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Abstract 

The growing water demand across the world necessitates the need for new and improved processes 

as well as for a better understanding of existing processes. This level of understanding includes 

predicting system performance in scenarios that cannot always be evaluated experimentally. 

Mathematical modelling is a crucial component of designing new and improved engineering 

processes. Through mathematically modelling real life systems, we gain a deeper understanding 

of processes while being able to predict performance more effectively. Advances in computational 

capacity and the ease of assessing systems allow researchers to study the feasibility of various 

systems. Mathematical modelling studies enable optimization performance parameters while 

minimizing energy requirements and, as such, have been an active area of research in desalination. 

In this review, the most recent developments in mathematical and optimization modelling in 

desalination are discussed with respect to transport phenomena, energy consumption, fouling 

predictions, and the integration of multiple scaling evolution on heat transfer surfaces has been 

reviewed. Similarly, developments in optimization of novel reverse osmosis (RO) configurations 

have been analyzed from an energy consumption perspective. Transport models for membrane-

based desalination processes, including relatively less understood processes such as nanofiltration 

and forward osmosis are presented, with recent modifications to allow for different solutes and 

solutions. Mathematical modelling of hybrid systems integrated with RO has also been reviewed. 

A survey of the literature shows that mathematical and optimization modelling of desalination 

processes is an exciting area for researchers in which future scholarship includes coupling of 

renewable energy systems with desalination technologies, as well as more advanced descriptions 

of fouling evolution other than that of cake filtration in membrane-based processes.   
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1. Introduction 

Between 2015 and 2050, the world population is projected to increase by 35% causing an even 

more rapid increase in the demand for water [1]. Despite being an abundant resource, fresh water 

needed for human consumption makes up a tiny fraction of the water on earth [2]. In addition, the 

amount of fresh water stays constant while our water demands are on the rise [3]. Millions of 

people die annually due to the lack of adequate water supply and proper sanitation. Many solutions 

have been proposed to help meet growing water demands, including better water resource 

management, increased water reuse and desalination. Many of the world’s communities affected 

by drought have access to brackish ground water and seawater that can be converted to fresh water 

through desalination to help meet their water demands [2]. Consequently, the global demand for 

desalination is increasing [4], as is evident by the rapid desalination market growth in recent years. 

Globally, desalination plants produce around 95 million m3/day. The Middle East and North Africa 

(MENA) regions are responsible for 48% of the global installed desalination capacity [5, 6].  

1.1 Overview of desalination technologies 

Desalination technologies are typically classified as either thermal or membrane-based 

technologies. Although membrane technology, specifically reverse osmosis (RO), makes up the 

majority of installed desalination capacity worldwide, thermal desalination remains the dominant 

technology in the Middle East. The two major thermal desalination technologies employed are 

multi-evaporation distillation (MED) and multistage flash (MSF), both of which are in an 

advanced growth phase, likely to reach saturation before 2050, as identified by Mayor [7]. On the 

other hand, most of the newly installed desalination capacity around the world operates on RO 



membranes, which not only are more energy efficient than thermal desalination processes, but also 

provide modularity and ease of operation [7].  

1.1.1. Thermal desalination 

Although surpassed by reverse osmosis in terms of global installed capacity, thermal desalination 

plants are still dominant in the Middle East, where they are often integrated with power plants and 

are known to have long lifetimes of up to 30 years [8, 9]. Thermal desalination technologies such 

as MED and MSF rely on the principle of evaporation, which is the creation of a hot surface with 

heating steam, which then condenses on one side of the surface, allowing vapor to form on the 

other side [10]. Evaporator surfaces are of many types: submerged tube, falling films and plates, 

etc. [11]. Applications and limitations of each of these are discussed thoroughly in [12].  

 

Figure 1: Schematic of flashing stage in MSF [12] 

Separation in MSF occurs when some of the feed is evaporated in consequent stages by flashing. 

Figure 1 shows a schematic of a single flashing stage in MSF. The hot feed water is met with a 

lower pressure than its vapor pressure in each subsequent stage, causing some of the feed to flash. 



The vapor formed in each stage passes through a demister and condenses on the external surface 

of the tube bundle [12]. The simplest design, known as once-through MSF (OT-MSF), involves 

returning the brine leaving the last stage back to the sea as brine blow down. The brine leaving the 

last stage of the MSF can be returned to the sea as brine blow down, a configuration known as 

once through MSF (MSF-OT). Another configuration which is known as brine mixing MSF (BM-

MSF) involves mixing a portion of the brine from the last stage with the incoming feed. 

In each subsequent stage, the temperature is reduced by flashing, boiling point elevation and non-

equilibrium losses. The highest temperature at the inlet of the first stage is known as top brine 

temperature (TBT), while the difference between the TBT and the brine temperature in the final 

stage is known as the overall temperature difference [13].  

Modelling an MSF system requires formulation of material balance, energy balance and 

momentum balances, such that the model predicts output stream variables for each stage, given 

input stream variables and stage parameters, as shown in Figure 2.  

 

Figure 2: Depiction of a process model as a set of relationships between the input and output streams for an MSF stage [14] 

The independent variables for each stream include the mass flow rate, temperature, salt 

concentration and pressure. Material balance and energy balance for thermal systems have been 

used to understand the transport phenomena in thermal desalination over a period of several 

decades [14-16], and thus are not reviewed here.  

 



 

1.1.2 Membrane-based desalination 

Various membrane-based separation processes exist, each one distinct in the size of particles or 

solutes it can retain, as shown in Figure 3. Only nanofiltration (NF) and RO are used for removing 

dissolved ions from aqueous streams, while others, such as ultrafiltration and microfiltration, are 

often used as pretreatment to RO as they remove larger particles. The most widely employed 

membrane-based desalination technology is RO, as mentioned above. The membrane material and 

structure play a critical role in transport properties and hence in membrane performance [17]. 

Membrane technology has the advantage of being modular, and attention to new configurations of 

the membrane module as well as the flow streams have enabled reduction in energy consumption. 

 

Figure 3: Spectrum of membrane separation processes [17] 

1.1.2.1 Reverse osmosis 

More than 60% of the world’s installed desalination capacity operate with reverse osmosis (RO). 

RO is a pressure-driven process in which a dense semipermeable membrane allows the selective 

passage of water molecules through the membrane.  In reverse osmosis, the phenomenon of natural 

osmosis, in which the solvent will flow from the region of low solute concentration to high solute 

concentration, is reversed by application of a hydraulic pressure greater than the difference in 

osmotic pressures between the feed side and permeate side, forcing the solvent to move from the 



region of high salt concentration to low salt concentration (Figure 4) [18].  

 

Figure 4: Osmosis and reverse osmosis processes [19] 

In osmosis, water spontaneously passes from the low-salt concentration side to the high-salt 

concentration side until an osmotic equilibrium is reached between both sides. However if a 

pressure greater than the osmotic pressure is applied as is the case in reverse osmosis, the flow of 

water molecules is reversed and water will pass through the membrane from the high-salt 

concentration side to low-salt concentration side [20] Thus the effective pressure that drives water 

through the membrane is the difference between the applied pressure and the osmotic pressure. 

For simple systems, the osmotic pressure is calculated using the van’t Hoff’s equation described 

below: 



∆𝜋𝜋 =  𝑣𝑣𝑖𝑖𝑐𝑐𝑖𝑖
𝑅𝑅𝑅𝑅
𝑀𝑀𝑀𝑀

 

where 𝑣𝑣𝑖𝑖 is the number of ions in the dissociated salt, 𝑐𝑐𝑖𝑖 is the concentration of salt in g/L, MW is 

the molar mass of the ion. As the expression for osmotic pressure contains molecular weight in the 

denominator, it can be seen that the osmotic pressure only comes into play for retention of very 

small solutes as is the case in RO and NF, but not for UF or MF.  

Although many models have been developed for transport across RO membranes, the solution 

diffusion model for non-porous membranes remains the most widely accepted. It assumes that 

both solvent and solute dissolve in and diffuse across the membrane down a concentration gradient 

and this diffusion depends on the chemical potential of each, which is a function of the 

concentration and pressure gradients across the membrane (Figure 5) [21]. In other words, 

Brownian diffusion, flush and jump diffusion allow water to permeate through the membrane. The 

interactions of water and ions with the membrane depend strongly on the membrane structure [22, 

23]. 

 

Figure 5: Assumptions of solution-diffusion model showing chemical potential (μ), pressure (P), and activity gradients across 
membrane (a). 

The chemical potential difference in RO is given by: 

∆𝜇𝜇𝑖𝑖 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∆𝑎𝑎𝑖𝑖 + 𝑉𝑉𝑖𝑖∆𝑃𝑃 

where αi is the activity of species i (solute or solvent), Vi is the molar volume, and Δp is the 



pressure differential across the membrane [21]. RO is used to remove dissolved substances, 

including single charged ions from the aqueous feed streams [24]. Transport mechanisms for RO 

membranes are further discussed in detail in Section 2.2.1.  

Reverse osmosis was first commercialized by Loeb and Sourirajan [25], who developed the first 

cellulose acetate membranes for RO. Ever since, RO has gained much commercial success and is 

currently the dominant desalination technology. New membrane materials, improved pretreatment 

methods and novel process design have enabled the technology to operate close to theoretical 

energetic limit. Innovations in system configuration such as the use of multiple stages and/or 

passes have been incorporated in largescale RO plants [26], mainly to overcome drawbacks of the 

single-stage RO process in which the large applied pressure results in avoidable energy dissipation 

and high initial permeate flux. Current developments focus on configuration improvements as well 

as hybridization of RO with other technologies with the aim of further reducing energy costs.  

1.1.2.2 Nanofiltration 

On the separation spectrum, nanofiltration falls between ultrafiltration and reverse osmosis, and is 

thus a unique filtration process in which large salts and low molecular weight cut-off (MWCO) 

solutes can be separated from the feed stream. Also known as ‘loose RO’ membranes, NF 

membranes can be used to reduce salinity and are often used as pretreatment to other desalination 

processes such as RO, MSF, and MED. Ionic transport in NF membranes is still not fully 

understood and predicting NF performance usually requires structural and electrical 

characterization of the membrane. Due to its complexity, modelling of transport through NF is a 

topic of great interest among researchers. What is known is that ionic transport through NF 

membranes depends on charge, steric and dielectric effects [27, 28]. The first of these is a 

consequence of the charge polarities between the membrane and solutes, while the second effect 



is due to the size of ions relative to membrane pores, while the third results from differences in 

dielectric constant between bulk and membrane pores [27]. Transport of solutes through NF is 

most widely modelled using the extended Nernst Plank (ENP) differential equations, which 

describe solute transport as a combination of diffusion, convection and electro-migration[21]. The 

evolution of these models to better predict NF performance to account for different solutions as 

well as developments in characterization of NF membranes are emphasized in Section 2.2.2. 

Rejection of divalent ions by NF is typically in the range of 75-99%, whereas monovalent ions are 

only rejected at 30-50% by NF membranes [29]. NF is used in several industries for various 

applications, as shown in Table 1. 

Table 1: Commercial applications of NF membranes for aqueous and nonaqueous processes [30] 

Industry Application Solvent medium 

Water treatment Water softening, color removal, 

micropollutants elimination, 

pretreatment to RO 

Aqueous 

Wastewater treatment Leachate wastewater, textile effluent, 

emerging contaminants removal, 

effluent from pulp and paper process 

Aqueous 

Food and dairy Whey pre-concentration, whey protein 

desalination, caustic and acid 

recovery, gelation concentration 

Aqueous and 

nonaqueous 

Pharmaceutical and 

biomedical 

Fractionation of proteins, plasma 

purification, filtration of DNA, RNA 

and endotoxins, preparation of 

Aqueous and 

nonaqueous 



desalted and concentrated antibiotics 

Oil and gas Solvent recovery  from lube oil and 

hydrocarbon solvent mixtures, 

removal of sulfate from seawater 

before offshore reservoir rejection 

Aqueous and 

nonaqueous 

 

1.1.2.3 Forward osmosis 

Forward osmosis, as the name suggests, refers to the movement of molecules across a 

semipermeable membrane due to difference in osmotic pressure. This osmotic pressure difference 

is brought about using a concentrated draw solution on the permeate side, that ‘draws’ the water 

from the feed [31]. Due to this transport of water molecules across the membrane, the feed solution 

becomes more concentrated while the draw solution is diluted. As FO is an osmotically driven 

process that does not need external hydraulic pressure (as is the case for NF and RO), the energy 

requirements can be significantly lower than in RO. Transport of water in FO results from a water 

chemical potential gradient driven by a difference in the solute concentration on either side of the 

membrane [32]. This difference in solute concentration causes an osmotic pressure differential 

across the membrane, which results in a more concentrated feed stream and a more dilute permeate 

stream due to the transport of water through the membrane.  

Membrane materials and choice of draw solution have been an active area of research in FO. 

Desalination using FO is a two-stage process, as shown in Figure 6: (1) FO which results in water 

permeating from feed to draw solution, and (2) regeneration of the dilute draw solution to recover 

pure water. 



 

Figure 6: Schematic of the two stages of fresh water production with FO [33] 

1.1.2.4 Fouling in membrane-based desalination 

Membrane fouling is the accumulation of undesired substances either on the surface of the 

membrane, or inside its pores. As it reduces the effective surface area for desalination, fouling 

leads to undesirable consequences such as decrease in membrane flux (or increase in hydraulic 

pressure to maintain the same flux) and reduction in salt rejection [23]. Fouling mechanisms in 

high-pressure membrane processes differ from those in MF and UF in that surface fouling is the 

predominant fouling mechanism on the more compact and non-porous RO and NF membranes 

[34]. As fouling depends strongly on the physical and chemical interactions between foulants and 

membrane surface, the extent of fouling, or degree of attachment, is a function of feed composition, 

membrane properties, hydrodynamic conditions, cleaning strength and frequency. Fouling can be 

classified as colloidal, inorganic, organic and biofouling [35]. Fouling can also be aggravated by 



the phenomenon of concentration polarization (CP). CP refers to the increase in salt concentration 

at the membrane surface as compared to the bulk salt concentration on the feed side of the 

membrane. It results from rejection of salt ions at the membrane surface as water passes through. 

Consequence of concentration polarization include: higher osmotic pressure at the membrane 

surface, increased salt passage through the membrane, increased potential of salt precipitation i.e. 

scaling at the membrane surface and increased fouling [36]. External CP described above has been 

extensively modelled in literature. Internal concentration polarization (ICP) is a related 

phenomenon that occurs only in osmotically driven processes such as FO. ICP is a reduction in 

osmotic pressure gradient across the active layer resulting from a sharp concentration gradient 

formed within the support layer of the membrane [37, 38]. It results in a sharp concentration 

gradient formed within the porous support layer.  

1.2  Modelling in desalination 

1.2.1 Why do we need mathematical and optimization modelling? 

Mathematical modelling is the process of describing real world problems as mathematical 

equations and using some approaches to solve the mathematical equations as a guide to 

deconstructing and solving the original problem [39]. One of the most commonly applied types of 

mathematical modelling is optimization modelling or mathematical programming. An 

optimization model consists of maximizing or minimizing an objective function by systematically 

choosing input values from within a set that stratifies some constraints and computing the value of 

the function. Although real world problems cannot always be explained entirely by mathematical 

equations, mathematical solutions alone are also not practical as they take into account several 

simplifying assumptions. Optimization is the process of finding the best possible solution to a 

given problem by examining several alternatives [40]. In recent years, multiscale modelling and 



optimization has gained significant interest with potential for better prediction and understanding 

of systems in material science, fluid mechanics, biology, chemistry, and physics [41].  

With an unprecedented rise in computational capabilities, matched by an increase in the 

complexity of systems, mathematical modelling and optimization are now considered essential 

components of the design process. Today, we have access to powerful software tools that enable 

geometric modelling, meshing and visualization of results, as well as advanced computational 

algorithms [42]. In engineering, a model can be defined as an ‘abstraction of reality’, wherein a 

real world system can be understood more sufficiently and predictions can be made through 

analysis of an idealized form [43]. In engineering, mathematical and optimization modelling 

enables manipulation of design parameters to meet certain objectives and/or helps predict system 

performance. Engineering modelling is related to understanding an entire system and identifying 

key components under focus [43]. For any multifaceted process, accurate models with realistic 

assumptions that are not too complicated to solve are a challenge. The presence of uncertainties in 

real-life systems as well as the high costs associated with building pilot plants render the modelling 

approach all the more valuable, but also more complex with several constraints that need to be 

satisfied and development of models that match the real-world system as closely as possible [44]. 

Modelling enables better prediction and control of system performance and helps our 

understanding of everyday processes. However, developing suitable models requires a certain level 

of understanding of the mechanism(s) being studied. It can be argued that the modelling approach 

strongly complements experimental research and forms a critical component of research in any 

field.   

1.2.2 Modelling approaches in desalination 



 

Figure 7: Publications with topic keywords: optimization modelling , desalination from 1998 to 2018 (Web of Science) 

Interest in optimization modelling techniques in desalination has increased dramatically in the last 

decade, as shown in Figure 7. Van der Bruggen cites three critical benefits of process modelling 

specifically in pressure-driven membrane separation [45]. First, models help predict expected 

performance which, in turn, allows different membranes to be compared. Second, modelling 

provides a deeper understanding of the mechanisms responsible for permeation and separation, 

which is of particular value in newer, less understood processes. Finally, modelling allows for 

process monitoring and a study of the factors that affect performance characteristics for each 

process, helping us find configurations. The type of material and structure will determine the kind 

of mass transport through the membrane (solution, diffusion, Knudsen diffusion, convection, etc.) 

and, therefore, the mathematical model to be applied to describe the mass transfer (solution-

diffusion model, pore-flow model, etc.). Modelling and control of RO desalination systems was 

previously reviewed by Sobana and Panda in 2011 [46]. Blanco-Marigorta reviewed differing 

approaches in literature for formulating exergetic efficiency of RO desalination plants [47]. A 

comprehensive review which includes recent developments in RO process optimization is missing 
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in literature. Although there have been reviews on developments of newer technologies such as 

forward osmosis (FO), modelling techniques in FO have not been discussed on their own [48].  

In 2007, Weijuan et al. reviewed modelling techniques in nanofiltration membranes [49]. Later, 

Oatley-Radcliffe et al. highlighted the need for a reevaluation of NF modelling, especially for 

complex feeds in their review of existing modelling strategies [50]. Recently, Yaroshchuk et al. 

reviewed existing models for NF of electrolyte solutions in which they derive equations for ion 

transfer from linear irreversible thermodynamics and identify membrane properties that control 

membrane performance for NF of multi-ion solutions [51]. They also included the development of 

an advanced engineering model for NF of multi-ion solutions which relies on a solution diffusion 

electromigration mechanism. Interestingly, in another review on NF research trends, Oakley-

Radcliffe et al. [52] linked a decline in the topic of nanofiltration modelling between 2009 and 

2016 to limited practical understanding of the process, owing to the lack of drastic advances in 

measurement technologies of nanofiltration membranes and processes. The uncertainty of 

separation mechanisms stems from a lack of in-depth knowledge of the physical and electrical 

properties of real NF membranes [50]. However, although research in nanofiltration modelling 

was indeed stagnant or moving towards decline during this period, the last three years have shown 

a resurgence of interest in this area with more than a two-fold increase in the number of 

publications with ‘nanofiltration’ and ‘modelling’ in their title (Figure 8).  



 

Figure 8: Number of publications with ‘nanofiltration’ and ‘modelling’ in title from 1998 to 2018 (Web of Science) 

Apart from traditional mathematical modelling of processes, artificial intelligence (AI) techniques 

such as artificial neural network (ANN) are gaining attention in desalination, although the advent 

of AI in desalination has recently been reviewed by two different groups in the last year [53, 54]. 

As such, these have been left out of this review. In this review, developments of the last five years 

in modelling and optimization in desalination have been critically reviewed with respect to 

transport phenomena, energy consumption, fouling prediction and integration of multiple 

desalination technologies. This includes modelling of performance in more mature technologies 

such as MSF and RO from an energy consumption perspective. For relatively less understood 

processes such as NF and FO, simple transport models have been described, with a review of recent 

modifications to allow for different types and concentrations of solutes. Gaps in literature are 

identified, paving the way for future areas of research in modelling approaches to desalination.  
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2. Optimization modelling in desalination 

2.1 Optimization modelling in Multistage Flash 

2.1.1 Scale control in Multistage Flash (MSF) 

Thermal desalination processes such as MSF and MED are mature technologies, whose lower 

competitiveness and energy efficiency in comparison to RO have limited the market to the Middle 

East, where the cost of energy is relatively low and the feed seawater is of higher, often aggressive, 

salinity [7, 55]. Fouling, which is the unwanted accumulation of solid materials on the heat transfer 

surface, increases the thermal resistance and leads to performance deterioration [56]. Scale 

formation or precipitation of certain salts on the heat transfer surfaces impedes the rate of heat 

transfer and reduces the efficiency of the heat transfer process, thus leading to increased specific 

energy consumption as well as the need for frequent cleaning. Scale formation can also lead to 

clogging and corrosion of heat exchangers and evaporators. Many recent modelling studies in 

thermal desalination focus on better understanding the formation of scale on heat transfer surfaces 

as well as modelling scale control strategies, both of which are highlighted in this review. 

Various models have been developed to correlate the formation of scale on heat transfer surfaces 

over the last sixty years, and these models are not limited to desalination units. The earliest of 

these, proposed by Kern and Seaten, was based on a diffusion model in which the net rate of 

deposition is the difference between the rate of deposition and rate of removal at any given time, 

correlating an increase in fluid velocity with a reduction in fouling layer thickness [57, 58]. Over 

the years, further modifications were incorporated into ionic diffusion models as well as kinetic 

models to predict the rate of scale deposition as a function of operating parameters and the use of 

antiscalants, including the use of computational fluid dynamics (CFD) [59-65]. For a more 

comprehensive insight into the description of fouling of heat exchanger surfaces, including fouling 



mechanisms, related mathematical modelling, and control of fouling, the reader is guided to other 

literature [66, 67]. This section will focus exclusively on developments between 2014 and 2019 in 

the modelling and optimization of fouling in MSF and MED systems. The presence of a series of 

connected heat exchangers in these systems means that the fouling behavior is often complex. 

Only recently have models been developed to account for the changing temperature and feed 

salinity from one stage to another, as well as variation of the fouling factors over time [68].  

Scaling in thermal desalination processes is most commonly caused by precipitation of alkaline 

scales such as calcium carbonate (CaCO3) and magnesium hydroxide (Mg(OH)2) [69-72]. The rate 

of scale formation in seawater is a function of temperature, pH, concentration of bicarbonate ions, 

rate of CO2 release, concentration of Ca2+ and Mg2+ ions, and total dissolved solids (TDS) [69, 

73]. The rate of fouling is defined as the average deposit surface loading per unit surface area in a 

unit of time. Often, the thickness of the deposited layer and porosity are used to describe the extent 

of fouling on a heat exchange surface [67]. Effective scale control requires accurate calculations 

of the amount of scale formation [74]. Alsadaie and Mujtaba developed a dynamic model to predict 

scaling with CaCO3 and Mg(OH)2 in the MSF condensing tubes and with increasing cooling water 

temperatures in subsequent stages [56]. Their model was based on a dynamic fouling model for 

heat transfer surfaces, coupled with an MSF dynamic model to predict the scaling behavior in 

condensing tubes in the heat recovery section of an MSF plant. First, the deposition rate of either 

CaCO3 and Mg(OH)2 was found using the diffusion transport rate and surface reaction rate of ions 

(Figure 7). Total deposition rate is calculated by considering transport of species towards the 

surface followed by accumulation at the surface, i.e. a combination of diffusion and reaction 

mechanisms [56]. Transport towards the surface is caused by a concentration gradient between the 

bulk phase and solid-liquid interface, while accumulation is a result of the concentration difference 



between the solid-liquid interface and saturation concentration.  

 

Figure 9: Radial concentration and temperature profiles at heat transfer surfaces [56, 60]; Cb, Ci and Cs are the concentration of 
ions in the bulk phase, at the solid-liquid surface and the saturation concentration respectively. 

They found that lower temperatures favored the deposition of CaCO3, but the slightly increased 

surface temperature in the middle stages reduced the ratio of Ca to Mg, which in turn favored the 

formation of Mg(OH)2 in these stages. They found that the resulting varied fouling factor from 

their dynamic model could lead to a higher performance ratio (Figure 10) and cost reductions, in 

comparison to typically overestimated values used to design condenser tube surfaces.  

 

Figure 10: MSF performance ratio for fixed and varied fouling factor [56] 

Prevention or mitigation of scale formation in MSF can be achieved by either, 1) adequate 

pretreatment of the feed to remove scale forming agents, and/or 2) the use of antiscalants to inhibit 



the formation of scale [75].  

Most pretreatment processes do not involve removal of dissolved solids such as multivalent ions 

that can later precipitate and cause scaling on heat exchangers, which reduces heat transfer 

efficiency in both MSF and MED systems. In addition to scale formation, heat transfer surfaces 

are also affected by the release of non-condensable gases such as carbon dioxide, oxygen, and 

nitrogen. The presence of CO2 in the feed stream alters the concentration of HCO3
-, CO3

2-, CO2, 

H+ and OH- ions in the brine stream, which in turn affects alkaline scale formation [74]. 

Nanofiltration has gained importance in the last decade as pretreatment to prevent scale deposition 

in MSF desalination plants. Nanofiltration can be used to lower the concentration of scale-forming 

elements in seawater, such as Ca2+, Mg2+, SO42- and HCO3
-. After pretreatment with NF, the feed 

has a significantly lower salinity as NF membranes are capable of not only removing multivalent 

ions with high efficiency, but can lower the concentration of monovalent ions such as Na+, Cl- and 

K+. The lower feed salinity resulting from NF pretreatment allows the TBT to increase to 130 °C 

[76]. The use of NF as pretreatment for thermal desalination systems is not new; both mathematical 

models [55, 77] and experimental studies [78, 79] on NF/MSF  pilot plants shown have shown the 

efficiency of NF as pretreatment for MSF over the last two decades, demonstrating their ability to 

reduce scaling and in turn operational costs of the thermal desalination system. Typical models are 

based on mass transfer and chemical reaction of solutes in the brine, which can be used to calculate 

scale formation in MSF evaporator tubes. Al-Rawajfeh investigated NF as CO2 deaerator for 

thermal desalination systems [74]. Using the mathematical model of mass transfer, they found the 

molar release rate of CO2. They simulated the desorption-deposition of CO2-CaCO3 by mass 

balance of a differential volume element of liquid at the gas-liquid phase interface. They found 

that NF pretreatment significantly enhances deaeration (Figure 11) and this decrease in CO2 release 



rates is correlated with lower heat transfer resistances in MSF plants. In addition to reducing 

scaling potential, the negative effects of CO2 and other non-condensable gases on heat transfer and 

vapor-side corrosion are also mitigated when NF is used as pretreatment. 

 

Figure 11: Effect of NF pretreatment on CO2 release rates in brine recirculation MSF (BR-MSF) [74] 

Rawajfeh et al. found that incorporating NF pretreatment with traditional salt precipitation 

pretreatment allows TBT to reach as high as 175 °C. 

 

2.1.2 Optimization of design and operational parameters in MSF 

Hanshik et al. used theoretical calculations to indicate that increased TBT led to increased water 

production which in turn lowers the specific energy consumption (SEC) for a once-through 

multistage flash (OT-MSF) plant [80]. Figure 12 shows the effect of TBT on the production of 

desalinated water and on the cooling seawater quality, temperature. However, they did not 

incorporate any experimental correlation or adjustment for fouling, seawater quality and/or 

chemical dosing.  



 

Figure 12: Effect of TBT on freshwater production (solid black lines) and cooling seawater temperature (dotted blue lines) [80] 

Roy et al. similarly developed a mathematical model to investigate the effect of increasing TBT 

on the performance of an OT-MSF system, including the required specific area [8]. Unlike 

Hanshik’s work in which a fixed number of stages was studied, they considered a fixed inter-stage 

temperature drop ΔT and varied the number of stages to increase the TBT. The effect of increasing 

TBT of up to 160 °C on PR and required specific area is shown in Figure 13. They found that the 

performance ratio (PR) increases with TBT while the required specific area decreases but then 

slightly increases beyond a certain TBT. As mentioned in the previous section, a high TBT of 160+ 

°C and hence improved system performance can be attained by removing scale-forming 

compounds during pretreatment. 



 

Figure 13: Effect of TBT on specific area and performance ratio in a once-through multistage flash system [8] 

Mabrouk et al. demonstrated a 25% reduction in heat transfer surface area by using long tube 

evaporator bundles as compared to traditional brine recycle and cross tube bundle configurations 

[55]. In a long tube configuration, the tubes are parallel to the direction of brine flow, whereas in 

a cross tube configuration, the tubes are perpendicular to the direction of brine flow in the stages 

(Figure 14).  

 

Figure 14: MSF a) cross tube configuration and b) long tube configuration [55] 

Their study focused on further scaling up MSF to systems greater than 20 MIGD. They found that 



although the operating cost is similar, an MSF system with long tube bundles allows for 15% lower 

capital cost than its cross tube counterpart, for a large scale project of 100 MIGD.  

Ben Ali and Kairouani optimized operating parameters of a brine recirculation MSF plant [81], 

considering changes in brine heater fouling factor and the seasonal variation in seawater 

temperature using genetic alogrithms used to solve multi-objective optimization problems. The 

operating parameters that were optimized were heating steam temperature (Ths), recycled brine 

flow rate (MR), cooling seawater flowrate (MCW) and make-up seawater flow rate (Mf). The plant 

data used includes 16 flashing stages and a nominal production capacity of 26,700 m3/day. The 

objectives were to maximize fresh water production capacity, minimize thermal energy 

consumption by reducing heating steam flow rate and minimize electrical energy consumption by 

minimizing flow rates from pumps. They obtained a set of Pareto optimal solutions in which 

combinations of optimal operating parameters were defined. To solve the optimization problem, 

they used a steady-state process model of the plant, which consisted of mass and energy balances 

and heat transfer equations.  

They found that, for a constant Ths, Mcw, MR and Mf, fresh water production decreases as seawater 

temperature rises and although the fouling factor decreases continuously, its effect on water 

production capacity is less pronounced. This can be observed in Figure 15, where between April 

and November, the fouling factor increased by 90.7% but fresh water production declined only by 

2.2%. 



 

Figure 15: Variation of plant production capacity as a function of seawater temperature and brine heating fouling factor  
(Ths = 93 °C, Mcw = MR = Mf = 1500 kg/s) [81] 

Improvements in configuration have led to significant cost reductions in MSF. The simplest 

design, known as once-through MSF (OT-MSF), involves returning the brine leaving the last stage 

back to the sea as brine blow down. The brine leaving the last stage of the MSF can be returned to 

the sea as brine blow down, a configuration known as once through MSF (MSF-OT). Another 

configuration which is known as brine mixing MSF (BM-MSF) involves mixing a portion of the 

brine from the last stage with the incoming feed. Dahdah and Mitsos sought to optimize brine and 

feed routing by developing a superstructure representing thermal desalination structures [82]. This 

enabled them to perform optimization studies on various MSF configurations. 

Bandi et al. [83] adopted a differential evolution (DE) algorithm to address the global optimal 

design of MSF systems. They use non-linear programming (NLP) based process models together 

with non-deterministic optimization algorithm to evaluate MSF-OT, MSF-simple mixture (MSF-

M) and MSF-brine recycle (MSF-BR) configurations, and compared obtained solutions with those 

obtained with MATLAB. A non-deterministic algorithm differs from traditional algorithms in that 

it can arrive at outcomes using various routes, or that, even for the same input, can exhibit different 

behaviors for different runs [84]. Bandi et al. use freshwater production cost as the objective 



function for minimization, constraints are imposed by mass, energy and enthalpy balances. They 

found that the obtained global solution from DE is >2% better than from other deterministic 

optimization algorithms such as SQP, MS-SQP and DE-SQP. In the latter, the optimal variable 

value set and objective function depend on the initial gas value, whereas DE provides better 

initialization strategies and is more suitable for complex problems in terms of decision variables. 

Figure 16 shows how the different optimization methods differ in terms of optimal cost obtained 

for all three MSF configurations.  

 

Figure 16: Comparison of different optimization methods used to minimize fresh water production costs in MSF-OT, MSF-M 
[83] 

Selected design parameters and their effect on MSF performance are shown in Table 2.  

Table 2: Selected operation and design parameters and their effect on MSF performance 

Parameter Effect Reference 

TBT Increasing TBT increases 

water production, lowers 

specific energy consumption, 

lowers reduced specific area 

and increases performance 

[8, 80] 



ratio 

Configuration of evaporator 

bundle 

Long tube evaporator bundle 

lowers heat transfer area  

[55] 

Seawater temperature Increased seawater 

temperature decreases 

production water capacity 

[81] 

 

2.2 Optimization modelling in membrane processes 

2.2.1 Reverse osmosis  

2.2.1.1 Mathematical modelling in RO 

The solution diffusion model, developed in the 1960s, remains the most commonly used model to 

describe transport through an RO membrane is the solution diffusion model (Figure 17). In this 

model, transfer of the solvent (water) and the solute (salt) through a non-porous membrane occurs 

in three steps: absorption to the membrane, diffusion through the membrane and desorption from 

the membrane [18]. The driving force is the chemical potential gradient such that when the applied 

hydrostatic pressure is greater than the difference in osmotic pressure between both sides of the 

membrane, water is transported through against its natural flow due to difference in chemical 

potential.  



 

Figure 17: Solution-diffusion model for RO membrane [18] 

In the solution diffusion model, salt and water flux are given by: 

𝐽𝐽𝑤𝑤 =  𝐴𝐴𝑚𝑚(Δ𝑃𝑃 −  Δ𝜋𝜋) 

𝐽𝐽𝑠𝑠 = 𝐵𝐵(𝐶𝐶𝑤𝑤 − 𝐶𝐶𝑝𝑝) 

where osmotic pressure is obtained from the van’t Hoff equation. 

Although there has traditionally been little evidence on the presence of pores in RO membranes 

due to measurement limitations, gradually strengthening the support for the solution-diffusion 

model over the decades, some pore-based models also emerged [85-87], which are now being 

supported by experimental data as measurement tools for sub-nanometer pores become advanced, 

as discussed by Ismail et al. [18, 88].  

Early on, Starov’s group developed a model to investigate RO for multicomponent electrolyte 

solutions [89-91], in which they applied extended Nernst-Plank equations to include diffusion, 

confection and electromigration of ions. In their model, the boundary conditions included both (i) 

distribution coefficients for individual ions, determined by specific interaction of ions and 

membrane material, and (ii) electric potential jump at the feed solution-active layer interface, 

known as Donnan potential. The model incorporates a mechanism for varying membrane fixed 

charge as a function of ion concentration and pH inside the active layer of the membrane. In 



addition to sodium and chloride ions, hydrogen and hydroxide ions are also also taken into 

consideration. In [90],  a method of calculations of rejections of multicomponent of electrolyte 

solutions was developed, which allowed prediction of rejection coefficients of all ions in the 

mixture as functions of both salt concentrations and pH based on experiments with individual salts 

(Figure 15), which was then verified in [89],  showing a reasonable agreement between theoretical 

predictions and experimental measurements. 

 

Figure 18: Rejection vs. pH for a feed concentration of 6 x 10-4 M NaCl solution. Solid line according to the theory predictions 
[89]. The membrane used was Osmonics SS10 cellulose acetate membrane.  

Recently, Shen et al. apply non-equilibrium molecular dynamics to relate water transport to the 

membrane structure for RO, arguing that existing models rely on macroscale assumptions and do 

not provide a molecular level understanding of transport in an RO membrane [92]. Interestingly, 

they found that membranes with similar density and tortuous paths differed in water transport, 

which correlates with the percolated free volume through the membrane thickness. Molecular 

collisions alter the structure of the membrane under hydration which also has an effect on the 



transport of water molecules. They suggested that solute transport could correspond to its bonding 

with the functional groups of the membrane and/or its hydrating solvation shell. 

2.2.1.2 Optimization modelling in RO 

Energy consumption, which represents more than 50-60% of total costs in desalination [93], is the 

key determining factor in the widespread employment of any technology. On the energy front, 

seawater reverse osmosis (SWRO) is a mature technology in which energy-efficient membranes 

and energy recovery devices (ERDs) are employed and lead to significantly lower energy 

consumption as compared to thermal desalination [94]. Theoretical energy consumption in RO is 

0.77 kWh/m3, while for thermal desalination it is 709 kWh/m3. 

In the 1970s, RO consumption was over 15 kWh/m3 of water produced. Currently, RO consumes 

as low as 2 kWh/m3. As a whole, RO plants today consume 2.5-5 kWh/m3 of water produced [93]. 

This drastic reduction in overall energy consumption is a result of lower energy consumption in 

each of the components making up the RO plant. These include the pretreatment system, high 

pressure pumps, membrane material, membrane configuration, energy recovery devices (ERDs), 

and post-treatment. In a recent review, Zarzo and Prats discuss strategies for minimizing energy 

consumption in RO plants [93].  

As RO technology is already running very close to its theoretical energy consumption, research 

focus has shifted to improving system design, optimizing pre- and post-treatment, integrating RO 

with other desalination processes and/or renewable energy sources [95, 96].  

SWRO specific energy consumption can be further reduced through improvements in RO design 

configurations. Performance of new design configurations is first optimized using simulations 

before lab-scale experiments are carried out to validate results. As such, modelling tools are crucial 

to the development of energy-efficient process designs, because they provide a facile tool for 



process optimization without the need for pilot testing. The configuration of RO membranes inside 

pressure vessels has been the focus of recent studies aimed at reducing energy consumption, 

especially for seawater reverse osmosis (SWRO). Part of the driving force is the tradeoff between 

membrane selectivity and permeability [97]. Membranes with high selectivity may separate salt 

efficiently, but the low water transport results in high SEC. On the other hand, high-flux 

membranes have higher water production, but also a greater tendency to foul [94]. Lin and 

Elimelech compared SSRO, two-stage RO and CC-RO in terms of specific energy consumption 

and average water flux [98] as an indication of RO mass transfer energetics and kinetics, 

respectively. In the single stage process, the feed stream is split into brine and permeate streams 

as it passes through the RO membrane. In a two-stage RO process, the brine stream of the first 

stage becomes the feed to the second stage and permeate streams of both stages are collected. In a 

CC RO system, the brine is mixed with the feed solution and sent through the membrane (Figure 

15).  

 

Figure 19: Schematic showing A) Single stage RO (SSRO), B) Two-stage RO and C) Closed-circuit (CC) RO [98] 

Their results show that a CC-RO is less energy-efficient than a two-stage RO process due to the 

extra energy required to reduce the entropy generated by the mixing of the feed and retentate [26].  

A two-stage RO also yields a higher water flux for brackish water desalination, where the recovery 



rate is typically high (90%) [98].  

Although energy efficiency can be enhanced by adding more stages, the additional capital costs 

associated with adding a stage outweigh the reduction in energy costs [99]. Other configurations 

and routing of the brine and permeate are also necessary to bring about improvements in energy 

efficiency and costs. Recently, Chong and Krantz [100] developed an energy-efficient reverse 

osmosis (EERO) system in which they sought to increase overall water recovery by sending the 

retentate from one or more SSRO as feed to a countercurrent membrane cascade with recycle 

(CMCR), consisting of one or more low salt-rejection RO stages (Stage 1) and a high salt-rejection 

stages (Stage 2) (Figure 16). In EERO, the retentate from an SSRO is sent to a two-stage CMCR. 

Along with retentate reflux in Stage 1, the countercurrent flow of the retentate and permeate 

streams result in lower osmotic pressure differential and therefore lower net specific energy 

consumption [100]. By using EERO, an overall water recovery of 75% can be attained at a cost 

lower than SSRO operating at 50% water recovery. 

 

Figure 20: Schematic of EERO process in which retentate from SSRO is sent to a two-stage CMCR [100] 

In a later study focusing on the numerical model-based analysis of the EERO system [99], Chong’s 

group evaluated the fouling potential of the EERO system. As shown in Figure 17, the elements 



in the EERO modules maintained a lower flux. This is especially true for the lead elements and 

can be significant in mitigating the effects of membrane fouling in these elements, as well as 

increasing water recovery rates.  

 

Figure 21: Permeate flux Jw of an RO stage in conventional SSRO and EERO processes (simulated at 60% overall water 
recovery) [99] 

Kim and Hong introduced split partial single pass RO (SSP-RO) configuration in which the 

permeate from only the back RO elements in a pressure vessel is blended with the feed to RO in 

order to dilute the feed [101]. This results in high-quality permeate with lower energy demand. 

They modelled the process and found that energy efficiency is maximized for the SSP RO process 

when the permeate from the last element is blended with the feed. Compared to conventional 

single-pass RO, the permeate from the modified process was 15% greater in purity and more 

energy efficient than two-pass RO, in any case.  

Typical configuration of a single stage RO applies the same membrane type throughout a pressure 

vessel. This causes the front elements to be exposed to the feed seawater, resulting in a higher net 

pressure difference and higher flux across these elements in comparison to subsequent elements. 



This uneven distribution of net driving force also results in greater propensity to foul for the front 

elements. An improvement of the process design aimed at making the flux distribution along a 

pressure vessel more uniform, is to use a hybrid membrane configuration, known as internally 

staged design (ISD). ISD involves using lower flux membranes at the front and high flux 

membranes in subsequent elements (Figure 18) [102, 103]. It has been shown that such a hybrid 

membrane inter-stage design has the potential for significant reductions in permeate costs by 

requiring fewer pressure vessels and membranes [104, 105]. This section covers optimization of 

ISD and other such developments in RO membrane configurations using modelling and simulation 

over the last 5 years. 

 

Figure 22: Schematic showing a hybrid membrane configuration, or internally staged design (ISD) [102] 

Jeong et al. developed a finite difference model to numerically optimize ISD in the presence of 

colloidal foulants [106]. They numerically modeled transport phenomena in a full-scale RO 

membrane process and investigated the impact of the membrane element arrangement on long-

term operation (Figure 19) [106]. Compared to conventional designs where the same membrane is 

incorporated throughout the vessel, the ISD resulted in greater water flux and higher energy 

efficiency for long-term operation, without compromising on the quality of the permeate (< 400 

mg/L). They applied finite difference approximation to numerically calculate the spatial and 

temporal distribution of water and solute transport. This is done by discretizing the spatial domain 



x into 100 finite elements and time on a daily basis over a period of 90 days. Salt and water fluxes 

over each segment were calculated from the first to the last membrane element at a given time 

step. Model parameters for calculation of the cake layer growth are updated based on those of the 

previous time step and then applied to the equations for steady-state mass transfer. Similar 

recursive algorithms have been used to predict fouling in other studies as well [107-111].  

In a full-scale RO process, four to eight RO elements are connected in series in a single pressure 

vessel and each membrane’s performance varies depending on the temporal and spatial variation 

in local fluid conditions. For an accurate calculation of local water and solute fluxes, they 

considered the spatial distribution of cross-flow velocity, solute concentration, and trans-

membrane hydraulic pressure.  

 

Figure 23: Schematic of RO process illustrating discrete spatial and time domains for numerical calculations [106] 

Han et al. improved vessel design by implementing ISD on a single-pass SWRO design and 

evaluated the effect of configuration on SEC, permeate water quality, and boron rejection [103] 

using ROSA9, the commercial simulation program provided by Dow Water and Process Solutions. 

They used three types of RO membranes: high rejection, standard, and high flux membranes (Table 

3) in standard configuration and six ISD configurations (Table 4) in a single stage single pass RO 

system. They found that using an HID configuration with 3 standard membranes in the front and 

4 high flux membranes in the tail saves 0.41 kWh/m3 for the same recovery rate and feed conditions 



[103]. 

Table 3: Specifications of selected SWRO membranes used by Han et al. [103] (32,000 ppm NaCl, 800 psi, 25 °C). 

Membrane Flow (GPD 

(m3/d)) 

Salt rejection 

(%) 

Boron rejection 

(%) 

Type 

SW30XHR-

400i 

6000 (22.7) 99.82 93 High 

rejection 

SW30HRLE-

400i 

7500 (28.4) 99.8 92 Standard 

SW30ULE-

400i 

11,000 (41.6) 99.7 89 High flux 

 

Table 4: Membrane configurations used by Han et al. [103] 

Configuration Membrane element 

XHR SW30XHR-400i 

HRLE SW30HRLE-400i 

ULE SW30ULE-400i 

HID 1 (SW30XHR-400i) 3 + (SW30HRLE-400i) 4 

HID 2 (SW30XHR-400i) 3 + (SW30ULE-400i) 4 

HID 3 (SW30HRLE-400i) 3 + (SW30XHR-400i) 4 

HID 4 (SW30HRLE-400i) 3 + (SW30ULE-400i) 4 



Configuration Membrane element 

HID 5 (SW30ULE-400i) 3 + (SW30XHR-400i) 4 

HID 6 (SW30ULE-400i) 3 + (SW30HRLE-400i) 4 

 

Optimal design of RO units has been the focus of considerable research. According to Kotb et al.¸ 

most of these optimization studies involve complex models or highly nonlinear equations with 

many constraints [112]. In their recent study, they implemented a simple transport model to 

determine the operating parameters corresponding to optimum RO system structure i.e. single, 

two, and three-stage arrangements with respect to minimum permeate production cost for a given 

permeate flow rate with defined maximum total dissolved solids (TDS) [112]. They found that the 

minimum overall cost per unit permeate for a three-stage system is 0.91 $/m3 produced at a rate of 

17 m3/h.  



 

Figure 24: Effect of permeate flow rate on minimum cost per unit permeate $/m3 for single module, two-stage and three-stage 
modules [112] 

Figure 20 suggest that the optimum permeate flow rate increases with the number of stages, 

indicating that while a single-stage RO system is suitable for up to 6 m3/h, three-stage modules are 

suitable for production up to 20 m3/h.  

Obaidi et al. [113] optimized a two-stage/two-pass RO process for chlorophenol removal from 

wastewater and found that they could increase rejection by 12.4% compared to SSRO, for a 40% 

recovery rate, while keeping energy consumption at 1.949 kWh/m3.  

The cake filtration mechanism used to describe particulate fouling on the surface of NF and RO 

membranes is extensively covered in literature [114]. Cake filtration models are often used when 

scaling, pore blocking, and biofouling are not major contributors to fouling.  

Tomaszewska et al. [115] used empirical equations and numerical modelling to formulate trends 

on the membrane surface and, thus, to predict membrane scaling during RO. Numerical modelling 



takes into account operating conditions as well as physicochemical properties of the feedwater 

with and without antiscalants. In comparison to traditionally used methods to predict scaling such 

as RSI and LSI, the model suggested in this study predicts scaling phenomena as well as reactions 

between water and antiscalants. Table 5 shows the expressions for calculation of water flux and 

net SEC for different RO configurations. 

Table 5: Expressions for average water flux and net SEC for selected RO configurations  

System 

configuration 
Average water flux 𝑱𝑱𝑱𝑱���� Specific energy consumption 

Ref. 

Single-stage 

RO (SSRO) 

𝜶𝜶𝟐𝟐𝑹𝑹𝑹𝑹

𝜶𝜶𝜶𝜶 + 𝒍𝒍𝒍𝒍 � 𝜶𝜶 − 𝟏𝟏
𝜶𝜶(𝟏𝟏 − 𝑹𝑹𝑹𝑹) − 𝟏𝟏�

 
𝟏𝟏

𝟏𝟏 − 𝑹𝑹𝑹𝑹
+ 𝜺𝜺 [98] 

Two-stage 

RO  

𝟏𝟏
𝑵𝑵𝑹𝑹𝑹𝑹,𝟐𝟐𝟐𝟐(𝑹𝑹𝑹𝑹,𝑹𝑹𝑹𝑹𝟏𝟏,𝜶𝜶𝟏𝟏𝜶𝜶𝟐𝟐)

 
𝑹𝑹𝑹𝑹𝟏𝟏
𝑹𝑹𝑹𝑹

𝜶𝜶𝟏𝟏 +
𝑹𝑹𝑹𝑹 − 𝑹𝑹𝑹𝑹𝟏𝟏

𝑹𝑹𝑹𝑹
𝜶𝜶𝟐𝟐 [98] 

Closed-

circuit RO 

(CCRO) 

∅
𝑵𝑵

𝟏𝟏

𝒍𝒍𝒍𝒍(𝟏𝟏 + ∅
𝑵𝑵𝑵𝑵)

 𝟏𝟏 + 𝜺𝜺 +
𝑵𝑵 + 𝟏𝟏
𝟐𝟐𝟐𝟐

 [98] 

SSP RO 𝑨𝑨𝒎𝒎 ∗ 𝑻𝑻𝑻𝑻𝑻𝑻[(𝑷𝑷𝒃𝒃 − 𝑷𝑷𝒑𝒑) −

𝑪𝑪𝑪𝑪𝑪𝑪 𝝅𝝅𝒃𝒃 − 𝝅𝝅𝒑𝒑)* 

𝟏𝟏
𝟑𝟑𝟑𝟑∑

∆𝑷𝑷𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝑸𝑸𝒇𝒇,𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅
𝜼𝜼𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅

𝑸𝑸𝒑𝒑,𝒔𝒔𝒔𝒔𝒔𝒔
 

[101] 

EERO (3-

stage) 

- �𝟏𝟏

+
𝟏𝟏 − 𝑹𝑹𝑹𝑹𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

𝑹𝑹𝑹𝑹𝟐𝟐(𝟏𝟏 − 𝑹𝑹𝑹𝑹𝟐𝟐 + 𝑹𝑹𝑹𝑹𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺
�

𝚫𝚫𝝅𝝅
𝜼𝜼𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 −

�
𝟏𝟏 − 𝑹𝑹𝑹𝑹𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

𝑹𝑹𝑹𝑹𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 + (𝟏𝟏 − 𝑹𝑹𝑹𝑹𝟐𝟐)
� 𝜼𝜼𝑬𝑬𝑬𝑬𝑬𝑬𝚫𝚫𝝅𝝅 

[99, 

100] 
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𝑅𝑅

( 1
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− 1
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)� 

Khayet et al. [116] used response surface methodology (RSM) and ANN to develop predictive 

models for RO desalination. They used a polyamide thin film composite membrane in spiral wound 

configuration, with aqueous NaCl solutions as model feed solutions and developed the models 



based on experimental designs. The input variables for their model were NaCl concentration in 

feed, feed temperature T, feed flow-rate Q and operating hydrostatic pressure P. RSM is an 

optimization approach that allows combination of several input factors to optimize a given 

objective function [117], which in this case is the RO performance index given by salt rejection 

factor x permeate flux. Response surface models involve fitting a polynomial regression model 

using the input variables to determine the critical point, i.e. maximum performance index. On the 

other hand, ANN is a non-linear processing system in which neurons, or nodes, and connections 

between them are used for mapping input and output data [118]. A neuron is a computational 

processor which operates in conjunction to other neurons such that the connections are 

characterized by weights and biases. It was discovered that a single RSM model could not 

adequately predict the performance index over a wide range of salt concentration (for both brackish 

and seawater desalination conditions). They found that pressure played an important role at higher 

feed temperatures and the feed temperature was an important factor at higher operating pressures. 

The optimal conditions found through ANN were better than those by RSM [116] and the predicted 

values from ANN closely fit experimental data with a correlation coefficient close to unity, as 

shown in Figure 25. This was attributed to selection of optimal ANN architecture and other factors.   

 



 

Figure 25: RO performance index predicted by ANN vs. experimental values [116]  

2.2.2 Mathematical modelling in nanofiltration 

Due to the complexity of modelling transport and separation, especially of charged solutes, many 

studies have focused on NF modelling in the last two decades [50, 119]. In this section, theories 

pertaining to ion transport and fouling in NF are considered, and existing models are connected 

with technological application of NF in desalination. 

There are several models describing transport through NF membranes, including irreversible 

thermodynamic models, pore models, space charge models, electrostatic, and steric-hindrance 

models [49, 120]. A summary of commonly used ion transport models in NF is shown in Table 

76, and described in detail in [30, 49]. Modified versions of these models are used to describe 

separation of more complex solutions with NF, such as mixed salt solution [49]. Physical sieving 

is the dominant mechanism for rejection of large molecules and solutes, whereas the chemistries 



of solute and membrane take precedence for ions and low molecular weight organics. In most 

models, the membrane is assumed to be a bundle of charged capillaries with specific structural 

parameters, namely pore radius rp, with a ratio of porosity to membrane thickness (ε/l) and surface 

charge density.  

Ion transport in NF is described either by two kinds of models: irreversible thermodynamics 

models, in which the membrane structure is not considered and transport is described as an 

irreversible process which continuously produces entropy and dissipates free energy, or models in 

which the structural and physiochemical properties of the membrane dictate solute transport such 

as steric-hindrance pore model and Teorell-Meyer-Sievers (TMS) model.   

Kedem-Katchalsky and Spiegler-Kedem models are non-equilibrium thermodynamic models in 

which the solute flux is a function of solute permeability coefficient 𝑃𝑃𝑖𝑖, average solute 

concentration in the membrane 𝑐𝑐𝑖̅𝑖, solvent permeability coefficient 𝐿𝐿𝑝𝑝, permeation pressure ∆𝑝𝑝, 

reflection coefficient 𝜎𝜎𝑖𝑖 (corresponding to the solute fraction rejected by the membrane), and the 

osmotic pressure difference ∆𝜋𝜋 of water across the membrane.  

In the Kedem-Katchalsky model, which is the first irreversible thermodynamic-based membrane 

model, the solvent flux 𝐽𝐽𝑗𝑗 and solute flux 𝐽𝐽𝑖𝑖 of aqueous solutions containing a single solute are 

expressed by: 

𝐽𝐽𝑗𝑗 =  𝐿𝐿𝑝𝑝(∆𝑝𝑝 −  𝜎𝜎𝑖𝑖∆𝜋𝜋) 

𝐽𝐽𝑖𝑖 =  𝑃𝑃𝑖𝑖∆𝑐𝑐𝑖𝑖 + (1− 𝜎𝜎𝑖𝑖)𝐽𝐽𝑗𝑗𝑐𝑐𝑖̅𝑖) 

Both diffusion and convection contribute to solute transport. Diffusion depends on solute 

concentration while convection depends on the applied pressure. Retention then is dependent not 

only on the flux but also on the solute concentration. The Spiegler-Kedem model expresses solute 

flux in a differential form, when the concentration difference between retentate and permeate is 



high.  

This model was modified by Spiegler and Kedem, who expressed the solute flux Ji as: 

𝐽𝐽𝑖𝑖 =  −𝑃𝑃′(
𝑑𝑑𝑐𝑐𝑖𝑖
𝑑𝑑𝑑𝑑

) + (1− 𝜎𝜎𝑖𝑖)𝐽𝐽𝑗𝑗𝑐𝑐𝑖̅𝑖) 

where P’ is the local solute permeability (𝑃𝑃’ = 𝑃𝑃𝑖𝑖∆𝑥𝑥). In this model, the solute permeability 

coefficient and the reflection coefficient are obtained by fitting observed solute rejection R vs. flux 

F, according to: 

𝑅𝑅 =  𝜎𝜎𝑖𝑖(1−𝐹𝐹)
1−𝜎𝜎𝑖𝑖𝐹𝐹

, where 𝐹𝐹 = exp �− 1−𝜎𝜎𝑖𝑖
𝑃𝑃𝑖𝑖
� 𝐽𝐽𝑗𝑗 

The retention coefficient which corresponds to the maximum rejection at infinite volume flux can 

be determined by fitting of experimental data of rejection as a function of flux. These 

thermodynamic models require less information to set up and have been used to describe the 

rejection behavior of many solutes. The limitation of using thermodynamic models is that less 

information is extracted about transport through the membrane.  

Another kind of model involving porous membranes is the steric-hindrance pore (SHP) model. In 

this model, separation is described in terms of membrane pore radius and the ratio of membrane 

porosity to thickness (ε/l). For a system containing a single uncharged solute, the reflection 

coefficient and the solute permeability coefficient can be expressed in terms of steric parameters 

related to the wall correction factors in the convection and diffusion coefficients, as well as to the 

distribution coefficients of solute in the convection and diffusion conditions.  

𝜎𝜎𝑖𝑖 =  1−  𝐻𝐻𝐹𝐹𝑆𝑆𝐹𝐹 

𝑃𝑃𝑖𝑖 =  𝐻𝐻𝐷𝐷𝑆𝑆𝐷𝐷𝐷𝐷𝑖𝑖(
ε
𝑙𝑙
) 

Where 𝐻𝐻𝐹𝐹 and 𝐻𝐻𝐷𝐷 are steric parameters related to the wall correction factors in the convection and 

diffusion coefficients, respectively, and 𝑆𝑆𝐹𝐹 and 𝑆𝑆𝐷𝐷 are the distribution coefficients of solute in the 



convection and diffusion conditions, respectively. Another equation widely applied to describe 

pure solvent flux through uniform cylindrical pores without any concentration gradient across the 

membrane is the Hagen-Poiseuille equation: 

𝐽𝐽𝑗𝑗 =  
𝜀𝜀𝑟𝑟𝑝𝑝2∆𝑃𝑃
8𝜇𝜇𝜇𝜇𝜇𝜇

 

where 𝜇𝜇 is the solvent viscosity and 𝜀𝜀, 𝑟𝑟𝑝𝑝, 𝑙𝑙 and 𝜏𝜏 are membrane porosity, pore radius, membrane 

thickness, and tortuosity factor, respectively.  

The Teorell-Meyer-Sievers (TMS) model, also known as the fixed-charge model, relates salt 

rejection by charged membranes to the ratio of membrane effective charge density to feed 

concentration. The TMS model, which is based on the Donnan equilibrium theory and the extended 

Nernst-Planck equation, assumes a homogeneous membrane with a uniform distribution of 

potential and concentration [119, 121]. Donnan equilibrium theory describes the behavior of 

charged particles near a semi-permeable membrane wherein some ions are retained by the 

membrane to maintain electroneutrality on each side [122]. 

Built on the extended Nernst-Planck equation, the Donnan steric pore-flow model (DSPM) is 

widely used to describe ion transport in NF. In addition to the sieving effect, this model also takes 

into consideration ion transport in terms of diffusion and migration, resulting from concentration 

and electrical potential gradients, as well as convection due to the pressure difference across the 

membrane [30]. In the DSPM, the membrane is considered a charged porous layer in which the 

pore radius, volumetric charge density, and effective membrane thickness are controllable 

parameters [123]. It describes partitioning through steric hindrance and the Donnan equilibrium 

theory.  

Table 6: Commonly used transport models for NF membranes [30] 

Model Transport mechanism 



Kedem-Katchalsky model Diffusion and convection 

Spiegler-Kedem model Diffusion and convection 

Hagen-Poiseuille model Convection 

Steric hindrance pore model Convection 

Teorell-Meyer-Sievers (TMS) model  Electrostatic interactions 

Donnan steric pore-flow model 

(DSPM) 

Diffusion, convection, and electrostatic 

interactions 

 

Now that key transport models for NF have been discussed, the present section reviews new 

models as well as improvements of existing NF transport models that have been developed in the 

last five years. 

Kowalik-Klimczak [124] evaluated the DSPM model for analyzing NF for the removal of 

chromium(III) ions from an acidic salt solution. The pore dielectric constant was identified by 

testing at different pressures and feed compositions. The permeate flux values obtained from the 

model were in agreement with experimental values (Figure 26).  

 



 

Figure 26: Permeate flux (Jj) vs. transmembrane pressure for feed consisting of 2 g Cr3+ dm-3, 10 g Cl- dm-3, 10 g SO4 2- dm-3 (the 
dotted line shows the pore model fitted to experimental values) [124] 

Kong et al.  employed the DSPM and dielectric exclusion  model to predict the performance of 

two NF membranes for the rejection of six haloacetic acids (HAA) and six pharmaceuticals 

(PhACs) with different molecular weight, hydrophobicity, and charge [125]. Their model could 

predict the rejection of HAAs with a mean standard error less than 5%. However, the model 

overestimates the rejection of PhACs. This is because even though the model cites diffusion as the 

predominant mass transport mechanism, experiments show that diffusion had a much smaller 

contribution. The disagreement of model predictions and experimental values is possibly due to 

inappropriate quantification of the hindrance factors for convection and diffusion, i.e., HD and HF.  

Abdellah et al. applied NF for the recovery of bio-derived solvents from binary mixtures with 

canola oil [126]. They used Maxwell-Stefan formulations together with Flory-Huggins solubility 

model to describe the flux data as a function of concentration, feed temperature, transmembrane 

pressure, and cross-flow velocity (Figure 27).  



 

Figure 27: Flux of pinene and oil through PDMS/PAN membrane from 10 wt. % oil mixtures; symbols represent experimental 
data; lines are simulation results [126] 

Labban et al. applied the Donnan-Steric pore model with dielectric exclusion (DSPM-DE) to 

describe membrane performance for a low pressure NF softening process [119]. They validated 

the model by comparing with experiments of various feed chemistries including uncharged solutes, 

single salts, salt mixtures and artificial seawater to characterize and predict its performance. Using 

the model, they found that the high rejection of NF membranes to multivalent ions results from 

primarily the membrane pore dielectric constant, followed by pore size (Figure 28). Membrane 

charge density and membrane thickness were not as crucial in determining rejection for softening 

applications.  



 

Figure 28: Sensitivity of NF salt rejection for low pressure softening to intrinsic membrane properties [119] 

Ochando-Pulido applied a boundary flux theory to model the performance of and predict the 

fouling in NF for purification of olive mill wastewater after pretreatment [127]. The boundary flux 

concept is a combination of critical and threshold flux and is a direct function of time [128]. It 

separates membrane operation into two regions: one in which the impact of fouling is very low 

and another in which fouling builds up exponentially [127]. Critical flux theory has been used to 



describe the maximum permeate flux before fouling occurs, and it has been a crucial component 

in membrane process design for all processes [129, 130]. An alternative concept, the threshold 

flux, then emerged as the flux that separates a low fouling region from a high fouling region [130, 

131], and was subsequently used to model fouling where critical flux was not applicable. In their 

work, Ochando-Pulido estimate the boundary flux through by determining the fouling parameter 

in each region. The experimental flux decline was in agreement with the boundary flux model 

developed. They found that a high permeate productivity of up to 68.2 L m-2 h-1 could be reached 

when operating at boundary flux conditions, as opposed to critical flux conditions.  

2.2.3 Mathematical modelling in forward osmosis 

The pore hindrance transport model was initially developed for neutral solutes in pressure-driven 

nanofiltration [132]. Recently, Xie et al. applied the pore hindrance transport model for the first 

time to forward osmosis, to describe the rejection of trace organic contaminants (TrOCs) as a 

function of permeate water flux. The pore hindrance transport model relies on the steric hindrance 

to the entrance of a molecule into the pore as well as viscous resistance inside the pore [133]. In 

this model, the membrane is considered a bundle of cylindrical tubes of the same radius through 

which spherical solute particles enter randomly. The ratio of solute radius to the membrane pore 

radius is related by the distribution coefficient when steric interactions are considered. The size of 

uncharged solutes and permeation experiments are used to obtain retention and/or reflection 

coefficients which are then used to determine the average membrane pore radius and the ratio of 

solute radius to pore radius, λ =  𝑟𝑟𝑠𝑠
𝑟𝑟𝑝𝑝

. Another method to determine λ is from the Hagen-Poiseuille 

equation, in which experimental values of pure water permeability and the average pore radius 

obtained by steric hindrance pore model are input. Silva et al. compared several correlations from 

literature for the pore hindrance model and found that the most suitable correlation had been 



proposed by Bungay and Brenner (Figure 28) [134], who provided a complete correlation for 0 < 

λ ≤ 1 [135]. 

 

Figure 29: Diffusive pore hindrance factors from literature as a function of λ [134] 

For both cellulose acetate and TFC polyamide membranes, the rejection of charged TrOCs was 

higher as they are rejected by both size exclusion and electrostatic repulsion (Figure 29). For 

neutral TrOCs, rejection was greater through the TFC membranes although they have the larger 

pore size, which the authors attributed to greater pore hydration. Pore hydration is the attachment 

of a layer of water molecules to the negatively charged membrane surface via hydrogen bonding. 

Greater pore hydration results in reduced effective membrane pore size which translates to 

enhanced steric hindrance and separation during the FO process.  

Phuntsho et al. used established mass transport models to simulate a plate-and-frame FO 

membrane module [136]. They studied the effect of various operating parameters on water flux, 

feed recovery rate, and the final concentration of the diluted draw solution. They found that the 

counter-current crossflow mode of operation leads to greater water flux, higher recovery, as well 



as higher DS final concentration, all of which are indicative of improved performance. From their 

analysis, they developed a modified equation for the water extraction capacity of a draw solute, 

which can form the basis of optimization studies on large-scale FO operations.  

 

 

 

Figure 30: Real rejection of neutral TrOCs vs. permeate water flux by TFC and CTA membranes; solid lines represent 
predictions from the membrane pore hindrance transport model [137] 

Lee et al. developed a characterization method for FO membranes by combining a statistical 

approach with a single experimental FO test [138]. The experimental component was carried out 

to measure the water and reverse solute flux in the feed solution where DI water was used as the 

feed and NaCl as the draw solute. They used a statistical approach to find the optimal water 



permeability, salt permeability and resistance to salt diffusion in the support layer to predict the 

water and reverse solute flux using ICP and ECP models [138]. Results from the model were in 

close agreement with experimental values and can be used to predict experimental water and 

reverse solute flux.  

Attarde et al. also used the ECP and ICP models and combined them with the Spiegler-Kedem 

model to also allow description of mass transport through the active layer of a spiral wound FO 

module [139]. They applied a nonlinear constrained optimization technique, together with 

experimental FO data, to predict the unknown parameters and minimize the error function. To 

minimize the error function, they used a hybrid function technique which includes a genetic 

algorithm technique and Fmincon from MATLAB. First, the genetic algorithm reaches the region 

close to the optimum point and uses that point as the initialization point for the Fmincon [139]. 

Figure 30 shows the simple algorithm used by Attarde et al. to determine unknown model 

parameters. Comparing the SK model with the traditional solution diffusion model, they found 

that the FO performance predicted in terms of permeate flux, solute flux as well as power density 

differed between the two models. 

 



 

Figure 31: Algorithm for estimation of unknown model parameters; Qp and CDb,out are the permeate flow rate and bulk draw 
solution concentration [139] 

In FO, permeation of the draw solute through the membrane in reverse lowers the driving force 

for water flux, adversely affects the feedwater quality, and is also met with resistance from the 

foulant cake layer on the membrane surface. The foulant layer increases CP and cake-enhanced 

osmotic pressure (CEOP) and reduces water flux. Modelling can help overcome limitations of 

experimental instruments to study the various aspects of fouling in FO, allowing researchers to 

evaluate the effect of changing physical and chemical parameters on FO fouling without an 

experimental setup. Given the potential of modelling in this area, and the rapid growth of research 



in FO, the limited number of studies carried out to investigate fouling in FO processes is startling.  

Park et al. developed a numerical model to predict the flux decline due to colloidal fouling in an 

FO membrane system [107]. They used a control volume approach and assumed that the cake layer 

growth is based on a first-order reaction to derive the kinetic equation; see the schematic shown in 

Figure 31. They found that the resistance of the cake layer is a major contributor to flux decline in 

the beginning, but increased reverse draw solute permeation through the membrane had little effect 

on flux decline. However, flux decline depends on the diffusivity, and hence the selection of the 

draw solute used in the process.  

 

Figure 32: Schematic of simulated FO system with cakelike fouling [107] 

They used the resistance-in-series model used to express the flux of an osmotically driven process 

as: 

𝐽𝐽𝑤𝑤 =  
∆𝜋𝜋
𝜇𝜇𝜇𝜇

=
𝜋𝜋𝑖𝑖 − 𝜋𝜋𝑎𝑎

𝜇𝜇(𝑅𝑅𝑚𝑚 + 𝑅𝑅𝑐𝑐)
 

 

𝐽𝐽𝑤𝑤 is the permeate flux; 𝜋𝜋𝑖𝑖 and 𝜋𝜋𝑎𝑎 are the osmotic pressures of the active layer-support layer 

interface and active layer surface, respectively; 𝜇𝜇 is the dynamic viscosity; R, 𝑅𝑅𝑚𝑚 and 𝑅𝑅𝑐𝑐 refer to 

the membrane resistance, intrinsic membrane resistance, and cake layer resistance, respectively.  



Recently, Wang et al. modified the solution-diffusion model to incorporate draw solution 

concentration and operating temperature and focused on maximizing FO water flux with respect 

to these parameters for a commercial thin-film composite membrane  [140]. They quantified the 

effect of each parameter using a concentration-induced flux increment (CIE) and a temperature-

induced flux increment efficiency (TIE). Interestingly, CIE increased with an increase of draw 

solution concentration and increased with an increase in temperature. On the other hand, the TIE 

increased when the temperature was raised from 25 to 47 °C and also increased for increased draw 

solution strength. Figure 32 shows that values projected theoretically were aligned with those 

obtained experimentally for a range of draw solution concentrations at different temperatures 

[140]. Through this study, they identified temperature-sensitive and concentration-sensitive 

regions (Figure 33), which can be of significance for optimizing FO water flux. 

 



 

Figure 33: Predicted and experimental values of water flux vs. draw solution concentration at different temperatures [140] 

 

 

Figure 34: Temperature and draw solution concentration-sensitive zone as determined by Wang et al.’s modified solution 



diffusion model. Red line indicates where water flux is equally sensitive to temperature and concentration [140] 

Modelling approaches for FO fouling hold strong potential for growth and development of such 

techniques will help not only in predicting fouling in FO, but also in optimizing operational 

parameters for high rejection, high flux FO.  

Table 7 shows process parameters and intrinsic membrane properties that can be optimized for 

selected membrane processes according to developed models.  

Table 7: Selected variables and objective functions for membrane-based desalination processes [116, 119, 140] 

Process Objective function Variables Models used 

Reverse osmosis Maximize performance 

index  

• Increase feed 
temperature 

• Increase operating 
pressure 

(Effects more significant at 
lower salt concentration) 

RSM, ANN 

Nanofiltration Maximize multivalent ion 

rejection for low pressure 

softening 

• Increase Pore dielectric 
constant 

• Decrease ore size 
• Not very sensitive to 

membrane charge 
density and membrane 
thickness 

DSPM-DE 

Forward osmosis Maximize water flux • Increase draw solution 
concentration 

• Increase operating 
temperature 

Modified 

solution-

diffusion 

model  

 

2.3 Modelling of hybrid desalination technologies 

Filippini et al. analyzed a hybrid MED and RO system for seawater desalination by developing 



models for each of the two systems and an integrated model to evaluate several configurations of 

the two processes in the hybrid system [141]. Y. Chan modelled mass transport through 

nanomaterials, in particular carbon nanotubes and graphene sheets, as membrane materials for RO 

[142]. Shahzad et al. [143] proposed a tri-hybrid system consisting of RO and a multi-evaporator 

adsorption system (ME-AD), arranged in series for maximum recovery from pretreated feed. 

Theoretical results show that the overall recovery rate for seawater desalination on this hybrid 

system can be as high as 81%. Coupling of RO with thermal desalination systems as well as with 

renewable energy systems has been briefly reviewed by Qasim et al. [144] in a recent review. 

Pretreatment is usually carried out to reduce the natural organic matter and suspended solids in the 

feed to minimize fouling in the desalination unit. However, most pretreatment processes do not 

involve removal of dissolved solids such as multivalent ions that can later precipitate and cause 

scaling on heat exchangers, which reduces the heat transfer efficiency in both MSF and MED 

systems [145]. Although antiscalants are used to prevent scaling, pretreatment needs to be able to 

remove multivalent ions. Nanofiltration and forward osmosis have been considered as 

pretreatment alternatives for MSF and MED. Due to nanofiltration being an energy-intensive 

pressure-driven process, a few recent studies have investigated the application of FO as 

pretreatment to thermal desalination. Thabit et al. experimentally optimized FO operating 

conditions for pretreatment to MSF and found that increasing the brine temperature from 25 °C to 

40 °C leads to a flux increase of 32%. 

As pressure-driven processes rely on hydraulic pressure from high-pressure pumps, forward 

osmosis (FO) offers a low-energy alternative. FO depends on the osmotic pressure difference 

between a concentrated draw solution and a feed stream across a semi-permeable membrane [146]. 

Apart from draw solute recovery and internal concentration polarization, FO membranes are still 



susceptible to fouling, although to a lesser degree than membranes in hydraulic pressure-driven 

processes such as RO [107]. Fouling in FO has been found to be more reversible and less 

compacted as compared to RO [147]. Altaee and Zaragoza have developed a model to estimate 

power consumption in FO for seawater softening in an FO-MSF plant [148, 149]. Figure 35 shows 

the steps used to predict the concentration of diluted draw solution and estimated permeate flow 

for each recovery rate.  

 

Figure 35: Procedure to estimate FO membrane performance [149] 

Comparing the water flux and power consumption in FO to that in NF for pretreatment of MSF, 

Altaee and Zaragoza found that although water flux in NF is higher than in FO, specific power 

consumption and, hence, operation cost is higher for NF than for FO. However, feed salinity did 

not affect the power consumption in FO whereas power consumption for NF increased with 

salinity. In another study, Altaee et al. applied the same model to evaluate the effectiveness of FO 

pretreatment in the removal of divalent ions for a high temperature FO-MSF/MED hybrid system 

[150]. They simulated MSF at 130 °C using FO as pretreatment and calculated the concentration 

of Ca2+ and SO4
2 – ions in each stage. They found that FO pretreatment increased MED TBT to 85 



°C, which led to a distillate flow rate 1.8 times higher than a TBT of 65 °C. They also developed 

an FO pretreatment-MED Scale Index (FMSI) to determine the required FO recovery rate to avoid 

scale problems. This scale index was based on calculating the Ryznar Scale Index (RSI) with 

different MED operating temperatures and FO recovery rates. They then used the FMSI to 

determine the required mixing ratio for FO and NF feed as a pretreatment for MED and found that 

FO pretreatment is more efficient than NF for scale removal.  

Pal et al. recently modelled an integrated FO-NF system for the treatment of hazardous wastewater 

[151]. They applied a flat sheet cross flow FO membrane module coupled with an NF system to 

recover the draw solute. The developed model is based on solution-diffusion mechanism for FO 

while the DSPM with dielectric exclusion phenomenon is used to describe the NF component. The 

transport mechanisms that dominate NF are diffusion, convection, and electromigration while only 

the latter two exist in the case of FO. As mentioned earlier, ionic separation at the solution-

membrane interface is described by Donnan equilibrium and steric effects. Dielectric exclusion 

phenomenon is included because DSPM on its own is suitable for uncharged solutes, but not in 

the case of mixed electrolytes solution and/or multivalent ions [152]. They found that performance 

predicted by the model was in agreement with experimental data with a low relative error of < 0.1 

and a high correlation coefficient; these results suggested that their model will help scale-up of 

this hybrid system. Zaviska and Zou modelled a bench scale FO process as pretreatment for RO 

and found that FO can help avoid RO fouling while achieving higher permeate recovery [153]. In 

this simulation, the diluted draw solution becomes the RO feed and is then re-concentrated for 

reuse in FO. The model took into account flux, water recovery, and the final draw solution. They 

assumed 1000 m3/day of RO feed (i.e., diluted draw solution outlet from FO process) which is 

treated using 1000 m2 RO membrane, together with a pressure exchanger as ERD. They used their 



model to determine the operating pressure and energy consumption required for RO. 

Senthil and Senthilmurugan simulated an integrated SWRO-PRO system for eliminating post-

treatment of brine from RO. By modelling six SWRO-PRO configurations using seawater as feed 

solution, they found that direct mixing of diluted PRO draw solution with RO feed could reduce 

SEC by 49%, in comparison to SWRO alone [154].   

Obaidi et al. [155] analyzed a multistage multi-pass medium-sized brackish water RO (BWRO) 

desalination plant in Jordan, producing 1200 m3/day. For the spiral wound RO membranes, they 

developed a model based on solution diffusion and employed it to simulate operation of low-

salinity BWRO. Plant data obtained experimentally was in line with results from the simulation, 

as shown in Figure 36. When they carried out sensitivity analysis on their model, they found that 

feed flow rate and operating pressure are the main factors affecting product salinity.  

 

Figure 36: Effect of plant operating pressure on recovery rate of pass 1, pass 2, and total [155] 

Malik et al. optimized MSF, RO and MSF-RO desalination systems for a total production capacity 

of 89,394 m3/day [156]. They developed a superstructure to analyze various configurations of RO 

alone, MSF alone and RO/MSF hybrid and additional equipment such as mixers and splitters, to 

allow analysis on a single flowsheet (Figure 37). Using a feed separator eliminates the need for 

multiple flowsheets. They optimized operating and design variables and found that the hybrid 



system has a higher overall recovery and lower operating cost than the MSF system and better 

product water quality than RO alone.  

 

Figure 37: Desalination superstructure schematic used to analyze various MSF/RO configurations [156] 

Bartholomew [157] developed a cost optimization model for osmotically assisted RO, in which 

they investigated the relationship between membrane stages, saline sweep cycles, and makeup, 

purge and recycle streams for high-salinity feeds in the range of 50,000 to 125,000 ppm TDS. The 

optimized design resulted in costs less than $6/m3 water with water recoveries between 30-70%. 

They studied 3 cases: (1) feed TDS of 75 g/L and 50% water recovery, (2) feed TDS of 75 g/L and 

70% water recovery, and (3) feed TDS of 125 g/L and 40% water recovery [157]. They found that 

cost-optimal unit water cost was the lowest for case 1, as shown in Figure 38A. Figure 38B shows 

the normalized costs of the various components (membrane capital and replacement costs, capital 

costs of pumps, pressure exchanger, electricity costs and other operating expenses). They used a 

nonlinear optimization model with the objective of minimizing the cost of the OARO system and 

found that OARO can be economically feasible for feed salinities of up to 125 g/L and water 

recoveries of up to 70% [157].  



 

Figure 38: Cost-optimal unit water costs (A) and normalized component costs (B) for the three cases studied by for OARO of 
high-salinity brine [157] 

3. Future direction 

3.1 Modelling of renewable energy systems with desalination 

Despite reduced energy consumption, energy still makes up the largest portion of overall costs in 

desalination systems. With comparable advances in renewable energy systems such as solar and 

wind energies [158], the use of renewable energy to power desalination is now being considered 

an important alternative for providing fresh water, as is evident from the large number of reviews 

on this topic [159-164]. Modelling the coupling of RE systems with desalination technologies is 

an active area of research with tremendous potential. Several studies have recently been carried 

out on the integration of renewable energy systems with desalination systems, including hybrid 

RE systems such as wind-geothermal, solar-wind, etc. [164-169]. Solar energy desalination is of 

particular interest and the most widely form of renewable coupled with desalination, as the most 

water scarce regions are also those with the greatest solar energy abundance [170]. Kasaeian et al. 

[171] recently reviewed desalination by solar energy, focusing on RO and FO technologies, in 

which they included several recent modelling and simulation studies. Often, each segment,  the 

renewable energy system and the desalination system, is optimized separately [172].  



Mentis et al. developed a multiparameter dimensioning tool to evaluate the integration of 

renewable energy with RO desalination on the islands of South Aegean Sea. The model includes 

different desalination capacities depending on the size and water demand of the island, selection 

of appropriate renewable energy technology for supplying electricity to the RO plant, energy 

balances of the integrated system, and the cost of water production and electricity [173]. They 

found that the price of water on the smaller island would be greater; however, RE would enable 

both islands to sell water at a much lower cost than the current price.   

Salehi et al. investigated the feasibility of producing distilled water with a geothermal power 

system [174]. They applied a three-objective optimization procedure on a geothermal power plant 

using a genetic algorithm, focused on optimizing electricity output, product unit cost, and distilled 

water flowrate. In their study, which consisted of a double-flash geothermal power plant, the 

decision parameters were the pressures of the two flash chambers and the temperatures of the 

vaporator and generator. They compared two configurations of integrating a geothermal power 

system with thermal distillation: one in which the reinjected geofluid temperature is assumed to 

have a temperature of above 100 °C, and another in which the temperature is below 100 °C, but is 

enhanced with an absorption heat transformer and the upgraded thermal energy is used to produce 

purified water. They found that the first configuration yielded higher distilled water flow rates,but 

the second configuration resulted in higher power outputs.  

Heidary et al. [175] recently designed a small scale MSF-RO desalination system producing 25 

liters per hour and powered by hybridization of solar and wind. For the desalination system, they 

studied six models and optimized air pressure, seawater temperature, seawater flow rate and 

seawater salinity to minimize water production costs and maximize the volume of product water. 

Figure 28 shows a schematic of the hybrid solar wind MSF-RO system. For the hybrid solar wind 



energy system, they proposed an energy system composed of wind turbine, solar panel and solar 

collector, electricity from all of which is saved in batteries. In the mathematical model, the weather 

conditions, design parameters of the RO-MSF models and the energy demand of the desalination 

system were considered input variables.  

 

Figure 39: Schematic of hybrid solar-wind MSF-RO desalination system  

The greatest water production was obtained with an integrated MSF-RO system, where part of the 

brine from MSF goes through a single pass RO while the remaining is mixed with RO brine. The 

system where the heat rejection of the MSF condenser liquid is used as feed for the RO was shown 

to be the most energy efficient for large-scale production of > 1000 L/hour.  

The cost of the hybrid system is the sum of the total cost for each subsystem i.e. wind, solar, 

battery, RO and MSF system, which includes direct and indirect capital costs as well as operation 

and maintenance costs. Economic optimization based on maximizing water production and 

minimizing water cost for each of the configurations showed that hybridization of wind-solar and 

RO-MSF were the optimal choices when compared to fossil fuel RO or MSF, fossil fuel RO-MSF, 

wind RO, wind MSF, solar RO or solar MSF alone.   



3.2 Other challenges 

Future direction involves lowering the energy consumption of newer membrane-based processes 

such as FO through novel process design and configuration optimization, as has been the case for 

RO recently. Among renewable energy systems for desalination, most of the modelling has 

focused on photovoltaics coupled with reverse osmosis. More studies need to be carried out to 

study the coupling of other desalination processes as well as hybrid RE systems. Additionally, 

research in integration of new generation artificial intelligence algorithms into desalination is still 

in its infancy and is expected to grow in coming years. As mentioned earlier, modelling and 

experimental studies go hand in hand, and for many of the more complex or newer processes such 

as nanofiltration, measuring tools are still lacking in providing a complete understanding of the 

process. To design models that will reflect performance closer to real systems, concurrent 

advancements in measurement methods and tools are necessary. Additionally, the same complex 

processes may require hybridization of conventional and artificial intelligence models – an area in 

which very limited work has been carried out to date. As has been shown in some of the studies 

highlighted in this review, nondeterministic algorithms are becoming more relevant due to their 

ability to model systems for a wider range of operating conditions that is not often possible with 

conventional methods. Research will focus on benefitting from the strengths of the two types of 

approaches, integrating them to achieve accurate solutions for complex systems using the least 

amount of resources. Another area of particular interest is the model-based process control in 

membrane-based technology.  

4. Conclusion  

As installed desalination capacity grows worldwide, there is an imminent need to reduce energy 



consumption for desalination processes either through new configurations and process design for 

existing processes, development of new technologies, and/or through optimization of operational 

parameters. Each of these solutions necessitates the need for model building to accurately describe 

and analyze desalination processes. In the area of thermal desalination, although some new 

configurations have been studied through modelling, the technology is reaching saturation and 

recent studies are focused on understanding and controlling scale behavior on surfaces. For the 

duration thermal desalination has been around, it is surprising that scale formation affecting MSF 

performance was very little understood before recent years. For RO, modelling tools are being 

used to assess the feasibility of new configurations of the membrane module, with much attention 

on internally staged design modules to balance flux through the module and, hence, to minimize 

energy consumption. For other pressure-driven membrane processes such as nanofiltration, simple 

models are being modified to develop a deeper understanding of the transport mechanism, which 

takes into account diffusion and convection through the pores and/or charged membrane.  

Regarding the aspects discussed in this literature survey, there are a few gaps in literature we have 

identified that could direct further research in this field.  

• The use of artificial intelligence models to control desalination processes offers a 

promising avenue of exploration. 

• Experimental studies in optimization of membrane materials and draw solutions for FO are 

still needed before modelling novel system configurations. 

• In continuation of the above point, although mathematical models membrane processes 

continue to be developed, resulting optimization of intrinsic membrane properties through 

modelling is still limited in comparison to modelling of operating conditions and other 

process properties, especially for newer processes.  



• Modelling new FO membrane and module configurations could be useful in using FO as a 

pretreatment technology for MSF or RO, either separately or in hybrid with other 

desalination processes. Currently, the diluted draw solution needs to be further treated and 

studies of such hybrid FO systems are still limited. This step would help determine the 

feasibility of employing FO in large-scale desalination. 

• The use of models to predict specific kinds of fouling for all membrane-based desalination 

processes, including newer processes such as forward osmosis and membrane distillation, 

could open a whole new avenue for research. This means more models for validating the 

fouling behavior of membrane surfaces need to be developed.  
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6.  Abbreviations  

RO   reverse osmosis 

MED   multi-effect distillation 

MSF   multi-stage flash 

MSF-BR  multi-stage flash brine recycle 

MSF-OT  multi-stage flash once-through 

MSF-M  multi-stage flash simple mixing 

FO   forward osmosis 

NF   nanofiltration 

TBT   top brine temperature 



ERD   energy recovery device 

TDS   total dissolved solids 

SSRO   single-stage reverse osmosis 

SWRO   seawater reverse osmosis 

BWRO  brackish water reverse osmosis 

SEC   specific energy consumption 

TrOC   trace organic contaminant 

FMSI   FO pretreatment-MED Scale Index 

RSI   Ryznar Scale Index 

TCF   temperature correction factor 

CPF   concentration polarization factor 

CP   concentration polarization 

SHP    steric-hindrance pore 

TMS   Teorell-Meyer-Sievers 

DE   differential evolution 

ANN   artificial neural network 

SK   Spiegler-Kedem model  

7. Symbols 

Cb   Bulk ion concentration 

Ci   Ion concentration at solid-liquid interface 

Cs   Saturation ion concentration  

Am   Water permeability coefficient  

Js   Salt flux 



Jw   Pure water flux 

Δ𝑃𝑃   Transmembrane pressure difference 

Δ𝜋𝜋   Osmotic pressure difference 

B   Salt permeability coefficient 

Cw   Salt concentration at membrane surface on the feed side 

Cp   Permeate salt concentration 

ε   membrane porosity 

l   membrane thickness 

rp   pore radius 

Ths   heating steam temperature 

Mr   recycled brine flow rate 

Mcw   cooling water flowrate 

Mf   Make-up seawater flow rate 

R   membrane resistance 

𝑅𝑅𝑚𝑚   intrinsic membrane resistance 

𝑅𝑅𝑐𝑐   cake layer resistance  

𝜋𝜋𝑖𝑖   osmotic pressure of the active layer-support layer interface 

𝜋𝜋𝑎𝑎   osmotic pressure of the active layer surface 

𝜇𝜇   dynamic viscosity 

RR   recovery rate 

α   dimensionless relative applied pressure 

ε   dimensionless relative excess pressure (ε = Pex /π0) 

Pex   excess pressure 



π0   initial osmotic pressure 

N   Number of stages 

Φ   Final relative permeate volume 

ΔPdevice   applied pressure [bar] 

Qf,device    feed flow rate [m3/day] 

𝜂𝜂𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   efficiency 

Ew   energy consumption [kWh/d] 

Qp,sys   total permeate produced from the RO system [m3/d] 

Qp   permeate flow rate 
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