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ABSTRACT: 15 

 16 

Grazer-induced colony formation as a defence strategy in microalgae such as Scenedesmus species 17 

has been widely reported, but the associated costs and reversibility of the colonies are rarely 18 

studied. We experimentally showed that S. obliquus formed chained colonies in the presence of a 19 

predator, including predators separated from the algae by a membrane, but quickly reverted to 20 

single cells after the removal of the predator – a defining characteristic of an inducible defence. We 21 

detected the stress indicator astaxanthin esters in the algal populations in the presence of grazers, 22 

but not when grazers were absent. We found significant costs associated with S. obliquus colony 23 

formation in terms of lower population growth rate, lower photosystem II efficiency and lower 24 

cellular Chlorophyll a content. These results together show that colony formation as an inducible 25 

defence in S. obliquus against grazers comes at a substantial cost such that the defence must be 26 

switched off and the colonies revert to single cells when the predation risk disappears.   27 

  28 
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INTRODUCTION 29 

 30 

In aquatic environments, morphological anti-predator traits are an important defence for 31 

microalgae to reduce predation risk, e.g., colony formation (Trainor, 1991; Lürling and Beekman, 32 

1999; Jakobsen and Tang, 2002). The green microalga Scenedesmus sp., for instance, is usually 33 

present as single cells, but it can form chained colonies in the presence of grazers (Tollrian and 34 

Harvell, 1999). Colonies are the result of cell divisions without separation, the process of which is 35 

limited by cell multiplication and growth (Pickett-Heaps and Staehelin, 1975; Trainor et al., 1976). 36 

As most grazers are size selective, this increased-size defence reaction reduces the predation risk for 37 

the alga (Hessen and van Donk, 1993; Lürling and van Donk, 1996). Physical contact with the 38 

grazers is not required to elicit the response, as the predation risk can be communicated via 39 

chemical cues from the grazers (Hessen and Van Donk, 1993; Lampert et al., 1994; Lürling, 2000).  40 

By definition, inducible defensive phenotypes should revert to the original phenotypes once 41 

the predation risk has disappeared (Tollrian and Harvell, 1999; Van Donk et al., 2011).  Defensive 42 

colony formation by Scenedesmus spp. has been widely studied, but reversibility from the colonial 43 

to the unicellular form has rarely been tested (Verschoor, et al. 2009). 44 

According to defence theory, the algae should pay some costs for their predator-induced 45 

defence response (Mole, 1994; Agrawal, 1998); otherwise the defensive (colonial) form would be 46 

the norm (Dodson, 1989). However, while the benefit of defensive traits for prey survival is clear, 47 

the costs are often unknown a priori and can be difficult to identify (Lürling and Van Donk, 2000). 48 

Thus far, evidence has suggested higher settling velocities for Scenedesmus colonies, thereby 49 

removing the algae from the euphotic zone (Lampert et al., 1994; Lürling and Van Donk, 2000). 50 

Other possible costs can be considered for Scenedesmus colony formation as well: 1) reduced 51 

nutrient and light uptake due to the “package effect” (Kirk, 1994), resulting in lower growth rate; 2) 52 

decreased photosystem II (PSII) efficiency (Lürling and Van Donk, 2000); and 3) decreased 53 

Chlorophyll a content (Lürling and Van Donk, 2000; Yang et al., 2009).  54 

Many green algae are known to accumulate secondary keto-carotenoids such as Astaxanthin 55 

(Ax) and its derivatives Astaxanthin-esters (Ax-E) as part of the xanthophyll cycle when exposed to 56 

stress such as high irradiance or UV (Figure 1). These stresses lead to the formation of reactive 57 

oxygen species (ROS), and Ax and Ax-E as antioxidants can protect the cells from ROS damages 58 

(Lemoine and Schoefs, 2010). As such, Ax and Ax-E accumulations have been used to indicate 59 

photo-oxidative stress in algae (Quin et al., 2008; Aburai et al., 2015), but there is no prior report 60 

that links their accumulation to predation-related stress.  61 

 62 
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In this study, we tested for colony formation in Scenedesmus obliquus induced by chemical 63 

cues from a grazer with different levels of feeding activity, and the associated costs in terms of 64 

population growth rate, photosystem II efficiency and cellular Chlorophyll a content. We 65 

hypothesised that direct or indirect grazing cues would induce colony formation, but non-feeding 66 

grazers would induce fewer colonies than actively feeding grazers. Furthermore, we tested the 67 

alga’s ability to revert to unicells and to recover the costs following the disappearance of the 68 

grazers. Lastly, we investigated, for the first time, the production of Astaxanthin (esters) by S. 69 

obliquus in response to grazing.  70 

 71 

 72 

METHODS 73 

 74 

To investigate how grazers affected colony formation and reversal in microalgae, and assess 75 

potential costs to the algae, we carried out a series of laboratory experiments. 76 

Organisms: 77 

The green alga Scenedesmus obliquus (Turpin) (recently renamed Tetradesmus obliquus 78 

(Turpin) Wynne (2016)) was bought from the Culture Collection of Algae and Protozoa (CCAP, 79 

strain number 276/6A), and grown in BG-11 medium (Sigma-Aldrich 73816 FLUKA) in batch 80 

culture in 250-mL flasks. S. obliquus is commonly found as single cells; however, it can form 81 

colonies in the presence of grazers (Lürling and van Donk, 2000; Zhu et al., 2015). The freshwater 82 

zooplankton Daphnia magna Straus, 1820 (Cladocera) was obtained from the Leibniz-Institute of 83 

Freshwater Ecology and Inland Fisheries (Germany). Genetically identical individuals originated 84 

from a single female were fed daily ad libitum with a mixture of two algae: S. obliquus and 85 

Raphidocelis subcapitata (Sphaeropleales), and kept in glass beakers with spring water (Evian 86 

mineral water: pH = 7.2; Ca2+ = 78 mg L-1). R. subcapitata (CCAP, strain number 278/4) was 87 

cultivated in the same conditions as S. obliquus. Algae and zooplankton cultures were grown at a 88 

temperature of 21 ± 2°C and a light intensity of 80-90 µmol photons ·m-2 ·s-1 in an 18 hours light: 6 89 

hours dark cycle.  90 

Dialysis bags are semi-permeable membranes used in separation techniques for the removal 91 

or exchange of molecules based on different pore sizes. The dialysis bags used in this study 92 

(Medicell Membranes Ltd, London) and had a pore size of 12-14 kD. The bags allowed the passage 93 

of Daphnia infochemicals but prevented physical contact between D. magna and S. obliquus. The 94 

bags were washed following the manufacturer’s instructions before use. 95 

 96 

Colony induction experiment: 97 
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The experimental set-up consisted of dialysis bags placed in 500 mL glass beakers (Figure 2), 98 

divided as follows: three replicates of control beakers each of: 1) Single-celled S. obliquus inside 99 

(C1B) and outside (C1O) the dialysis bag to determine the background level of colony formation in 100 

the absence of grazers. The treatment beakers consisted of three replicates each of: 2) single-celled 101 

S. obliquus + nutrients inside the dialysis bag (T1B) and mineral water + nutrients + D. magna 102 

outside the dialysis bag (T1O) to assess colony formation induced by non-feeding D. magna; 3) 103 

single-celled S. obliquus + nutrients inside the dialysis bag (T2B) and single-celled S. obliquus with 104 

D. magna + nutrients outside the dialysis bag (T2O) to assess colony formation induced by actively 105 

grazing D. magna.  106 

Before the start of the experiment, S. obliquus population was grown at a temperature of 21 ± 107 

2°C under a cold light of 80-90 µmol photons·m-2·s-1 and a photoperiod of 18 hours light: 6 hours 108 

dark. BG-11 medium was used as source of nutrients. An initial concentration of ca. 5 ×105 cells 109 

mL-1 of unicellular S. obliquus in exponential phase was added to the dialysis bags and relevant 110 

beakers. The total volume of the dialysis bag was 70 mL; each bag was sealed at both ends with 111 

clips. 10 genetically identical D. magna adults (4 ± 2 days old) were used in each predator treatment 112 

beaker. All the beakers were placed in front of a cold light of 80-90 µmol photons·m-2·s-1 at a 113 

temperature of 21 ± 2°C and in a photoperiod of 18 hours light: 6 hours dark.  114 

The beakers were manually shaken and their positions changed daily to ensure uniform 115 

exposure to light throughout the experiment. Moreover, the dialysis bags were gently shaken and 116 

inverted in the beaker twice a day to avoid sedimentation of algae and to mix the medium. The 117 

experiment lasted for 3 days. On Day 0 and Day 3, aliquots were collected for the following 118 

analyses: pigments, quantum yield (PSII efficiency) and cell (colony) counts. Additional samples 119 

for cell and colony counts were taken on Day 1. 120 

 121 

Colony reversibility experiment: 122 

A second experiment was conducted to test whether S. obliquus colonies were able to revert 123 

to single cells once the grazing risk had disappeared.  For this experiment we used S. obliquus 124 

populations recovered from the Colony induction experiment.  125 

At the end of the Colony induction experiment, aliquots were transferred from the different 126 

beakers into new beakers filled with 70 mL of deionized water and BG-11 nutrient medium, to 127 

create an initial inoculum of ca. 3 ×105 cells mL-1 of algal population dominated by single cells or 128 

colonies (Figure 3).  The new beakers were exposed to the same light and photoperiod conditions as 129 

before, and were manually shaken and their positions changed daily to ensure uniform exposure to 130 

light throughout the experiment.  The experiment lasted for 3 days. On Day 0 and Day 3, aliquots 131 
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were collected for the following analyses: pigments, quantum yield (for PSII efficiency) and cell 132 

(colony) counts. Additional samples for cell (colony) counts were taken on Day 1. 133 

  134 

Measurement of pigments 135 

The pigment contents of the algal populations were determined on Day 0 and Day 3, using 136 

the method described by Zapata et al. (2000) with HPLC (High Performance Liquid 137 

Chromatography).  A 20-mL aliquot was transferred from each algal population with a sterile 138 

syringe into an Eppendorf tube and pellets were created from these aliquots after centrifugation. 139 

The samples were extracted with 90% HPLC grade acetone (Sigma-Aldrich) and sonicated with a 140 

sonicator probe (Fisher Scientific) for 1 minute at 40 Hz to lyse the cells. Once the pigments were 141 

extracted, each pellet was centrifuged at 6000 g for 5 minutes and 50 µL of the supernatants 142 

containing pigments were used for HPLC analysis. The HPLC system had a 150 × 4.6 mm column 143 

(Waters spherisorb ODS2, particle size diameter of 5 µm) with a flow rate of 1 mL min -1 and the 144 

solvent gradient described in Zapata et al. (2000). Astaxanthin, its ester forms and other pigments 145 

(not reported) were identified by comparing our retention times and diode array spectra with those 146 

reported by Jeffrey et al. (1997). Specific pigment contents were expressed as percentages of peak 147 

area relative to the total peak area of all the pigments. Chlorophyll a was quantified against 148 

reference standard (Sigma-Aldrich, 96145).  149 

 150 

Quantum yield measurement (QY)  151 

PSII efficiency was measured in samples collected at the same time of day during the light 152 

period (ca. 80-90 µmol photons m-2 s-1) as effective quantum yield (QY) using an Aquapen (AP-C 153 

100, Photon Systems Instruments). Fluorescence nomenclature and calculation was done according 154 

to the manufacturer’s instructions. At the end of the light period, a 2-mL aliquot was transferred 155 

from each algal population into a cuvette which was then inserted into the Aquapen. The variable 156 

fluorescent (Fv) and the maximal fluorescence intensity (Fm) were measured with an excitation 157 

wavelength of 455 nm and emission wavelengths of 667-750 nm. The mean of three measurements 158 

was used to calculate the effective efficiency of PSII e- -flow as Fv/Fm.  Afterward, the aliquot was 159 

recovered for cell counts (see below). 160 

 161 

Cell (colony) counts and measurement of algal growth rate 162 

Aliquots recovered from QY measurements were fixed with Lugol’s solution (Sigma-163 

Aldrich 62650-1L-F) and stored in a dark refrigerator (~5 °C).  Samples were counted within 15 164 
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days using a haemocytometer under a Leica inverted microscope (400 magnification). Numbers of 165 

single cells, number of colonies and number of cells per colony were recorded. The specific growth 166 

rates (μ) were calculated for the periods of Day 0–Day 1 and Day 1–Day 3 using the equation: μ = 167 

[ln (X2 / X1)]/(t2 – t1), where X1 and X2 are the counts of total cells at time t1 and t2, respectively. 168 

 169 

Statistical analysis 170 

Statistical analyses were performed using R studio software (v. 1.1.383).  One-way ANOVA 171 

was used to test for differences between treatments in terms of (i) the change in astaxanthin %, QY 172 

values and pigment percentages; (ii) the number of cells in colonies; recorded over the course of the 173 

experiments. Differences between QY were calculated using the mean QY value of three replicates 174 

of each treatment on Day 0 and Day 3. These responses were considered during both colony 175 

formation and colony reversal. Model residuals were tested with a Shapiro-Wilks test, and no 176 

evidence was found suggesting deviation of residuals from a Normal distribution (p > 0.05 in all 177 

cases). Levene’s test showed no deviation from the assumption of homogeneity of variance across 178 

groups (p > 0.05 in all cases).  Post-hoc Tukey tests tested for differences between colonies induced 179 

by non-feeding and actively feeding Daphnia. The level of statistical significance was set at α = 180 

0.05.  181 

 182 

 183 

RESULTS 184 

Colony induction experiment: 185 

Astaxanthin esters were absent in all the treatments and controls on Day 0, but they appeared 186 

on Day 3 in the algal populations treated with D. magna, while they remained absent in the controls 187 

(Figure 4A). Differences in QY values across treatments were detected (F4,10 = 284.5, p < 0.001). S. 188 

obliquus populations exposed to D. magna showed a drop in QY; on the contrary, Daphnia-free 189 

populations of S. obliquus showed an increase in QY over time (Figure 4B).  190 

All the replicates (controls and treatments) had the same initial concentration of Chlorophyll a 191 

per cell (mean 0.139 ng cell-1 ± 0.005 s.e.). On Day 3, cellular Chlorophyll a content decreased 192 

drastically in all algal populations under the direct or indirect influence of D. magna (mean change: 193 

-0.13 ng cell-1 ± 0.007 s.e.), whereas in the Controls the cellular Chlorophyll a content increased 194 

significantly (mean change: 0.102 ng cell-1 ± 0.001 s.e.; Figure 4C).   195 

 196 

There was no evidence of any difference between direct contact with D. magna (T2O) and 197 

exposure to D. magna’s chemical cues (T1B, T2B) in the formation of S. obliquus colonies (F2,6 = 198 
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0.273, p = 0.77; Figure 5). Controls without D. magna had a low and stable amount of multi-celled 199 

clusters throughout the experiment. The number of cells per colony increased over time in the 200 

treatments exposed to D. magna stimuli, with an increase in 8-celled colonies by Day 3 in all 201 

replicates (Fig. 5, F4,10 = 286.6, p < 0.001). 202 

As expected, the algal populations in direct contact with D. magna decreased because they 203 

were being grazed. However, even the populations inside the dialysis bags showed lower growth 204 

rates (μ) in the presence of D. magna chemical cues: in the first period (Day 0–Day 1) algal 205 

population growth rates in the presence of D. magna chemical cues (μ = 0.02 and 0.01 d−1 ± 0.004 206 

s.e. for T1B and T2B, respectively) were much lower than that of the control populations 207 

(μ = 0.69 d−1 ± 0.000 s.e for both C1B and C1O).  In the second period (Day 1–Day 3), μ was still 208 

lower in algal populations exposed to D. magna chemical cues (μ = 0.03 and 0.04 d−1 ± 0.004 s.e. 209 

for T1B and T2B, respectively) than in the control populations (μ = 1.13 and 1.07 d−1 ± 0.02 s.e. for 210 

C1B and C1O, respectively).  211 

 212 

 213 

Colony reversibility experiment: 214 

Astaxanthin esters were present in all of the starting populations that were previously exposed 215 

to D. magna, and these pigments were no longer present on Day 3 following removal of the grazers 216 

(mean decrease: -5% ± 0.73 s.e., Fig. 6a). Astaxanthin esters were always absent in the control 217 

populations that were never exposed to D. magna (C1B in Fig. 3).  218 

QY values increased between Day 0 and Day 3 in all populations with or without pre-219 

exposure to D. magna (F3,8 = 10.97, p < 0.005, Figure 6B). The Chlorophyll a level was low and 220 

similar for both control and pre-exposed populations on Day 0. At the end of the experiment, the 221 

amount of Chlorophyll a per cell increased in the control (from 0.3 to 0.8 ng cell-1) but less so in the 222 

pre-exposed populations (ca. +0.05 ng cell-1; Fig. 6C). 223 

 224 

There was a significant decline in the number of cells per colony from Day 0 to Day 3 in the 225 

pre-exposed populations during the reversibility experiment, with the 8-celled colonies disappearing 226 

by Day 3 (Fig. 7, F3,8 = 8.655, p = 0.006). The control population maintained a low and stable 227 

number of small colonies.  228 

In the first day after removal from the grazer, the algal populations had a low growth rate 229 

(μ = 0.03, 0.03 and 0.07 d−1, for T2O, T1B and T2B respectively). As the experiment progressed 230 
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(Day 1–Day 3), the growth rates of the pre-exposed populations increased and became comparable 231 

to that of the control population: μ = 1.40 d−1 for C1B and T1B, 1.37 d-1 for T2B and 1.39 d−1 for 232 

T2O. 233 

 234 

DISCUSSION 235 

 236 

The ability to defend against predators is a major evolutionary driving force in organisms’ life 237 

histories; this is particularly the case for microalgae that lack mobility or physical refuge (Van 238 

Donk et al., 2011). Scenedesmus is a cosmopolitan freshwater algal genus with more than 1300 239 

known species distributed globally (Coesel and Krienitz, 2008). Due to its ability to form easily 240 

recognisable chained colonies in response to grazing, it is widely used as a model organism in the 241 

study of morphological defence (e.g. Lürling and Van Donk, 1997; Lürling, 1999). While many 242 

reports describe Scenedesmus colony formation as an inducible defence response, test of 243 

reversibility of the colonies is rare in the earlier studies. Likewise, there is limited evidence of the 244 

costs associated with colony formation. 245 

In our experiments, unicellular S. obliquus formed chained colonies in the presence of D. 246 

magna even without physical contact with the grazer, suggesting that the predation risk could be 247 

communicated via chemical cues. Moreover, the number of cells per colony increased over time, 248 

from 2-celled colonies on Day 0 to 8-celled colonies on Day 3 (Figure 5). These observations are 249 

consistent with other studies of defensive colony formation in microalgae against grazers (Lampert 250 

et al., 1994; Wiltshire and Lampert, 1999; Tang 2003).  251 

 Unlike terrestrial ecosystems where grazing is typically non-lethal to the plants, grazing in 252 

plankton often means death to the algal cells. Daphnia species are among the most dominant 253 

grazers in freshwater systems (Sterner, 1989), able to exert strong top-down control on algae 254 

leading to a ‘clear water phase’ in many lakes (Deneke, 1999). From the perspective of S. obliquus, 255 

it may be advantageous (or even necessary) for the algae to react to the mere presence of the grazer 256 

before grazing occurs. In contrast to previous work (e.g. Lampert et al., 1994) and our expectation, 257 

the extent of colony formation (in terms of the increase in number of colonial cells mL-1 over time) 258 

was almost identical between the algal populations exposed to non-feeding D. magna and those 259 

exposed to actively grazing D. magna. In the earlier study (Lampert et al., 1994), the grazer was 260 

starved for 48 hours prior to the experiments, whereas in our study D. magna was starved only 261 

during the experiments. Our observations therefore suggest that the release of chemical cues does 262 

not depend on continuous, active feeding; rather, chemical cues resulting from recently fed grazers 263 

were sufficient to trigger colony formation.  264 
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  265 

The benefit of inducible defences is, by default, enhanced survival of the organism, but the 266 

associated cost(s) can be difficult to identify, and as a consequence there is very limited information 267 

on costs in the literature. Formation of colonies requires the production of special cellular structures 268 

and materials (Pickett‐Heaps and Staehelin, 1975; Trainor, 1998), which may divert resources from 269 

other vital cellular functions. The enlarged volume-to-surface ratio of the colonies may also 270 

decrease the alga’s resource acquisition ability (Kirk, 1994). We showed that both PSII efficiency 271 

and cellular Chlorophyll a content decreased significantly during S. obliquus colony formation, 272 

either of which could lead to a reduced growth rate, as we also confirmed in our experiments. The 273 

observation that Astaxanthin esters increased in S. obliquus when the cells were exposed to grazer is 274 

also interesting. Astaxanthin esters are known to protect algal cells from photo-oxidative stress 275 

(Lemoine and Schoefs, 2010), but it is unclear what protective benefits they served against grazing. 276 

We may speculate that the chemical cues released by the grazer may have contained oxidative 277 

substances; as such, the pigments may have been a response to this grazer-associated oxidative 278 

stress rather than to grazing stress per se. Regardless, our observations suggest that Astaxanthin 279 

esters may be used to indicate a wider range of stress than previously known.  280 

Interestingly, our results differ from Lürling and Van Donk (2000), who did not observe any 281 

change in QY in grazer-influenced cells. It is useful to point out that Lürling and Van Donk (2000) 282 

dark-adapted their samples and their measurements represented the maximum QY. In our study, we 283 

chose to measure effective QY without dark-adaptation, which was more indicative of the real-time 284 

photosynthetic activity of the cells (Murchie and Lawson, 2013). The omission of dark adaptation 285 

also minimised the possibility of the cells ‘recovering’ while away from the grazer’s influence (cf. 286 

Lürling and Van Donk, 2000). Moreover, effective QY is considered a good physiological indicator 287 

of how photosynthetic organisms respond to environmental stress (Rascher et al., 2000). Deviations 288 

of effective QY from the control usually indicate a reversible down-regulation of PSII 289 

photochemistry rather than irreversible damage to the photosynthetic apparatus (e.g. Demmig-290 

Adams et al., 1996). This is in agreement with our second experiment where we saw rapid recovery 291 

of the effective QY values during colony reversal (Figure 6B). In our experiments we observed a 292 

lower growth rate than in the previous report; this difference may be partly attributed to the fact that 293 

we conducted our experiments under 18:6 light-dark cycle, rather than continuous light (cf. Lürling 294 

& van Donk, 2000).  295 

Faced with the high costs associated with colony formation, S. obliquus reverted to unicells 296 

upon removal from the grazer, a prerequisite trait for colony formation to be described as an 297 

‘inducible’ defence (Tollrian and Harvell, 1999). As expected, Astaxanthin esters also disappeared 298 

completely once the grazer was removed. Interestingly, but perhaps not surprisingly, colony 299 
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formation and reversal occurred at different rates: in the Colony induction experiment, unicells 300 

changed to colonial form at a rate of 71×103 cells mL-1 d-1. This was considerably higher than the 301 

rate at which cells in colonial form changed back to unicells (Reversibility experiment: 28 × 103 302 

cells mL-1 d-1). Colony formation protected the cells from certain death (grazing) whereas the 303 

associated costs, albeit substantial, were not necessarily fatal to the cells. It is therefore reasonable 304 

to argue that colony formation by S. obliquus under predation threat carried a much higher urgency 305 

than the reverse process. At the end of the reversibility experiment (i.e., after 3 days without 306 

predator cues), there were still about 5% cells in colonial form in the pre-exposed populations, 307 

compared to only 0.3% in the control populations. Consistent with this observation, the costs were 308 

also not fully recovered for the pre-exposed algal populations: While their growth rate and the PSII 309 

efficiency recovered to being comparable to the control populations, their cellular Chlorophyll a 310 

content still lagged behind that of the control populations. It therefore appears that the process of 311 

Chlorophyll a synthesis may require a longer time to return to normal. 312 

 313 

  314 

CONCLUSIONS 315 

The algal genus Scenedesmus is a very useful model organism to study the ecology and 316 

evolution of morphological defences against predators, but thus far the literature lacks detailed 317 

information on the associated costs and colony reversibility. Here we not only showed that colony 318 

formation by S. obliquus was reversible upon removal of the grazing threat; we also quantified the 319 

costs associated with colony formation. This information will be useful for further cost-benefit 320 

analysis of this defensive trait, especially when in combination of other environmental constraints. 321 

The discovery of the production of Astaxanthin-esters, a commercially valuable antioxidant, under 322 

predation-related stress is also interesting and deserves further investigation.  323 

 324 
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Figures: 415 

 416 

Figure 1. Simplified schematic of a synthesis pathway of the pigments Astaxanthin and 417 

Astaxanthin-esters in Scenedesmus sp. (Lemoine and Schoefs, 2010). In the absence of stress, 418 

Zeaxanthin is disaggregated from energy dissipation and converted back to Violaxanthin (black 419 

line). When the cell is exposed to stress, Violaxanthin is transformed to Zeaxanthin, which is then 420 

converted to Astaxanthin and Astaxanthin-esters (grey dotted line).  421 

 422 

 423 

 424 

Figure 2. Schematic of the experimental design for colony induction. Each beaker contained a 425 

dialysis bag with Scenedesmus obliquus single cells (grey shading). Treatment beakers also 426 

contained Daphnia magna (Daphnia figure) outside the dialysis bag, with (grey) or without (white) 427 
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S. obliquus as food. All beakers contained Evian water with nutrients (BG-11). T = treatment, C = 428 

control, B=bag, O= outside, 1 and 2 are to distinguish the first and second treatments respectively. 429 

 430 

 431 

Figure 3. Schematic of the experimental design for colony reversibility. The starting algal 432 

populations were taken from the Colony induction experiment (see Fig. 2) and transferred into fresh 433 

medium. 434 

  435 
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 436 

 437 

Figure 4. Colony induction experiment. A) Changes in % Astaxanthin esters in Scenedesmus 438 

obliquus in the presence of Daphnia magna, between Day 0 and Day 3. Error bars represent the 439 

standard errors. B) Changes in the quantum yield (QY, indicating PSII efficiency) of S. obliquus 440 

between Day 0 and Day 3, in the presence or absence of D. magna.  Error bars indicate standard 441 

errors; replicates sharing the same letters are not statistically different. C) Changes in Chlorophyll a 442 

(ng cell-1) of S. obliquus between Day 0 and Day 3, in the presence or absence of D. magna. The 443 

error bars represent standard errors. T = treatment, C = control, B=bag, O= outside, 1 and 2 444 

represent the first and second treatments, respectively. 445 

  446 
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 447 

 448 

Figure 5. Colony induction experiment. Proportion of cells in colonial form of Scenedesmus 449 

obliquus in the presence of Daphnia magna over time, for the different treatments. The error bars 450 

represent the standard errors. See Fig. 2 for the treatment group notations. 451 

  452 
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 453 

Figure 6. Colony reversibility experiment. A) Changes in % Astaxanthin esters in Scenedesmus 454 

obliquus in the presence of Daphnia magna, between Day 0 and Day 3. B) Changes in the quantum 455 

yield (QY, indicating PSII efficiency) of S. obliquus between Day 0 and Day 3, in the presence or 456 

absence of D. magna. The error bars represent the standard errors; replicates sharing the same 457 

letters are not statistically different.  C) Changes in Chlorophyll a (ng cell-1) of S. obliquus between 458 

Day 0 and Day 3, in the presence or absence of D. magna. The error bars represent standard errors. 459 

See Fig. 3 for the treatment group notations. 460 

  461 
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 462 

Figure 7. Proportion of cells in colonial form of Scenedesmus obliquus in the presence of Daphnia 463 

magna over time, for the different treatments. The error bars represent the standard errors. See Fig. 464 

2 for the treatment group notations. 465 


