we write as before for simplicity Cset
i).

(b) Let for a set b, EmbsetML(f) := {〈n, N̂0〉|n ∈ ω \ b} ∪ {〈n, N̂1〉|n ∈ ω ∩ b}.

(c) If CES(b), the Gödel numbers of the constructors in b are 6= Cset
ij

(j = 1, . . . ,m),
b1, . . . , bm ∈ Ad2, bi ⊂ ω, Zij 6= Zik , (j 6= k), then
CES+(b, Zi1/b1, . . . , Zim/bm) := b ∪ {〈Cset

i1
, 0, f1〉, . . . , 〈dCset

im e, 0, fm〉},
where fi := EmbsetML(bi).

Definition 9.5 Let P(N) := N→ U, MLi
1WT ` N→ U : type.

Definition 9.6 (a) For each primitive recursive g : Nk → N we define a closed
g-term intPA,ML(g), (we abbreviate this as ĝ := intPA,ML(g)) such that

ML ` ĝ : N→ · · ·N︸ ︷︷ ︸
k times

→ N,

and we define a set intPA,KP(g) short g̃ in LKP
such that KPI+ ` fun(g̃) ∧ dom(g̃) = Nk ∧ ∀x ∈ Nk.g̃(x) ∈ N.
Case g = S: ĝ := λx.S(x), g̃ := {〈x, x+ 1〉|x ∈ N}.
Case g = Projni ĝ := λx1, . . . , xn.xi, g̃ := {〈〈x1, . . . , xn〉, xi〉|x1, . . . , xn ∈ N}.
Case g = Consnc :

38

ĝ := λx1, . . . , xn.S
c(0), g̃ := {〈〈x1, . . . , xn〉, c〉|x1, . . . , xn ∈ N}.

Case g(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)):
ĝ := λx1, . . . , xn.ĥ (ĝ1 x1 · · ·xn) · · · (ĝm x1 · · ·xn),
g̃ := {〈〈x1, . . . , xn〉, h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))〉

|x1, . . . , xn ∈ N}.
Case g(x1, . . . , xn, 0) = h(x1, . . . , xn),

g(x1, . . . , xn, y + 1) = k(x1, . . . , xn, y, g(x1, . . . , xn, y)):
ĝ := λx1, . . . , xn, y.P(y, ĥ x1 · · ·xn, (u, v)k̂ x1 · · ·xn u v),

define l(x1, . . . , xn, 0) := h̃(x1, . . . , xn),

l(x1, . . . , xn, S(y)) := k̃(x1, . . . , xn, y, l(x1 · · ·xn, y)),
then
g̃ := {〈〈x1, . . . , xn, y〉, l(x1, . . . , xn, y)〉|x1, . . . , xn, y ∈ N}.

(b) For each term t of analysis we define a g-term intPA,ML(t), short t̂ and a term
of LKP intPA,KP(t), short t̃, such that, if FV(t) = {vi1 , . . . , vin} (i1 < · · · < in)
(vi as in definition 9.1 of varanalysis) then FV(t̂) ⊂ {zi1 , . . . , zin}, FV(t̃) ⊂
{ui1 , . . . , uin} and ML ` zi1 : N, . . . , zin : N⇒ t̂ : N, and
KPI+ ` ∀ui1 , . . . , uin ∈ ω.(t̃ ∈ ω).
Case t = vi: t̂ := zi, t̃ := ui.
Case t = 0: t̂ := 0, t̃ := 0.
Case t = g(t1, . . . , tn): t̂ := ĝ t̂1 · · · t̂n, t̃ := g̃(t̃1, . . . , t̃n).

(c) For each formula A of analysis we define a g-type intPA,ML(A) (short Â), and

a formula of LKP intPA,KP(A), short Ã, such that in KPI+ Ã is equivalent to
a ∆0-formula, and if FV(A) = {vi1 , . . . , vin , Vj1 , . . . , Vjm}, ik 6= il, jk 6= jl for

k 6= l, then FV(Â) ⊂ {zi1 , . . . , zin , Zj1 , . . . , Zjm},
FV(Ã) ⊂ {ui1 , . . . , uin , Uj1 , . . . , Ujm} and for all versions ML of Martin-Löf
Type Theory considered in this article we get
ML ` zi1 : N, . . . , zin : N, Zj1 : P(N), . . . , Zjm : P(N)⇒ Â : type.

Case A = (s = t): Â := I(N, ŝ, t̂), Ã := (s̃ = t̃).

Case A = (t ∈ Vi): Â := T(Zi t̂) for the Tarski-version Â := Zi t̂ for the

Russell-version, Ã := t̃ ∈ Ui.
Case A = (B ∧ C): Â := (B̂ × Ĉ), Ã := B̃ ∧ C̃.

Case A = (B ∨ C): Â := (B̂ + Ĉ), Ã := (B̃ ∨ C̃).

Case A = (B → C): Â := (B̂ → Ĉ), Ã := (B̃ → C̃).

Case A = ∀vi.B: Â := Πzi ∈ N.B̂, Ã := ∀ui ∈ ω.B̃.
Case A = ∃vi.B: Â := Σzi ∈ N.B̂, Ã := ∃ui ∈ ω.B̃.
Case A = ∀Vi.B: Â := ΠZi ∈ P(N).B̂, Ã := ∀Ui ∈ Ad2.Ui ⊂ ω → B̃.

Case A = ∃Vi.B: Â := ΣZi ∈ P(N).B̂, Ã := ∃Ui ∈ Ad2.Ui ⊂ ω ∧ B̃.

Case A =⊥: Â := N0, Ã := (0 6= 0).

Definition 9.7 (a) We define emb : ω → ω, emb(n) := Sn(0)(=: ˆ̂n) (or more
precisely dSn(0)e), a function definable in KPI+.

39

(b) 〈a, ·〉 := 〈a, a〉.
Lemma 9.8 (a) If g : Nk → N is primitive recursive, then

KPI+ ` ∀t1, . . . , tk ∈ TermCl.∀n1, . . . , nk.

(r1→red
ˆ̂n1 ∧ · · · ∧ rk→red

ˆ̂nk)→ ĝ r1 · · · rk→redemb(g̃(n1, . . . , nk)).

(b) If t is a term of analysis, FV(t) ⊂ {v1, . . . , vn}, then

KPI+ ` ∀r1, . . . , rn ∈ TermCl.∀n1, . . . , nk.(r1→red
ˆ̂n1 ∧ · · · ∧ rk→red

ˆ̂nk)→
t̂[z1/r1, . . . , zn/rn]→redemb(t̃[u1/n1, . . . , un/nn]).

Proof: (a) Case g = S: ĝ r1→red(λx.S(x)) ˆ̂n1→redS(ˆ̂n1) = emb(S(n1)).
Case g = Projni : ĝ r1 · · · rn→red

ˆ̂ni = emb(g̃(n1, . . . , nk)).
Case g = Consnc : trivial.
Case g(~x) = h(g1(~x), . . . , gm(~x)), li := g̃i(n1, . . . , nn):

ĝi r1 · · · rn→redemb(g̃i(n1, . . . , nn)) =: emb(li),

therefore
ĝ r1 · · · rn
= ĥ (ĝ1 r1 · · · rn)) · · · (ĝm r1 · · · rn))

→red ĥ l̂1 · · · l̂n
→red emb(h̃(l1, . . . , lm))
= emb(g(n1, . . . , nn))

Case g(x1, . . . , xn, 0) = h(x1, . . . , xn), g(~x, xn+1) = k(~x, y, g(~x, xn+1))). Let

ĥ r1 · · · rn→redemb(h̃(n1, . . . , nn)) =: l0. We show by induction on l,

P(
ˆ̂
l, l0, (λu, v.k̂ r1 . . . rn u v))→redemb(g̃(n1, . . . , nn, l))

Then follows the assertion, since

g(r1, . . . , rn, rn+1)

→red P(ˆ̂nn+1, l0, (λu, v.k̂ r1 · · · rn u v))
→red emb(g̃(n1, . . . , nn, nn+1))

Proof of the statement: If l = 0,

P(
ˆ̂
l, l0, (λu, v.k̂ r1 · · · rn u v))

→red l0
= emb(g̃(n1, . . . , nn, l))

40

If l = m+ 1,

P(
ˆ̂
l, l0, (λu, v.k̂ r1, · · · rn u v))

= P(S(ˆ̂m), l0, (λu, v.k̂ r1 · · · rn u v))

→red (λu, v.k̂ r1 · · · rn u v) ˆ̂m P(ˆ̂m, l0, (λu, v.k̂ r1 . . . rn u v))

→red (λu, v.k̂ r1 · · · rn u v) ˆ̂m emb(g(n1, . . . , nn,m))

→red k̂ r1 · · · rn ˆ̂m emb(g(n1, . . . , nn,m))

→red k̂ ˆ̂n1, · · · ˆ̂nn ˆ̂m emb(g(n1, . . . , nn,m)))

→red emb(k̃(n1, . . . , nn,m, g(n1, . . . , nn,m)))
= emb(g̃(n1, . . . , nn, l))

(b): If t = vi, 0, this is trivial,
and if t = g(t1, . . . , tn) it follows by IH

t̂i[~r]→redemb(t̃i[~n]),

by (a) therefore

t̂[~r] = ĝ t̂1[~r] · · · t̂n[~r]→redg̃(emb(t̃1[~n]), . . . , emb(t̃n[~n])) = t̃[~n]

Next task would now be to prove, that, when we first interpret a formula of Lanalysis

in LML and then use the interpretation, as we have done in section 6, we get an
equivalent formula to the one, we get by directly interpreting Lanalysis in LKP . But
in this formulation, this is not correct, here is the place, where we need to extend
the set of term constructors by non constructive constructors. In order to interpret
a true Π0

2 formula A = ∀x.∃y.φ in such a way, that for the false formula ¬A we have
(¬A)∗ = ∅ we need an element of A∗, which gives for the x a witness y of φ. But
this might be non constructive, so we add here a (possibly) non constructive new
constructor. So for every formula we need certain new constructors. Furthermore,
we want that Π1

1-formulas are interpreted correctly as well, that is, we want, that
if we have a free set variable Vi, we can replace it in the KPI+-interpretation by
arbitrary subsets Ui ⊂ ω, Ui ∈ Ad2. We achieve this by allowing here arbitrary
interpretations for the constructor Cset

i .

Lemma 9.9 For every ∆1
0-formula A with

FV(A) ⊂ {vi1 , . . . , vil , Vj1 , . . . , Vjm}

with ik 6= il, jk 6= jl, (k 6= l) there is a CES c not referring to the construc-
tors Cset

i (i ∈ ω) and a g-term h ∈ TermCl s.t. FV(h) ⊂ {zi1 , . . . , zil}, and

with ~z := zi1 , . . . , zil,
~Z := Zj1 , . . . , Zjm, ~u := ui1 , . . . , uil,

~U := Uj1 , . . . , Ujm,

41

~CZ := Cset
j1
, . . . ,Cset

jm , ~n := n1, . . . , nl, we have

KPI+ ` ∀n1, . . . , nl ∈ ω.∀r1, . . . , rl ∈ TermCl.

∀b1, . . . , bm ∈ Ad2.∀a0 ∈ Ad2.

(b1 ⊂ ω ∧ · · · ∧ bm ⊂ ω
∧CES(a0) ∧ CES+(c, Zi1/b1, . . . , Zim/bm) ⊂ a0

∧(r1→red
ˆ̂n1 ∧ · · · ∧ rl→red

ˆ̂nl))

→ ((∃r ∈ Termnf .h[~z/~r]→redr)

∧(Ã[~u/~n, ~U/~b] ⇐⇒ 〈h[~z/~r], ·〉 ∈ Â∗[~z/~r]a0)
∧(Ã[~u/~n, ~U/~b] ⇐⇒ Â∗[~z/~r]a0 6= ∅))

Proof: by induction on the definition of the formulas.
Note that by Remark 9.2 we could have omitted the formulas A ∧ B, A ∨ B, and
∃x.A and the corresponding cases in the current proof. We kept them because the
proofs give some interesting insights how this method works.
As before we will not mention explicitly Variables, that occur in subterms, or do
not occur at all.

Case A =⊥: Choose c := ∅, h := 0. We have ¬Ã[~n], Â∗[~r] = ∅.
Case A = (s = t): Choose as c := ∅, h := r ∈ Termnf . We have, using that for
r→reds ∈ Termnf s is unique, and by Lemma 9.8

Ã[~n] ⇐⇒ s̃[~n] = t̃[~n]

⇐⇒ (∃n ∈ ω.ŝ[~r]→redSn(0) ∧ t̂[~r]→redSn(0))

⇐⇒ 〈ŝ[~r], t̂[~r]〉 ∈ N∗

⇐⇒ 〈r, r〉 ∈ Â∗[~r]
⇐⇒ Â∗[~r] 6= ∅

Case A = (s ∈ Vi): Let c := ∅, h := A1
0. Assume ~r, ~n, bi, a0 as in the assumption.

Then ŝ[~z/~r]→redemb(s̃[~u/~n]) = Sk(0) for some k.

Â[~z/~r, ~Z/ ~CZ]∗a0 = T(Cset
i (~s[~z/~r]))a0

=

{
T(N̂0) if k 6∈ bi
T(N̂1) if k ∈ bi

=

{
∅ if k 6∈ bi
Compl({A1

0}) if k ∈ bi

Ã[~u/~n, ~U/~b] = s̃[~u/~n] ∈ bi. This implies the assertion.

Case A = (A1 ∧ A2): Let ci, hi for Ai chosen, c := c1 ∪ c2, h := p(h1, h2). Then for

~n,~r,~b, a0 as in the assumption of the assertion there exist s1, s2 ∈ Termnf , such that
ri[~r]→redsi, h[~r]→redp(s1, s2) ∈ Termnf .

42

Ã[~n] ⇐⇒ B̃1[~n] ∧ B̃2[~n]

⇐⇒ 〈s1, ·〉 ∈ B̂∗1 [~n] ∧ 〈s2, ·〉 ∈ B̂∗2 [~n]

⇐⇒ 〈h[~r], ·〉 ∈ Â∗[~n]

⇐⇒ B̂∗1 [~r] 6= ∅ ∧ B̂∗2 [~r] 6= ∅
⇐⇒ Â∗[~n] 6= ∅

Case A = (B0 ∨B1): Let ci, hi for Bi chosen. Let

f := {〈〈n1, . . . , nl〉, i〉|(i = 0 ∧ B̃0[~n]) ∨ (i = 1 ∧ ¬B̃0[~n])}

(note that B̃0 is a ∆0-formula).
Let dCe be a Gödel-number for a new constructor, different from all dCsete, c :=
c1 ∪ c2 ∪ {〈dCe, l + 1, f〉}, h := P(C ~z, h1, (u, v)h2) (u, v new variables). Assume ~n,

~r, ~b, a0 as in the assumption. Then there exist si such that hi[~r]→redsi ∈ Termnf

C(r1, . . . , rn)→redC(ˆ̂n1, . . . , ˆ̂ni)→redSi(0)

for i = f(~n) ∈ {0, 1}.
We get, if i = 0,

h[~r]→redP(0, s1, (u, v)h2[~r])→reds1 ∈ Termnf ,

and if i = 1,
h[~r]→reds2.

We have

Ã[~n] ⇐⇒ B̃1[~n] ∨ (¬B̃1[~n] ∧ B̃2[~n])

⇐⇒ (f(~n) = 0 ∧ 〈s1, ·〉 ∈ B̂∗1 [~r]) ∨ (f(~n) = 1 ∧ 〈s2, ·〉 ∈ B̂∗2 [~r])

⇐⇒ 〈h[~r], ·〉 ∈ Â∗[~r]
⇐⇒ B̂∗1 [~r] 6= ∅ ∨ B̂∗2 [~r] 6= ∅
⇐⇒ Â∗[~r] 6= ∅

Case A = (B1 → B2). Let ci, hi for Bi chosen, c := c1 ∪ c2, h := λx.h2. Assume ~r,

~n, ~b, a0 as in the assumption. Then h2[~r]→reds2 for some s2 ∈ Termnf .

Subcase Ã[~n]. If B̃1[~n] is false, then by IH B̂∗1 [~r] = ∅, therefore

∀〈r, r′〉 ∈ B̂∗1 [~r].〈h2[x/r, ~r], h2[x/r′, ~r]〉 ∈ B̂∗2 [~r]

therefore 〈h[~r], ·〉 ∈ Â∗[~r].
If B̃1[~n] is true, then B̃2[~r] is true, therefore 〈s2, ·〉 ∈ B̂∗2 [~r],

∀〈r, r′〉 ∈ B̂∗1 [~r].h2[x/r, ~r]→reds2 ∧ h2[x/r′, ~r]→reds2 ∧ 〈s2, ·〉 ∈ B̂∗2 [~n],

43

h[~r] ∈ Â∗[~n].

Subcase ¬Ã[~n]. Then by IH exists s1 such that h1[~r]→reds1 ∈ Termnf and we have

〈s1, ·〉 ∈ B̂∗1 [~r] and, if we had 〈s, s′〉 ∈ Â∗[~r], then 〈s, ·〉 ∈ Â∗[~r], s→redλx.t for some

t, 〈t[x/s1], ·〉 ∈ B̂∗2 [~r] = ∅, a contradiction, therefore Â∗[~r] = ∅.
Case A = ∀vi.B: Let c1, h1 for B be chosen, c := c1, h := λvi.h1. Assume ~n, ~r, ~b, a0

as in the assertion, h[~r] ∈ Termnf .

Assume 〈r, r′〉 ∈ Â∗[~r], then 〈r, r〉 ∈ Â∗[~r], r→redλx.t and

∀k ∈ ω〈t[x/k̂, ~r], ·〉. ∈ B̂∗[zi/k̂, ~r],

by IH it follows ∀k ∈ ω.B̃[ui/k, ~n], therefore Ã[~n].

Assume Ã[~n]. Then for all k ∈ ω B̃[vi/k, ~r], therefore by IH 〈h[vi/r, ~r], ·〉 ∈ B̂∗[zi/r, ~r],
whenever r→redSk(0), therefore 〈h[~r], ·〉 ∈ Â[~r].

Case A = ∃vi.B, c1, h1 be chosen for B,

f := {〈〈~n〉, k〉| (B̃[ui/k, ~n] ∧ ∀k′ < k.¬(B̃[ui/k, ~n])) ∨
(k = 0 ∧ ∀k ∈ ω.¬(B̃[ui/k, ~n]))

Let dCe be a new name for a constructor 6= Cset
i , c := c1 ∪ {〈dCe, l + 1, f〉}. h :=

p(C(~z), h1[zi/C(~z)]) Assume ~n, ~r ~b, a0 as in the assertion, k := f(~n).

C(~r)→redC(ˆ̂n1, . . . , ˆ̂nn)→redSk(0).

By IH we have h1[zi/C(~z)][~r] = h1[zi/C(~r), ~r]→redt1 for some t1 ∈ Termnf , therefore
h[~r]→redp(Sk(0), t1).

Assume 〈r, r′〉 ∈ Â∗[~r]. Then 〈r, r〉 ∈ Â∗[~r], r→redp(Sl(0), r′′) ∈ Termnf . Then

〈r′′, ·〉 ∈ B̂∗[zi/Sl(0), ~r], by IH B̃[ui/l, ~n], therefore Ã[~n].

Assume Ã[~n]. Then by definition B̃[ui/k, ~n] and by IH

〈t1, ·〉 ∈ B̂∗[zi/ˆ̂
k, ~r] = B̂∗[zi/C(~z)[~r], ~r] = B̂[zi/C(~z)]∗[~z/~r],

therefore 〈h[~r], ·〉 ∈ Â∗[~r].
Lemma 9.10 If φ is a Π1

1-formula, ML ` s : φ̂, then KPI+ ` φ̃.

Proof: Let φ = ∀Vi.B. ML ` s : φ̂. By Lemma 8.1 it follows
KPI+ ` ∀CES(b).〈ŝ∗b , ·〉 ∈ φ̂∗b .
φ̂∗[~r] = Π∗(N̂→ U

∗
, λ〈r, ·〉 ∈ N̂→ U

∗
.B̂[~r, r]). Assume bi ∈ Ad2, x a variable, c

the CES chosen for B as in Lemma 9.9, a0 := b0 ∪ {〈Cset
i , 0,Embset(bi)〉}. We have

Ci ∈ (N → U)∗a0 . Therefore, under the assumption bi ∈ Ad2, bi ⊂ ω, KPI+ `
〈ŝ∗ Ci, ·〉 ∈ B̂∗a0 [Vi/C

set
i], by Lemma 9.9 KPI+ ` B̃[Ui/bi], and we have KPI+ `

∀Vi ∈ Ad2.Vi ⊂ ω → B̃ which is φ̃.

44

10 Main Theorem

In this final section we will prove the result about the proof theoretic strength of
the type theories used in this article (Theorem 10.5). We will show that the result
about the embedding is sufficient to show that we have an upper bound for the proof-
theoretic strength. We have to overcome the fact, that we did only prove, that if
ML ` TI(≺) (TI(≺) for transfinite induction over a primitive recursive relation
≺), we get KPI+ ` TIAd2(≺), where TIAd2 means transfinite induction, with the
quantifier over subsets of ω, which are elements of Ad2. But we will see, that this
will be sufficient to obtain the result.

Definition 10.1 We define some formulas in LKP :

(a) In the following, (a,≺) will be a pair where a is a set, and ≺⊂ a × a. In
this context s ≺ t := 〈s, t〉 ∈≺, ∀x ≺ t.φ := ∀x ∈ a.x ≺ t → φ, and
∃x ≺ t.φ := ∃x ∈ a.x ≺ t ∧ φ. Furthermore, s � t := s ≺ t ∨ s = t.

(b) Wfd(a,≺) :=≺⊂ a × a ∧ ∀x ∈ d.x ⊂ a → x 6= ∅ → ∃y ∈ x.∀z ≺ y.z 6∈ x. (≺
is a relation on a which is well-founded, restricted to d).

(c) Collaps(a,≺, f) := Fun(f) ∧ dom(f) = a ∧ ∀x ∈ a.f(x) = {f(y)|y ≺ x}. (f
is a collapsing function on (a,≺).

Lemma 10.2 If φ(y, y1, . . . , yn) is a ∆0-formula with only the free variables men-
tioned, then
KPI+ ` Wfd(a,≺) → Ad(c) → ∀y1, . . . , yn ∈ c.(∀x ∈ a.(∀y ≺ x.φ(y, y1, . . . , yn) →
φ(x, y1, . . . , yn))) → ∀x ∈ a.φ(x, y1, . . . , yn). The formula after the second arrow is
called principle of restricted induction over (a,≺).

Proof: Immediate.

Lemma 10.3 KPI+ ` Ad(c) → Ad(d) → c ∈ d → Wfd(a,≺) → c, d ∈ a → ∃f ∈
c.Collaps(a,≺, f).

Proof:
As in [Jäg86], Theorem 4.6, but replacing ∆0-induction by d-induction.
Lemma 10.4 If KPI+ ` ∀x.Ad(x) → φ(x) for a Σ1-formula φx, then Lv |= φ,
where φx is the restriction of all unrestricted quantifiers to x, and v := ψΩ1(ΩI+ω).
Proof:
We follow the lines of [Buc92]. First observe, that we can prove as in Theorem 2.9
there, using several applications of ∃κ, (

∧
), and `∗ Ad(Lκ) for κ ∈ R, and if we

have λ ∈ Lim, (κi)i∈ω a sequence, s.t. κ0 ∈ R, ∀α ∈ κ.∃ρ ∈ κ.α ∈ ρ ∈ R and
κi ∈ κi+1 ∈ R ∩ λ (i ∈ ω), and if we extend X∗ by including as well κi (i ∈ ω) it
follows

`∗λ (KPI+)λ.

(`∗λ φλ for every axiom φ of KPI+). We can adjust Theorem 3.12 of [Buc92] to
obtain, if we have in this situation, if λ ∈ H, κi ∈ H (i ∈ ω) and H closed under
ξ 7→ ξR, then:

45

For each theorem φ of KPI+ exists k ∈ N such that H `ωλ+kλ+k φλ.
Now observe, that Hγ in [Buc92] has the desired properties (with λ := ΩI+ω, κi :=
ΩI+i) and we conclude that if KPI+ ` ∀x.Ad(x)→ φx, where φ is a Σ-sentence, then
Lv |= φ for v := ψΩ1(ΩI+ω).

Theorem 10.5 |MLe
1WT,U|, |MLe

1WT|, |MLe
1WR,U|, |MLe

1WR|, |MLi
1WT,U|,

|MLi
1WT|, |MLi

1WR|, |MLi
1WR,U| = ψΩ1(ΩI+ω), where the ordinal denotation is as

in [Buc92].

Remark 10.6 Since intensional type theory using the formulation of [TD88] which
was used in [Set93] is a proper subtheory of |MLe

1WT|, ψΩ1(ΩI+ω) is an upper bound
for the proof theoretic strength of the Tarski and Russell formulations of intensional
type theory used in [Set93].

Proof of Theorem 10.5: Let v := ψΩ1(ΩI+ω). By [Set98b] we have |MLi
1WT| ≥= v.

Since the Russell formulations embed trivially into the Tarski Formulations (replace

T(r) by r and N̂k, N̂, Π̂, Σ̂, Ŵ, +̂, Î by Nk,N,Π,Σ,W,+, I, respectively), we obtain as
well |MLi

1WR| ≥ v. Since MLi
1WT,U is an extension of MLi

1WT, which both embed
into MLe

1WT,U and MLe
1WT, respectively, and MLi

1WR,U is an extension of MLi
1WR,

which both embed into MLe
1WR,U and MLe

1WR, respectively, v is a lower bound for
all theories in question.
Regarding the upper bound, we show |ML| ≤ v. Since all the theories can be
embedded into ML := MLe

1WT,U in such a way, that the principle of transfinite
induction remains unchanged (except, that T(Ui(t)) becomes Ui(t) in the version à
là Russell), we obtain that v is an upper bound for the proof theoretic strength of
all other theories in the theorem as well.
Proof of |ML| ≤ v: Assume ≺ is a primitive recursive linear ordering on the primitive
recursive subset T of ω, φ := ∀X.(∀y.y ∈ T → (∀z.z ≺ y → z ∈ X) → y ∈ X) →
∀y.y ∈ T → y ∈ X and ML ` φ̂. Then by Lemma 9.10 KPI+ ` φ̃. We follow
the proof of [Rat91] Theorem 7.14. Let a := {x ∈ ω|x ∈ T}, ≺′:= {〈x, y〉 ∈
ω × ω|x ≺ y}. Then KPI+ ` Ad(Ad1) ∧ Ad(Ad2) ∧ Ad1 ∈ Ad2 ∧ WfAd2(a,≺′
) ∧ a,≺′∈ Ad1, therefore by 10.3 KPI+ ` ∃f ∈ Ad1.Collaps(a,≺′, f), KPI+ `
∀x.Ad(x) → ∃f ∈ x.Collaps(a,≺′, f). Therefore Lv |= ∃f.Collaps(a,≺′ o, f). Since
≺ is linear ordering, it follows that Image(f) is an ordinal, and, because v ∈ Lim
we have Image(f) ∈ Lv, ordertype(≺) = Image(f) < v.

References

[Bar75] J. Barwise. Admissible Sets and Structures. An Approach to Definability
Theory. Omega-series. Springer, Berlin, Heidelberg, New York, 1975.

[Buc92] W. Buchholz. A simplified version of local predicativity. In P. Aczel,
H. Simmons, and S. S. Wainer, editors, Proof Theory. A selection of papers
from the Leeds Proof Theory Programme 1990, pages 115 – 147, Cambridge,
1992. Cambridge University Press.

46

[GR94] E. Griffor and M. Rathjen. The strength of some Martin-Löf type theories.
Arch. math. Log., 33:347 – 385, 1994.

[Jäg79] G. Jäger. Die konstruktible Hierarchie als Hilfsmittel zur beweistheoretis-
chen Untersuchung von Teilsystemen der Analysis. PhD thesis, Universität
München, 1979. Dissertation.

[Jäg83] G. Jäger. A well-ordering proof for Feferman’s theory T0. Arch. math. Log.,
23:65 – 77, 1983.

[Jäg86] G. Jäger. Theories for Admissible Sets: A Unifying Approach to Proof
Theory. Bibliopolis, Naples, 1986.

[JP82] G. Jäger and W. Pohlers. Eine beweistheoretische Untersuchung von (∆1
2−

CA) + BI und verwanter Systeme. Sitzungsberichte der Bayer. Akad. d.
Wiss., Math.-Nat. Kl., pages 1 – 28, 1982.

[Poh82] W. Pohlers. Admissibility in proof theory, a survey. In Logic, Methodology
and Philosphy of Science VI, Hannover 1979, pages 123 – 139, Amsterdam,
1982. North-Holland.

[Rat91] M. Rathjen. Proof-theoretical analysis of KPM. Arch. math. Log., 30:377
– 403, 1991.

[Set93] A. Setzer. Proof theoretical strength of Martin-Löf Type Theory with W-
type and one universe. PhD thesis, Mathematisches Institut, Universität
München, Munich, Germany, 1993. Available from http://www.cs.swan.

ac.uk/~csetzer/articles/weor0.pdf.

[Set98a] Anton Setzer. An introduction to well-ordering proofs in Martin-Löf’s
type theory. In G. Sambin and J. Smith, editors, Twenty-five years of
constructive type theory, pages 245 – 263, Oxford, 1998. Clarendon Press.

[Set98b] Anton Setzer. Well-ordering proofs for Martin-Löf type theory. Annals of
Pure and Applied Logic, 92:113 – 159, 1998.

[Set00] Anton Setzer. Extending Martin-Löf Type Theory by one Mahlo-universe.
Archive for Mathematical Logic, 39:155–181, 2000.

[Set04] Anton Setzer. Proof theory of Martin-Löf Type Theory – An overview.
Mathematiques et Sciences Humaines, 42 année, no165:59 – 99, 2004.

[Set08a] Anton Setzer. Proof theory and Martin-Löf Type Theory. In P. Atten, M.
v.; Boldini and G. Bourdeau, M.; Heinzmann, editors, One Hundred Years
of Intuitionism (1907 – 2007), Publications des Archives Henri-Poincaré
Publications of the Henri Poincaré Archives, pages 257 – 279. Birkhäuser,
2008.

47

[Set08b] Anton Setzer. Universes in type theory part I – Inaccessibles and Mahlo.
In A. Andretta, K. Kearnes, and D. Zambella, editors, Logic Colloquium
’04, pages 123 – 156. Association of Symbolic Logic, Lecture Notes in Logic
29, Cambridge University Press, 2008.

[Set11] Anton Setzer. Universes in Type Theory Part II – Autonomous
Mahlo. Submitted. Available from http://www.cs.swan.ac.uk/

~csetzer/articles/modelautomahlomain.pdf, 2011.

[Set15] Anton Setzer. The use of trustworthy principles in a revised Hilbert’s
program. In Reinhard Kahle and Michael Rathjen, editors, Gentzen’s Cen-
tenary, pages 45–60. Springer International Publishing, 2015.

[TD88] A. Troelstra and D. van Dalen. Constructivism in Mathematics. An Intro-
duction, Vol. II. North-Holland, Amsterdam, 1988.

48

