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Doubly nonlocal Fisher�KPP equation:

Front propagation

Dmitri Finkelshtein1 Yuri Kondratiev2 Pasha Tkachov3

June 19, 2019

Abstract

We study propagation over Rd of the solution to a doubly nonlocal
reaction-di�usion equation of the Fisher�KPP-type with anisotropic ker-
nels. We present both necessary and su�cient conditions which ensure
linear in time propagation of the solution in a direction. For kernels with
a �nite exponential moment over Rd we prove front propagation in all
directions for a general class of initial conditions decaying in all directions
faster than any exponential function (that includes, for the �rst time in
the literature about the considered type of equations, compactly suppor-
ted initial conditions).

Keywords: nonlocal di�usion, Fisher�KPP equation, nonlocal non-
linearity, long-time behavior, front propagation, anisotropic kernels, inte-
gral equation

2010 Mathematics Subject Classi�cation: 35K55, 35K57, 35B40

1 Introduction

We will study front propagation of solutions to the equation

∂u

∂t
(x, t) = κ+

∫
Rd
a+(x− y)u(y, t)dy −mu(x, t)− u(x, t)G

(
u(x, t)

)
,

G
(
u(x, t)

)
:= κ`u(x, t) + κn`

∫
Rd
a−(x− y)u(y, t)dy.

(1.1)

Here d ∈ N; κ+,m > 0 and κ`,κn` ≥ 0 are constants, such that

κ− := κ` + κn` > 0;

the kernels 0 ≤ a± ∈ L1(Rd) are probability densities, i.e.
∫
Rd a

±(y)dy = 1.
In order to exclude a trivial long-time behavior of the solution to (1.1),

we assume

κ+ > m. (A1)
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The solution u = u(x, t) describes the local density of a species at the point
x ∈ Rd at the moment of time t ≥ 0. The individuals of the species spread
over the space Rd according to the dispersion kernel a+ and the fecundity rate
κ+. The individuals may die according to both constant mortality rate m and
density dependent competition, described by the rate κ−. The competition may
be local, when the density u(x, t) at a point x is in�uenced by itself only, with the
rate κ`, or nonlocal, when the density u(x, t) is in�uenced by all values u(y, t),
y ∈ Rd, averaged over Rd according to the competition kernel a− with the rate
κn`. For further motivations and derivation of (1.1) see [3,7,9,10,16,22,23,26]

One can rewrite then the equation (1.1) in the reaction-di�usion form

∂u

∂t
(x, t) = κ+

∫
Rd
a+(x− y)

(
u(y, t)− u(x, t)

)
dy

+ u(x, t)
(
β −G

(
u(x, t)

))
,

(1.2)

where β = κ+ −m > 0.
The �rst summand here describes a non-local di�usion generator, see e.g. [2]

(also known as the generator of a continuous time random walk in Rd or of a
compound Poisson process on Rd). As a result, the solution u to (1.2) may
be interpreted as a density of a species which invades according to a nonlocal
di�usion within the space Rd meeting a reaction Fu := u(β − Gu); see e.g.
[8, 24, 28]. We treat then (1.1) as a doubly nonlocal Fisher�KPP equation, see
the introduction to [12] for details.

From (A1) it follows, that the equation (1.1) has two constant stationary
solutions: u ≡ 0 and u ≡ θ, where

θ :=
κ+ −m

κ−
> 0.

Under (A1) the following assumption ensures the comparison principle for the
equation (1.1), see Proposition 2.2 below:

κ+a+(x) ≥ κn`θa−(x), a.a. x ∈ Rd. (A2)

In particular, (A1)�(A2) imply that the inequality 0 ≤ u(x, t) ≤ θ a.e. in x
holds for all t > 0 provided that it holds for t = 0. Note that (A2) is evidently
ful�lled if, say, κn` = 0 or a− = a+.

Let Sd−1 denote the unit sphere in Rd centered at the origin. For an arbitrary
direction ξ ∈ Sd−1, we de�ne

aξ(λ) :=

∫
Rd
a+(x)eλx·ξ dx ∈ (0,∞], λ > 0. (1.3)

Henceforth, by x · ξ we denote the scalar product in Rd. To ensure �nite speed
of the propagation in a given direction, we assume that, for the �xed ξ ∈ Sd−1,

there exists µ = µ(ξ) > 0 such that aξ(µ) <∞. (A3ξ)

For each ξ ∈ Sd−1, we denote

c∗(ξ) =

 inf
λ>0

κ+aξ(λ)−m
λ

, if (A3ξ) holds,

∞, otherwise.

(1.4)
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Consider the set

Υ∗ :=
{
x ∈ Rd | x · ξ ≤ c∗(ξ), ξ ∈ Sd−1

}
. (1.5)

Clearly, Υ∗ is a closed convex subset of Rd. In particular, if (A3ξ) fails for all
ξ ∈ Sd−1, then Υ∗ = Rd.

In the sequel, we denote tA := {tx | x ∈ A} for a measurable set A ⊂ Rd,
and int(A) means the interior of a closed set A ⊂ Rd. Let also Bρ(y) denote the
ball in Rd of the radius ρ > 0 centered at the point y ∈ Rd.

The following theorem is the main result of the paper; it states, informally,
that, for a solution u(x, t) to (1.1) and for any ε > 0, the function u(tx, t)
converges (as t→∞) to θ locally uniformly on the set (1− ε)Υ∗ and converges
to 0 locally uniformly out of the set (1+ε)Υ∗. Moreover, if Υ∗ is bounded, then
both convergences hold uniformly.

Theorem 1.1. Let the conditions (A1)�(A2) hold. Suppose also that

a+ ∈ L∞(Rd), (A4)∫
Rd
|x|a+(x) dx <∞, (A5)

there exists ρ, δ > 0, such that

κ+a+(x)− κn`θa−(x) ≥ ρ for a.a. x ∈ Bδ(0).
(A6)

Let 0 ≤ u0(x) ≤ θ for a.a. x ∈ Rd, and let u = u(x, t) be the solution to (1.1)
on R+ := [0,∞) such that u(x, 0) = u0(x) (see Subsection 2.1 below for details).

1. Let there exist ξ ∈ Sd−1 such that (A3ξ) holds. Let u0 be such that, for
all λ > 0,

esssup
x∈Rd

u0(x)eλx·ξ <∞ (1.6)

for all those ξ ∈ Sd−1 where c∗(ξ) < ∞. Then, for any compact set
C ⊂ Rd \Υ∗,

lim
t→∞

esssup
x∈tC

u(x, t) = 0. (1.7)

If, additionally, the set Υ∗ is bounded (e.g. if (A7) below holds), then
(1.7) holds for any (unbounded) closed set C ⊂ Rd \Υ∗.

2. Let u0(x) ≥ η for a.a. x ∈ Br(x0) with some x0 ∈ Rd and η, r > 0. Then,
for any compact set C ⊂ int(Υ∗),

lim
t→∞

essinf
x∈tC

u(x, t) = θ. (1.8)

Remark 1.2. 1. Besides equation (1.1) is a straightforward nonlocal analo-
gue to the classical Fisher�KPP equation (see a discussion in [12, Intro-
duction]), it can't be covered by the existing in the literature methods and
results even for more simple case of the local reaction (when κn` = 0).
For example, it seems to be a nontrivial problem to check whether the �ow
generated by the equation (1.1) (see Subsection 2.1 below for details) is
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compact, and hence numerous corresponding techniques, see e.g. [20, 21],
can't be applied (cf. also similar discussion in [27, Introduction]). On the
other hand, the results obtained in [27] for a non-homogeneous generali-
zation of the local (1.1), having in the background Weinberger's techni-
que [32], had crucial restriction on the initial condition u0. In particular,
a compactly supported u0 was not allowed at all (even for the considered
in [27] a compactly supported kernel a+). In the present paper the remove
this limitation of Weinberger's approach for initial conditions to the so-
called monostable reaction-di�usion equations. Note also that compactly
supported initial conditions were allowed in [37], however, the technique
proposed there worked for the so-called degenerate reaction only, which
corresponds to G(u) = κ`up with p > 1 in (1.1).

2. Informally, front for (1.1) is a set which separates C ⊂ Rd, where u(tx, t)→
θ, x ∈ C , t → ∞, and O ⊂ Rd, where u(tx, t) → 0, x ∈ O, t → ∞,
cf. e.g. [25,34]. The results of Theorem 1.1 show that any ε-neighborhood
of the boundary of Υ∗ can be considered as a front set.

3. By Proposition 4.2 below, a su�cient condition that Υ∗ is a bounded (and
hence compact) set is that

there exists µd > 0 such that

∫
Rd
a+(x)eµd|x| dx <∞. (A7)

Evidently, (A7) implies (A5). We will show in Remark 4.4, that (A7) is
equivalent to that (A3ξ) holds for all ξ ∈ Sd−1 or just for all ξ ∈ {ei,−ei |
1 ≤ i ≤ d} with an arbitrary orthonormal basic {ei | 1 ≤ i ≤ d} in Rd.

4. Note also that, for the �rst item of Theorem 1.1, it is enough to assume
instead of (A6), that

there exists ρ, δ > 0 such that a+(x) ≥ ρ for a.a. x ∈ Bδ(0). (A8)

Moreover, in Proposition 4.7 below we will enhance (1.7) by proving that
there exist ν = ν(C ) > 0 and D = D(u0,C ) > 0, such that

esssup
x∈tC

u(x, t) ≤ De−νt, t > 0. (1.9)

5. By [15], if u0 is continuous on Rd, then u(·, t) is also continuous on Rd for
all t > 0, and one can replace esssup/essinf in (1.7), (1.8) by max/min,
correspondingly (note that in the second item of Theorem 1.1 we shall
assume then that u0 6≡ 0).

6. Note that the assumption (A2) is redundant for the case of the local
nonlinear part in (1.1), i.e. where κn` = 0. In contrast, if κn` > 0 and (A2)
fails, the bifurcation of the constant solution u ≡ θ is possible, developing
an in�nite family of spatially periodic stationary solutions (see [18] for
more details).

7. Recall that if (A3ξ) fails for all ξ ∈ Sd−1, i.e. if∫
Rd
a+(x)eλx·ξ dx =∞, λ > 0, ξ ∈ Sd−1. (1.10)

then Υ∗ = Rd, i.e. the convergence (1.8) holds for any compact C ⊂ Rd.

4



8. Stress that we actually allow that the initial condition u0 has exponential
decaying, i.e. that (1.6) holds for some appropriate λ = λ(ξ) > 0 only, see
below Remark 1.4 and Subsection 4.1 for details. Up to our knowledge,
this kind of results is new for reaction-di�usion equations.

Theorem 1.1 describes the propagation to all directions. It is based on
the properties of the propagation to each direction, that naturally require less
restrictive assumptions. Namely, one can weaken the assumptions (A5) and
(A8) by assuming that, for a �xed ξ ∈ Sd−1,∫

Rd
|x · ξ| a+(x) dx <∞, (A9ξ)

and
there exist r, ρ, δ > 0 (depending on ξ) such that

a+(x) ≥ ρ for a.a. x ∈ Bδ(rξ).
(A10ξ)

We set

Υ∗(ξ) :=
{
x ∈ Rd | x · ξ ≤ c∗(ξ)

}
, ξ ∈ Sd−1, (1.11)

then, in particular, cf. (1.5),

Υ∗ =
⋂

ξ∈Sd−1

Υ∗(ξ).

Under assumption (A3ξ), we de�ne, see [13] for details,

σξ(a
+) := sup

{
λ > 0

∣∣ aξ(λ) <∞
}
∈ (0,∞].

Under the assumption (A9ξ), we de�ne also

mξ := κ+

∫
Rd
x · ξ a+(x) dx. (1.12)

Theorem 1.3. Let (A1), (A2), (A4) hold. Let ξ ∈ Sd−1 be �xed, and suppose
that (A3ξ), (A9ξ), (A10ξ) hold. Then the following statements hold.

1. (Cf. [13, Theorem 1.2]) There exists a unique

λ∗ = λ∗(ξ) ∈ (0,∞), λ∗(ξ) ≤ σξ(a+),

such that

c∗(ξ) = min
λ>0

κ+aξ(λ)−m
λ

=
κ+aξ(λ∗)−m

λ∗
> mξ. (1.13)

2. Let 0 ≤ u0 ≤ θ be such that (1.6) holds true for all 0 < λ < λ∗(ξ). Let
u be the corresponding solution to (1.1) on R+. Let Oξ ⊂ Rd be an open
set, such that Υ∗(ξ) ⊂ Oξ and δ := dist (Υ∗(ξ),Rd \ Oξ) > 0. Then the
following estimate holds

esssup
x/∈tOξ

u(x, t) ≤ ‖u0‖λ∗,ξe−λ∗δt, t > 0. (1.14)
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Remark 1.4. 1. In other words, the function u(tx, t) converges (when t→∞)
to 0 uniformly on the hyperspace {x · ξ ≥ (1 + ε)c∗(ξ)} for each ε > 0.

2. We will show in Subsection 4.1, that, similarly to the assumptions of
Theorem 1.3, the �rst item of Theorem 1.1 remains true if (1.6) holds for
0 < λ ≤ λ∗(ξ) only (for all those ξ where (A3ξ) holds).

Corollary 1.5 (cf. also [4, 14, 17]). Let (A1) and (A2) hold. Let 0 ≤ u0 ≤ θ
be such that (1.6) holds for all λ > 0. Then the assumption (A3ξ) is necessary
and su�cient to obtain a constant speed of propagation for the corresponding
solution to (1.1) in the direction ξ ∈ Sd−1.

Under (A5), we de�ne, cf. (1.12),

m := κ+

∫
Rd
xa+(x) dx ∈ Rd. (1.15)

By Proposition 4.1 below, if (A1), (A2), (A4)�(A6) hold and if, for some ξ ∈
Sd−1, (A3ξ) holds, then

m ∈ int(Υ∗).

On Figure 1, we sketched a relation between the sets Υ∗(ξ) and Υ∗. The
arrows describe the `motion' of the sets tΥ∗(ξ) and tΥ∗, correspondingly. Note
that the origin may be out of Υ∗,ξ, for some ξ ∈ Sd−1, and hence out of Υ∗.
However, by Remark 4.5 below, for each ξ ∈ Sd−1, the origin must belong to at
least one of the sets Υ∗(ξ) and Υ∗(−ξ). A su�cient condition for the inclusion
0 ∈ intΥ∗ is e.g. a

+(−x) = a+(x), x ∈ Rd (then m = 0).
Figures 2, 3 describe two `projections' of the three-dimensional graph for

u = u(x, t).

Υ∗

m

Υ∗(ξ)

O

c∗(ξ)ξ

ξ

front propagation
in a direction ξ

front propagation

Figure 1: Relationship between the sets Υ∗(ξ) and Υ∗, see [30]
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ξ

u

θ

tc∗(ξ)ξ−tc∗(−ξ)ξ

εtξ−εtξ
εtξ−εtξ

Figure 2: Space-value diagram, see [30]

t(c∗(−ξ)− ε)

t(c∗(−ξ) + ε)

t(c∗(ξ)− ε)

t(c∗(ξ) + ε)

Sd−1 3 ξ

R+t

x = tc∗(−ξ)ξ

x = tc∗(ξ)ξ

u(x, t)→ 0

u(x, t)→ 0

u(x, t)→ θ

tΥ
∗

1

Υ
∗

Figure 3: Space-time diagram, see [30]

As it was mentioned above, the front propagation in a direction ξ ∈ Sd−1 is
deeply related to the minimal speed of traveling wave solutions in the direction ξ.
By a (monotone) traveling wave solution to (1.1) in the �xed direction ξ ∈ Sd−1,
we will understand a solution of the form

u(x, t) = ψ(x · ξ − ct), t ≥ 0, a.a. x ∈ Rd,
ψ(−∞) = θ, ψ(+∞) = 0,

(1.16)

where c ∈ R is called the speed of the wave and a decreasing and right-continuous
function ψ is called the pro�le of the wave.
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Theorem 1.6 (cf. [13, Theorems 1.1�1.3]). In conditions and notations of The-
orem 1.3, the following statements hold.

1. For any c ≥ c∗(ξ), there exists a pro�le ψ = ψc, such that (1.16) de�nes
a solution to (1.1); and for any c < c∗(ξ) a monotone traveling wave
solution to (1.1) of the form (1.16) does not exist.

2. The abscissa of a pro�le ψ∗,ξ corresponding to the traveling wave with the
minimal speed c∗(ξ) coincides with λ∗(ξ), cf. (1.13), namely,

sup

{
λ > 0

∣∣∣∣ ∫
R
ψ∗,ξ(s)e

λs ds <∞
}

= λ∗(ξ).

Note also that, under some additional technical assumptions, see [13, Theo-
rem 1.3], the pro�le ψc corresponding to a speed c ≥ c∗(ξ), c 6= 0 is unique (up
to a shift). The traveling wave with speed c∗(ξ) is asymptitically stable (see
examples in [31]).

On the other hand, if the condition (A3ξ) fails for all ξ ∈ Sd−1, then traveling
waves do not exist at all.

Proposition 1.7. Let the conditions (A1), (A2), (A4)�(A6) hold. Suppose that
(1.10) also holds. Then there does not exist a traveling wave solution of the form
(1.16) to the equation (1.1).

The present paper is a continuation of [12, 13]. They all are based on our
unpublished preprint and thesis [30].

For the case of the local nonlinearity in (1.1), when κn` = 0, the equation
(1.1) was considered, in particular, in [1, 5, 6, 17, 19, 26, 27, 29, 35, 37]. For a
nonlocal nonlinearity and, especially, for the case κ` = 0 in (1.1), see e.g.
[7, 9�11, 14, 16, 25, 36]. For details, see the introduction to [12] and also the
comments above.

For the case κ` = 0, κ+ = κ− = κn`, a+(x) = a−(x) for x ∈ Rd, the
result similar to Theorem 1.1 can be found in [25], where the viscosity solution
technique has been used. If, additionally, d = 1 and the kernels a± decay faster
than any exponential function, one can refer also to [33]. For the case κn` = 0,
see also [27].

The paper is organised as follows. In Section 2, we describe the properies of
the semi-�ow generated by the equation (1.1) and connect Weinberger's scheme
[32] with Theorem 1.6. In Section 3, we study the propagation of a solution
to (1.1) in a �xed direction and prove the second item of Theorem 1.3. In
Subsection 4.1, we �nd su�cient conditions that Υ∗ is a compact and has a non-
empty interior, and we prove the �rst item of Theorem 1.1. In Subsection 4.2,
we extend Weinberger's scheme from discrete to continuous time and prove
(Proposition 4.12) the convergence (1.8) under additional assumption on the
initial condition. Finally, using the hair-trigger e�ect proved early in [15], we
get rid on the latter restriction and prove the second item of Theorem 1.1.

2 Technical tools

2.1 Properties of semi-�ow

By a solution to (1.1) on [0, T ), T ≤ ∞, we will understand the so-called classical
solution, that is a continuous mapping from [0, T ) to the space E := L∞(Rd)
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which is continuously di�erentiable (in the sense of the esssup-norm in E) in t ∈
(0, T ), and satis�es (1.1). We denote by X∞ the vector space of all continuous
mappings from R+ to E.

By [15, Theorem 2.2], for any 0 ≤ u0 ∈ E and for any T > 0, there exists a
unique classical solution u to (1.1) on [0, T ). In particular, u ∈ X∞ is a unique
classical solution to (1.1) on R+ := [0,∞).

Moreover, by [15], if u0 belongs to either of spaces Cb(Rd) or Cub(Rd) of
bounded continuous or, respectively, bounded uniformly continuous functions
on Rd with sup-norm, then u(·, t) belongs to the same space for all t > 0;
cf. (Q1) in Theorem 2.1 below.

For any t ≥ 0 and 0 ≤ f ∈ E = L∞(Rd), we de�ne the continuous semi-�ow
(see [12] for details) as follows

(Qtf)(x) := u(x, t), a.a. x ∈ Rd, (2.1)

where u(x, t) is the solution to (1.1) with the initial condition u(x, 0) = f(x).
We denote,

E+
θ := {u ∈ E | 0 ≤ u ≤ θ}.

Here and in the sequel, we will understand all inequalities between functions
from E almost everywhere only.

Theorem 2.1 ([12, Theorem 1.5]; see also [15, Proposition 5.4]). Let (A1)�(A2)
hold. Let (Qt)t≥0 be the semi-�ow (2.1) on the cone {0 ≤ f ∈ E}. Then, for
each t > 0, Q = Qt satis�es the following properties:

(Q1) Q maps each of sets E+
θ , E

+
θ ∩ Cb(Rd), E

+
θ ∩ Cub(Rd) into itself;

(Q2) let Ty, y ∈ Rd, be a translation operator, given by

(Tyf)(x) = f(x− y), x ∈ Rd,

then
(QTyf)(x) = (TyQf)(x), x, y ∈ Rd, f ∈ E+

θ ;

(Q3) Q0 = 0, Qθ = θ, and Qr > r, for any constant r ∈ (0, θ);

(Q4) if f, g ∈ E+
θ , f ≤ g, then Qf ≤ Qg;

(Q5) if fn, f ∈ E+
θ , fn

loc
==⇒ f , then (Qfn)(x)→ (Qf)(x) for (a.a.) x ∈ Rd;

(Q6) if d = 1, then Q :Mθ(R)→Mθ(R).

Here and below
loc

==⇒ denotes the locally uniform convergence of functions
on Rd (in other words, fn11Λ converge to f11Λ in E, for each compact Λ ⊂ Rd),
and Mθ(R) denotes the set of all decreasing and right-continuous functions
f : R→ [0, θ].

For each 0 ≤ T1 < T2 < ∞, let XT1,T2
denote the Banach space of all

continuous mappings from [T1, T2] to E with the norm

‖u‖T1,T2
:= sup

t∈[T1,T2]

‖u(·, t)‖E .
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For any T > 0, we set also XT := X0,T and consider the subset UT ⊂ XT of all
mappings which are continuously di�erentiable on (0, T ]. Here and below, we
consider the left derivative at t = T only.

The property (Q4) gives the comparison principle for solutions to (1.1). To
formulate a more general result needed for the sequel, consider, for each T > 0
and u ∈ UT ,

(Fu)(x, t) :=
∂u

∂t
(x, t)− κ+(a+ ∗ u)(x, t) +mu(x, t) + u(x, t)

(
Gu
)
(x, t)

for all t ∈ (0, T ] and a.a. x ∈ Rd.

Proposition 2.2 ([12, Proposition 2.8], cf. [15, Theorem 2.3]). Let (A1)�(A2)
hold. Let T > 0 be �xed and u1, u2 ∈ UT be such that, for all t ∈ (0, T ], x ∈ Rd,

(Fu1)(x, t) ≤ (Fu2)(x, t),

0 ≤ u1(x, t) ≤ θ, 0 ≤ u2(x, t) ≤ θ,
0 ≤ u1(x, 0) ≤ u2(x, 0) ≤ θ.

Then, for all t ∈ [0, T ], x ∈ Rd,

0 ≤ u1(x, t) ≤ u2(x, t) ≤ θ.

We will need also a weaker form of (Q5) under weaker assumptions.

Proposition 2.3. Let (A1), (A2) hold. Let (Qt)t≥0 be the semi-�ow (2.1) on
the cone {0 ≤ f ∈ E}. Let T > 0 be �xed. Consider a sequence of functions
un ∈ XT which are solutions to (1.1) with uniformly bounded initial conditions:
un(·, 0) ∈ E+

θ , n ∈ N. Let u ∈ XT be a solution to (1.1) with initial condition
u(·, 0) such that un(x, 0) → u(x, 0), for a.a. x ∈ Rd. Then un(x, t) → u(x, t),
for a.a. x ∈ Rd, uniformly in t ∈ [0, T ].

Proof. Clearly, un(·, 0) ∈ E+
θ implies u(·, 0) ∈ E+

θ . By (Q1), un(·, t), u(·, t) ∈
E+
θ , n ∈ N, for any t ≥ 0. We de�ne, for any n ∈ N,

un(x, 0) := max {un(x, 0), u(x, 0)} , un(x, 0) := min {un(x, 0), u(x, 0)} .

Then, clearly, 0 ≤ un(x, 0) ≤ u(x, 0) ≤ un(x, 0) ≤ θ, n ∈ N, a.a. x ∈ Rd. Hence
the corresponding solutions un(x, t), un(x, t) to (1.1) belongs to E+

θ as well.
By (Q4), one has un(x, t) ≤ u(x, t) ≤ un(x, t), n ∈ N, t ∈ [0, T ], a.a. x ∈ Rd.
In the same way, one gets un(x, t) ≤ un(x, t) ≤ un(x, t) a.e. on Rd × [0, T ].
Therefore, it is enough to prove that un and un converge a.e. to u

Prove that un(x, t)→ u(x, t) for a.a. x ∈ Rd uniformly in t ∈ [0, T ]. For any
n ∈ N, the function hn(·, t) = un(·, t)−u(·, t) ∈ E+

θ , t ≥ 0, satis�es the equation
∂
∂thn = Pnhn with hn,0(x) := hn(x, 0) = un(x, 0) − u(x, 0) ≥ 0, a.a. x ∈ Rd,
where, for any 0 ≤ h ∈ XT ,

Pnh := −mh+ κ+(a+ ∗ h)− κn`h(a− ∗ un)− κn`u(a− ∗ h)− κ`h(u+ un).

For any un and u, Pn is a bounded linear operator on E, therefore, hn(x, t) =
(etPnhn,0)(x), a.a. x ∈ Rd, t ∈ [0, T ]. Since u ≥ 0, one has that, for any
0 ≤ h ∈ XT , (Pnh)(x, t) ≤ (Ph)(x, t), a.a. x ∈ Rd, t ∈ [0, T ], where a bounded
linear operator P is given on E by

Ph := κ+(a+ ∗ h)− κn`u(a− ∗ h)− κ`uh.
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Next, the series expansions for etPn and etP converge in the topology of norms
of operator on the space E. Then, for any n ∈ N, t ∈ [0, T ] and a.a. x ∈ Rd,

hn(x, t) = (etPnhn,0)(x) ≤ (eTPhn,0)(x) =

∞∑
m=0

Tm

m!
Pmhn,0(x), (2.2)

and, moreover, for any ε > 0 and a.a. x ∈ Rd, one can �nd M = M(ε, x) ∈ N,
such that we get from (2.2) that, for t ∈ [0, T ] and a.a. x ∈ Rd,

hn(x, t) ≤
M∑
m=0

Tm

m!
Pmhn,0(x) + εθ, (2.3)

as hn,0 ∈ E+
θ , n ∈ N. Finally, the assumptions of the statement yield that

hn,0(x)→ 0 for a.a. x ∈ Rd. Then, by (2.3) and [12, Lemma 2.2], hn(x, t)→ 0
for a.a. x ∈ Rd uniformly in t ∈ [0, T ]. Hence, un(x, t) → u(x, t) for a.a. x ∈
Rd uniformly on [0, T ]. The convergence for un(x, t) may be proved by an
analogy.

2.2 Around Weinberger's scheme

We will follow the abstract scheme proposed in [32]. Let (A1)�(A2) hold. We
introduce the following notation, cf. (Q1) of Theorem 2.1,

Cθ := E+
θ ∩ Cb(R

d). (2.4)

Consider the set Nθ of all non-increasing functions ϕ ∈ C(R), such that
ϕ(s) = 0, s ≥ 0, and

ϕ(−∞) := lim
s→−∞

ϕ(s) ∈ (0, θ).

It is easily seen that Nθ ⊂ Cθ.
For arbitrary s ∈ R, c ∈ R, ξ ∈ Sd−1, we de�ne the mapping Vs,c,ξ :

L∞(R)→ E as follows

(Vs,c,ξf)(x) := f(x · ξ + s+ c), x ∈ Rd. (2.5)

Fix an arbitrary ϕ ∈ Nθ. For T > 0, c ∈ R, ξ ∈ Sd−1, consider the mapping
RT,c,ξ : L∞(R)→ L∞(R), given by

(RT,c,ξf)(s) := max
{
ϕ(s), (QT (Vs,c,ξf))(0)

}
, s ∈ R, (2.6)

where QT is given by (2.1). Consider now the following sequence of functions

fn+1(s) := (RT,c,ξfn)(s), f0(s) := ϕ(s), s ∈ R, n ∈ N ∪ {0}. (2.7)

By Theorem 2.1 and [32, Lemma 5.1], ϕ ∈ Cθ implies fn ∈ Cθ and fn+1(s) ≥
fn(s), s ∈ R, n ∈ N; hence one can de�ne the following limit

fT,c,ξ(s) := lim
n→∞

fn(s), s ∈ R. (2.8)

Also, by [32, Lemma 5.1], for �xed ξ ∈ Sd−1, T > 0, n ∈ N, the functions
fn(s) and fT,c,ξ(s) are nonincreasing in s and in c; moreover, fT,c,ξ(s) is a lower
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semicontinuous function of s, c, ξ, as a result, this function is continuous from
the right in s and in c. Note also, that 0 ≤ fT,c,ξ ≤ θ. Then, for any c, ξ, one
can de�ne the limiting value

fT,c,ξ(∞) := lim
s→∞

fT,c,ξ(s).

Next, for any T > 0, ξ ∈ Sd−1, we de�ne

c∗T (ξ) := sup{c | fT,c,ξ(∞) = θ} ∈ R ∪ {−∞,∞}, (2.9)

where, as usual, sup ∅ := −∞. By [32, Propositions 5.1, 5.2], one has

fT,c,ξ(∞) =

{
θ, c < c∗T (ξ),

0, c ≥ c∗T (ξ),
(2.10)

cf. also [32, Lemma 5.5]; moreover, c∗T (ξ) is a lower semicontinuous function
of ξ ∈ Sd−1. It is crucial that, by [32, Lemma 5.4], neither fT,c,ξ(∞) nor c∗T (ξ)
depends on the choice of ϕ ∈ Nθ. Note that the monotonicity of fT,c,ξ(s) in s
and (2.10) imply that, for c < c∗T (ξ), fT,c,ξ(s) = θ, s ∈ R.

De�ne now the following set, cf. (2.9),

ΥT,ξ =
{
x ∈ Rd | x · ξ ≤ c∗T (ξ)

}
, ξ ∈ Sd−1, T > 0. (2.11)

Clearly, the set ΥT,ξ is convex and closed.
Recall that, under (A1)�(A2), c∗(ξ), ξ ∈ Sd−1, is given by (1.4).

Proposition 2.4. Let (A1)�(A2) hold. Then, for any ξ ∈ Sd−1, c∗(ξ) < ∞ if
and only if c∗T (ξ) <∞ for all T > 0, and

c∗T (ξ) = Tc∗(ξ), T > 0. (2.12)

As a result, cf. (1.11), (2.11),

ΥT,ξ = TΥ1,ξ = TΥ∗(ξ), T > 0. (2.13)

Proof. Let T > 0 and c∗T (ξ) < ∞. Take any c ∈ R with cT ≥ c∗T (ξ). Then, by
(2.10), fT,cT,ξ 6≡ θ. By (2.6), (2.7), one has

fn+1(s) ≥ (QT (Vs,cT,ξfn))(0), s ∈ R. (2.14)

Since fn(s) is nonincreasing in s, one gets, by (2.5), that, for a �xed x ∈ Rd,
the function (Vs,cT,ξfn)(x) is also nonincreasing in s. Next, by (2.5), (2.8) and
Propositions 2.3,

(QT (Vs,cT,ξfn))(x)→ (QT (Vs,cT,ξfT,cT,ξ))(x), a.a. x ∈ Rd. (2.15)

Note that, by (2.5) and [12, Proposition 3.3],

(QT (Vs,cT,ξfT,cT,ξ))(x) = φ(x · ξ, T ), (2.16)

where φ(τ, t), τ ∈ R, t ∈ R+ solves
∂φ

∂t
(s, t) = κ+(qa+ ∗ φ)(s, t)−mφ(s, t)− κ`φ2(s, t)

− κn`φ(s, t)(qa− ∗ φ)(s, t), t > 0, a.a. s ∈ R,
φ(s, 0) = ψ(s), a.a. s ∈ R.

(2.17)
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with ψ(τ) = fT,cT,ξ(τ +s+ cT ) (note that s is a parameter now, cf. (2.17)), and

qa±(s) :=

∫
{ξ}⊥

a±(sξ + η) dη, s ∈ R,

where {ξ}⊥ := {x ∈ Rd | x · ξ = 0}.
On the other hand, the evident equality

(Vs,cT,ξfT,cT,ξ)(x+ τξ) = fT,cT,ξ(x · ξ + τ + s+ cT ), τ ∈ R

shows that the function Vs,cT,ξfT,cT,ξ is a decreasing function on Rd along the
ξ ∈ Sd−1 as fT,cT,ξ is a decreasing function on R. Then, by [12, Proposition 2.7]
and (2.16), the function Rd 3 x 7→ φ(x · ξ, T ) ∈ [0, θ] is decreasing along the ξ
as well, i.e.

φ(x · ξ + τ, T ) = φ((x+ τξ) · ξ, T ) ≤ φ(x · ξ, T ), τ ≥ 0.

As a result, the function φ(s, T ) is monotone (almost everywhere) in s. Since
fT,cT,ξ(s) was continuous from the right in s, one gets from (2.14), (2.15), that

fT,cT,ξ(s) ≥ (Q̃T fT,cT,ξ)(s+ cT ),

where Q̃t : L∞(R) → L∞(R) is de�ned as follows: Q̃tψ(s) = φ(s, t), s ∈ R,
where φ : R×R+ → [0, θ] solves (2.17) with 0 ≤ ψ ∈ L∞+ (R). Since fT,cT,ξ 6≡ θ,
one has that, by [35, Theorem 5] (cf. the proof of [12, Theorem 1.1]), there
exists a traveling wave pro�le with the speed c. By Theorem 1.6, we have that
c ≥ c∗(ξ), and hence Tc∗(ξ) ≤ c∗T (ξ) <∞.

Let now T > 0 and c∗(ξ) < ∞. Take any c ≥ c∗(ξ) and consider, by
Theorem 1.6, a traveling wave in a direction ξ ∈ Sd−1, with a pro�le ψ ∈Mθ(R)
and the speed c. Then, by (2.5) and (1.16),

(QT (Vs,cT,ξψ))(x) = ψ((x · ξ − cT ) + s+ cT ) = ψ(x · ξ + s).

Choose ϕ ∈ Nθ such that ϕ(s) ≤ ψ(s), s ∈ R (recall that all constructions
are independent on the choice of ϕ). Then, one gets from (2.6) and (Q4) of
Theorem 2.1, that

(RT,cT,ξϕ)(s) ≤ (RT,cT,ξψ)(s) = ψ(s), s ∈ R.

Then, by (2.7) and (2.8), fT,cT,ξ(s) ≤ ψ(s), s ∈ R, and thus (2.10) implies
cT ≥ c∗T (ξ); as a result, c∗T (ξ) ≤ Tc∗(ξ) <∞, that ful�lls the statement.

A developement of Weinberger's scheme crucial for the sequel is the so-called
hair-trigger e�ect. We have proved it for a generalisation of (1.1) in [15]. It is
straightforward to check, cf. [12, Subsection 2.1], that, in our settings, the result
can be read as follows.

Theorem 2.5 (cf. [15, Theorem 2.5]). Let the conditions (A1), (A2), (A4)�
(A6) hold. Let u0 ∈ E+

θ be such that there exist x0 ∈ Rd, η > 0, r > 0, with
u0 ≥ η, for a.a. x ∈ Br(x0). Let u ∈ X∞ be the corresponding classical solution
to (1.1) on R+. Then, for m de�ned by (1.15) and any compact set K ⊂ Rd,

lim
t→∞

essinf
x∈K

u(x+ tm, t) = θ.

In particular, if m = 0 ∈ Rd, then the solution to (1.1) converges to θ locally
uniformly. Our main aim in the rest of the paper is to show that the zone where
the solution to (1.1) becomes arbitrary close to θ (as time grows to ∞) can be
chosen expanding to Rd linearly in time, cf. (4.7) below.
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3 Long-time behavior in a direction

In this Section, we are going to prove the second item of Theorem 1.3. We start
with the following simple observation. Let 0 ≤ u0 ∈ E be an initial condition to
(1.1) and u = u(x, t) ≥ 0 be the corresponding solution. Then, by Duhamel's
principle, u(x, t) ≤ w(x, t), x ∈ Rd, t > 0, where w(x, t) is the solution to the
linear equation

∂w

∂t
(x, t) = κ+

∫
Rd
a+(x− y)w(y, t)dy −mw(x, t) (3.1)

with the same initial condition w(x, 0) = u0(x), x ∈ Rd. We will �nd now an
appropriate upper estimate for the solution to (3.1).

To this end, for any ξ ∈ Sd−1 and λ > 0, consider the following set of
bounded functions on Rd:

Eλ,ξ(Rd) :=
{
f ∈ E

∣∣ ‖f‖λ,ξ := esssup
x∈Rd

|f(x)|eλx·ξ <∞
}
. (3.2)

Evidently, for f ∈ E,

esssup
x∈Rd

|f(x)|eλx·ξ <∞ if and only if esssup
x·ξ≥0

|f(x)|eλx·ξ <∞,

therefore,
Eλ,ξ(Rd) ⊂ Eλ′,ξ(Rd), λ > λ′ > 0, ξ ∈ Sd−1.

Proposition 3.1. Let ξ ∈ Sd−1 and λ > 0 be �xed and suppose that (A3ξ)
holds with µ = λ. Let 0 ≤ u0 ∈ Eλ,ξ(Rd) and let w = w(x, t) be the solution to
(3.1) with the initial condition w(x, 0) = u0(x), x ∈ Rd. Then

‖w(·, t)‖λ,ξ ≤ ‖u0‖λ,ξept, t ≥ 0, (3.3)

where

p = p(ξ, λ) = κ+

∫
Rd
a+(x)eλx·ξ dx−m ∈ R. (3.4)

Proof. First, we note that, for any a ∈ L1(Rd), f ∈ Eλ,ξ(Rd)∣∣(a ∗ f)(x)eλx·ξ
∣∣ ≤ ∫

Rd
|a(x− y)|eλ(x−y)·ξ|f(y)|eλy·ξ dy

≤ ‖f‖λ,ξ
∫
Rd
|a(y)|eλy·ξ dy. (3.5)

Applying (3.5) to a = a+ ∈ L1(Rd) and f = u0 ∈ Eλ,ξ(Rd), and using the
notation (1.3), we will get

‖a+ ∗ u0‖λ,ξ ≤ aξ(λ)‖u0‖λ,ξ.

Iteratively applying (3.5) to a = a+ and f = a+,∗(n−1) ∗ u0 ∈ Eλ,ξ(Rd), n ≥ 2,
where a+,∗(n−1) := a+ ∗ . . .∗a+ (the convolution is taken n−2 times), we obtain

‖a+,∗n ∗ u0‖λ,ξ ≤
(
aξ(λ)

)n‖u0‖λ,ξ.
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Since the operator in the right hand side of (3.1) is bounded in E, we have an
explicit representation for the solution to (3.1), namely,

w(x, t) = e−mtu0(x) + e−mt
∞∑
n=1

(κ+t)n

n!

(
a+,∗n ∗ u0

)
(x), x ∈ Rd, t ≥ 0.

As a result, we obtain

‖w(·, t)‖λ,ξ ≤ e−mt‖u0‖λ,ξ + e−mt
∞∑
n=1

(κ+t)n

n!

(
aξ(λ)

)n‖u0‖λ,ξ,

that is just equivalent to (3.3)�(3.4).

Remark 3.2. It is straightforward to check, cf. [13, Lemma 2.1], that the state-
ment of Proposition 3.1 remains true if (A3ξ) holds for some µ > λ, provided
that we assume, additionally, (A4).

We can prove now the second item of Theorem 1.3.

Proof. Let p∗ := p(ξ, λ∗) be given by (3.4). Let w = w(x, t) be the solution to
(3.1) with the initial condition w(x, 0) = u0(x), x ∈ Rd. By (3.3), (3.2), one has

0 ≤ u(x, t) ≤ w(x, t) ≤ ‖u0‖λ∗,ξ exp
{
p∗t− λ∗x · ξ

}
, a.a. x ∈ Rd. (3.6)

Next, by (2.11) and Proposition 2.4, for any t > 0 and for all x ∈ Rd \ tOξ, one
has x · ξ ≥ tc∗1(ξ) + tδ = tc∗(ξ) + tδ. Then, by (1.13),

inf
x/∈tOξ

(λ∗x · ξ) ≥ tλ∗c∗(ξ) + tλ∗δ

= t
(
κ+

∫
Rd
a+(x)eλ∗x·ξ dx−m

)
+ tλ∗δ = tp∗ + tλ∗δ.

Therefore, (3.6) implies the statement.

Remark 3.3. The assumption u0 ∈ Eλ∗,ξ(Rd) is close, in some sense, to the
weakest possible assumption on an initial condition u0 ∈ E+

θ for the equation
(1.1) to have

lim
t→∞

esssup
x/∈tOξ

u(x, t) = 0, (3.7)

for an arbitrary open set Oξ ⊃ Υ1,ξ, where Υ1,ξ is de�ned by (2.11). Indeed,
take any λ1, λ with 0 < λ1 < λ < λ∗ = λ∗(ξ). By Theorem 1.6, there exists a
traveling wave solution to (1.1) with a pro�le ψ1 ∈ Mθ(R) such that λ0(ψ1) =
λ1. By [13, Theorem 1.3] (with j = 1 as λ1 < λ∗) we have that ψ1(t) ∼ De−λ1t,
t→∞. It is easily seen that one can choose a function ϕ ∈Mθ(R)∩C(R) such
that there exist p > 0, T > 0, such that ϕ(t) ≥ ψ1(t), t ∈ R and ϕ(t) = pe−λt,
t > T . Take now u0(x) = ϕ(x · ξ), x ∈ Rd. We have u0 ∈ Eλ,ξ(Rd) \ Eλ∗,ξ(Rd).
Then, by [12, Proposition 3.3], the corresponding solution has the form u(x, t) =
φ(x·ξ, t). By Proposition 2.2 applied to the equation (2.17), φ(s, t) ≥ ψ1(s−c1t),
s ∈ R, t ≥ 0, where c1 = λ−1

1 (κ+aξ(λ1) −m) > c∗(ξ), cf. [13, formula (1.13)].
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Take c ∈ (c∗(ξ), c1) and consider an open set Oξ := {x ∈ Rd | x · ξ < c}, then
Υ1,ξ ⊂ Oξ ⊂ {x ∈ Rd | x · ξ ≤ c1} =: A1. One has

sup
x/∈tOξ

u(x, t) ≥ sup
x∈tA1\tOξ

φ(x · ξ, t)

≥ sup
ct<s≤c1t

ψ1(s− c1t) = ψ1(ct− c1t) > ψ1(0),

as c < c1 and ψ1 is decreasing. As a result, (3.7) does not hold.
On the other hand, if ψ∗ ∈ Mθ(R) is a pro�le with the minimal speed

c∗(ξ) 6= 0 and if j = 2, cf. [13, Proposition 3.1], then u0(x) := ψ∗(x · ξ) does
not belong to the space Eλ∗,ξ(Rd), and the arguments above do not contradict
(3.7) anymore. In the next remark, we consider this case in more details.

Remark 3.4. In connection with the previous remark, it is worth noting also
that one can easily generalize the second item of Theorem 1.3 in the following
way. Let u0 ∈ Eλ,ξ(Rd) ∩ E+

θ , for some λ ∈ (0, λ∗], and let u ∈ X̃∞ be the
corresponding solution to (1.1). Consider the set Ac,ξ :=

{
x ∈ Rd | x · ξ ≤ c

}
,

where c = λ−1(κ+aξ(λ) −m) cf. [13, formula (1.12)]. Then, for any open set
Bc,ξ ⊃ Ac,ξ with δc := dist (Ac,ξ,Rd \Bc,ξ) > 0, one gets

esssup
x/∈tBc,ξ

u(x, t) ≤ ‖u0‖λ,ξe−λδct. (3.8)

Therefore, if u0(x) = ψ∗(x · ξ), where ψ∗ is as in Remark 3.3 above, then,
evidently, u0 ∈ Eλ,ξ(Rd), for any λ ∈ (0, λ∗). Then, for any open Oξ ⊃ Υ1,ξ with
δ := dist (Υ1,ξ,Rd \ Oξ) > 0 one can choose, for any ε ∈ (0, 1), c1 = c∗(ξ) + δε.
By Theorems 1.3 and 1.6, there exists a unique λ1 = λ1(ε) ∈ (0, λ∗) such that
c1 = λ−1

1 (κ+aξ(λ1) −m). Then u0 ∈ Eλ1,ξ(Rd) and Ac1,ξ ⊂ Oξ, i.e. Oξ may
be considered as a set Bc1,ξ, cf. above. As a result, (3.8) gives (1.14), with the
constant ‖u0‖λ1,ξ < ‖u0‖λ∗,ξ, and with λ∗δ replaced by λ1δ(1− ε). Note that,
clearly, ‖u0‖λ1,ξ ↗ ‖u0‖λ∗,ξ, λ1 ↗ λ∗, ε→ 0.

4 Long-time behavior in di�erent directions

4.1 Convergence to 0

Through this section we will assume that the conditions (A1), (A2), (A4)�(A6)
hold. Let the convex closed set Υ∗ be given by (1.5). De�ne, cf. (2.11),

ΥT =
{
x ∈ Rd|x · ξ ≤ c∗T (ξ), ξ ∈ Sd−1

}
, T > 0.

By (2.11)-(2.13),

ΥT =
⋂

ξ∈Sd−1

ΥT,ξ =
⋂

ξ∈Sd−1

TΥ1,ξ = TΥ1 = TΥ∗, T > 0; (4.1)

in particular, Υ∗ = Υ1.

Proposition 4.1. Let (A1), (A2), (A4)�(A6) hold. Then, cf. (1.15), m is an
interior point of Υ∗.
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Proof. Firstly, if (A3ξ) fails for all ξ ∈ Sd−1 then Υ∗ = Rd and the statement
is trivial. Next, for an arbitrary ξ ∈ Sd−1 such that (A3ξ) holds, we have, by
(1.12) and the inequality in (1.13), that

m · ξ = κ+

∫
Rd
x · ξa+(x) dx = mξ < c∗(ξ).

Therefore, cf. (1.11), m ∈ Υ∗(ξ), ξ ∈ Sd−1. Next, as it was already mentioned,
by [32, Proposition 5.1], the function c∗1(ξ) is lower-semicontinuous in ξ ∈ Sd−1.
Therefore, by (2.12), the function c∗(ξ)−mξ > 0 is lower-semicontinuous on the
compact Sd−1, and hence attains its minimum, which we denote by d0 > 0. As
a result, m · ξ < c∗(ξ) − d0 for all ξ ∈ Sd−1, and therefore, an open ball with
center at m and radius d0 belongs to the interior of Υ∗(ξ), for each ξ ∈ Sd−1.
From this, by (1.5), one gets the statement.

Proposition 4.2. Let (A1), (A2), (A4)�(A7) hold. Then, Υ∗ = Υ1 is a com-
pact.

Proof. First, (A7) implies that (A3ξ) holds for all ξ ∈ Sd−1. Then, by Theo-
rem 1.6, c∗(ξ) < ∞ for all ξ ∈ Sd−1. Next, by (1.12) and Proposition 4.1, for

any orthonormal basis {ei | 1 ≤ i ≤ d} ⊂ Sd−1, m =
d∑
i=1

meiei ∈ int(Υ∗). By

Theorem 1.6, x ∈ Υ∗ implies that, for any �xed ξ ∈ Sd−1, x · ξ ≤ c∗(ξ) and
x · (−ξ) ≤ c∗(−ξ), i.e.

−c∗(−ξ) ≤ x · ξ ≤ c∗(ξ), x ∈ Υ∗, ξ ∈ Sd−1. (4.2)

Then (4.2) implies

|x · ξ| ≤ max
{
|c∗(ξ)|, |c∗(−ξ)|

}
, x ∈ Υ∗, ξ ∈ Sd−1;

in particular, for an orthonormal basis {ei | 1 ≤ i ≤ d} of Rd, one gets

|x| ≤
d∑
i=1

|x · ei| ≤
d∑
i=1

max
{
|c∗(ei)|, |c∗(−ei)|

}
=: R <∞, x ∈ Υ∗,

that ful�lls the statement.

Remark 4.3. Here and in Propositions 4.6, 4.7, the condition (A6) can be weaken
to (A8). As a matter of fact, it is enough to assume that (A10ξ) holds for all
ξ ∈ Sd−1.

Remark 4.4. Since
∫
x·ξ≤0

a+(x)eλx·ξ dx ∈ [0, 1], ξ ∈ Sd−1, λ > 0, we have

the following observation. If, for some ξ ∈ Sd−1, there exist µ± > 0, such
that, cf. (1.3), a±ξ(µ

±) < ∞, i.e. if (A3ξ) holds for both ξ and −ξ, then, for
µ = min{µ+, µ−},∫

Rd
a+(x)eµ|x·ξ| dx =

∫
x·ξ≥0

a+(x)eµx·ξ dx+

∫
x·ξ<0

a+(x)e−µx·ξ dx

≤
∫
x·ξ≥0

a+(x)eµ
+x·ξ dx+

∫
x·(−ξ)>0

a+(x)eµ
−x·(−ξ) dx <∞. (4.3)
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Let now {ei | 1 ≤ i ≤ d} be an orthonormal basis in Rd. Let (A3ξ) holds for 2d
directions {±ei | 1 ≤ i ≤ d} ⊂ Sd−1 and let µi = min{µ(ei), µ(−ei)}, 1 ≤ i ≤ d,
cf. (4.3). Set µ = 1

d min{µi | 1 ≤ i ≤ d}. Then, by the triangle and Jensen's
inequalities and (4.3), one has∫

Rd
a+(x)eµ|x| dx ≤

∫
Rd
a+(x) exp

( d∑
i=1

1

d
µi|x · ei|

)
dx

≤
d∑
i=1

1

d

∫
Rd
a+(x)eµi|x·ei| dx <∞.

Therefore, (A7) is equivalent to that (A3ξ) holds for all ξ ∈ Sd−1.

Remark 4.5. It is worth noting that, by (1.13), (1.12), the following inequality
holds, cf. (4.2),

c∗(ξ) + c∗(−ξ) > mξ + m−ξ = 0.

The following two Propositions prove the �rst item of Theorem 1.1.

Proposition 4.6. Let the conditions (A1), (A2), (A4)�(A6) hold and there
exists ξ ∈ Sd−1, such that (A3ξ) holds. Let u0 ∈ E+

θ be such that (1.6) holds for
all those ξ ∈ Sd−1 where c∗(ξ) <∞. Let u ∈ X∞ be the corresponding classical
solution to (1.1) on R+. Then, for any compact set C ⊂ Rd \ Υ∗, there exist
ν = ν(C ) > 0 and D = D(u0,C ) > 0, such that

esssup
x∈tC

u(x, t) ≤ De−νt, t > 0.

Proof. Since there exists ξ ∈ Sd−1, such that (A3ξ) holds, we will get from (1.5),
that Υ∗ 6= Rd. Therefore,

Υ∗ =
⋂

ξ∈Sd−1:
c∗(ξ)<∞

{
x ∈ Rd | x · ξ ≤ c∗(ξ)

}
.

Then a closed set C ⊂ Rd \Υ∗ satis�es

C ⊂
⋃

ξ∈Sd−1:
c∗(ξ)<∞

{
x ∈ Rd | c∗(ξ) < x · ξ

}
.

Since C is a compact, there exist K ∈ N and ξ1, . . . , ξK ∈ Sd−1, such that
c∗(ξi) <∞, 1 ≤ i ≤ K and

C ⊂
⋃

1≤i≤K

{
x ∈ Rd | x · ξi > c∗(ξi)

}
.

Therefore,

O := Rd \ C ⊃
⋂

1≤i≤K

Υ∗(ξi).

Clearly, O is an open subset of Rd and O ⊃ Υ∗(ξi) for 1 ≤ i ≤ K. By the
assumption on u0 and the condition c∗(ξi) <∞, 1 ≤ i ≤ K, the inequality (1.6)
holds for all ξ = ξi, 1 ≤ i ≤ K.
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Since Υ∗(ξi) is a closed set and C is a compact, we have that

νi := λ∗(ξi) dist (Υ∗(ξi),C ) > 0, 1 ≤ i ≤ K.

The inequality c∗(ξi) < ∞ implies that the condition (A3ξ) holds for ξ = ξi,
1 ≤ i ≤ K. Therefore, by the second item of Theorem 1.3, one gets, for any
1 ≤ i ≤ K,

esssup
x∈tC

u(x, t) = esssup
x/∈tO

u(x, t) ≤ ‖u0‖λ∗(ξi),ξie
−νit ≤ De−νt, t > 0,

where ν := min{νi | 1 ≤ i ≤ K}, D := max{‖u0‖λ∗(ξi),ξi | 1 ≤ i ≤ K}.

Proposition 4.7. In conditions and notations of Proposition 4.6, we assume,
additionally, that the set Υ∗ is bounded (and hence compact). Then (1.9) holds
for any closed set C ⊂ Rd \Υ∗.

Proof. Consider the setM of all subsets from Rd of the following form:

M = Mε,K,ξ1,...,ξK =
{
x ∈ Rd | x · ξi ≤ c∗1(ξi) + ε, i = 1, . . . ,K

}
, (4.4)

for some ε > 0, K ∈ N, ξ1, . . . , ξK ∈ Sd−1. By (4.1) and Proposition 4.1, the set
Υ1 = Υ∗ is bounded and nonempty. Take an arbitrary closed set C ⊂ Rd \Υ∗,
and consider the open set O := Rd \ C ⊃ Υ∗ = Υ1. Then, by [32, Lemma 7.2],
there exist ε > 0, K ∈ N, ξ1, . . . , ξK ∈ Sd−1 and a setM ∈M of the form (4.4),
such that

Υ∗ = Υ1 ⊂M ⊂ O. (4.5)

Choose now

Oξi =
{
x ∈ Rd

∣∣∣ x · ξi < c∗1(ξi) +
ε

2

}
⊃ Υ1,ξi , 1 ≤ i ≤ K.

Then, by (4.5),

Υ∗ = Υ1 =
⋂

ξ∈Sd−1

Υ1,ξ ⊂
K⋂
i=1

Υ1,ξi ⊂
K⋂
i=1

Oξi ⊂M ⊂ O,

and, therefore,

Rd \ O ⊂
K⋃
i=1

(Rd \ Oξi). (4.6)

Denote

νi := λ∗(ξi) dist (Υ1,ξi ,Rd \ Oξi) = λ∗(ξi)
ε

2
, 1 ≤ i ≤ K.

Then, by the second item of Theorem 1.3 and (4.6), one gets, for any t > 0,

esssup
x∈tC

u(x, t) = esssup
x/∈tO

u(x, t) ≤ max
1≤i≤K

esssup
x/∈tOξi

u(x, t) ≤ De−νt,

with ν := min{νi | 1 ≤ i ≤ K}, D := max{‖u0‖λ∗(ξi),ξi | 1 ≤ i ≤ K}.

19



4.2 Convergence to θ

We proof, at �rst, the second item of Theorem 1.1 for uniformly continuous
functions. Namely, we assume that u0 ∈ Cθ ∩Cub(Rd), u0 6≡ 0, cf. (2.4), and we
will prove, under assumptions (A1), (A2), (A4)�(A6) that, for any compact set
C ⊂ int(Υ∗) = int(Υ1),

lim
t→∞

min
x∈tC

u(x, t) = θ. (4.7)

To do this, in Proposition 4.12, we apply results of [32] for discrete time, to
prove (4.7) for continuous time, provided that u0 is separated from 0 on a large
enough set. Then we will use the hair-trigger e�ect (Theorem 2.5), which implies
that u(x, τ) is separated from 0 on an arbitrary large set (shifted by τm) for
big enough τ > 0. Combining these results, we will get (4.7) for an arbitrary
u0 ∈ Cθ ∩ Cub(Rd), u0 6≡ 0. Finally, by the comparison principle, we will get
the second item of Theorem 1.1 for u0 ∈ E+

θ .
We start with the following Weinberger's result (rephrased in our settings).

Note that, under (A1)�(A6), ΥT 6= ∅, T > 0. Indeed, if there exists ξ ∈ Sd−1,
such that (A3ξ) holds, then the result above follows from Proposition 4.1 and
(2.13). Otherwise, Υ∗ = Rd and (2.13) yields the statement.

Lemma 4.8 (cf. [32, Theorem 6.2]). Let (A1), (A2), (A4)�(A6) hold. Let
u0 ∈ Cθ and T > 0 be arbitrary, and QT be given by (2.1) (in particular, QT
satis�es the properties (Q1)�(Q5) of Theorem 2.1). De�ne

un+1(x) := (QTun)(x), n ≥ 0. (4.8)

Then, for any compact set CT ⊂ int(ΥT ) and for any σ ∈ (0, θ), one can choose
a radius rσ = rσ(QT ,CT ), such that

u0(x) ≥ σ, x ∈ Brσ (0), (4.9)

implies

lim
n→∞

min
x∈nCT

un(x) = θ. (4.10)

Remark 4.9. By the proof of [32, Theorem 6.2], the radius rσ(QT ,CT ) is not
de�ned uniquely. In the sequel, rσ(QT ,CT ) means just a radius which ful�lls
the assertion of Lemma 4.8 for the chosen QT and CT , rather than a function
of QT and CT .

Remark 4.10. It is worth noting, that, by (2.1) and the uniqueness of the solution
to (1.1), the iteration (4.8) is just given by

un(x) = u(x, nT ), x ∈ Rd, n ∈ N ∪ {0}. (4.11)

Therefore, (4.10) with T = 1 yields (4.7), for N 3 t→∞, namely,

lim
n→∞

min
x∈nC

u(x, n) = θ, (4.12)

provided that (4.9) holds with rσ = rσ(Q1,C ), C ⊂ int(Υ1).
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Lemma 4.11. Let (A1), (A2), (A4)�(A6) hold. Fix a σ ∈ (0, θ) and a compact
set C ⊂ int(Υ1). Let u0 ∈ Cθ be such that u0(x) ≥ σ, x ∈ Brσ(Q1,C )(0). Then,
for any k ∈ N,

lim
n→∞

min
x∈nkC

u
(
x,
n

k

)
= θ. (4.13)

Proof. Since C ⊂ int(Υ1), one can choose a compact set C̃ ⊂ int(Υ1) such that

C ⊂ int(C̃ ). (4.14)

By (4.11) and Lemma 4.8 (with T = 1), the assumption u0(x) ≥ σ, x ∈
Brσ(Q1,C )(0) implies (4.12). Fix k ∈ N, take p = 1

k ; then choose and �x the

radius rσ
(
Qp, pC̃

)
. By (4.12), there exists an N = N(k) ∈ N, such that

u(x,N) ≥ σ, x ∈ NC ,

Brσ(Qp,pC̃ )(0) ⊂ NC .

Apply now Lemma 4.8, with u0(x) = u(x,N), x ∈ Rd, T = p, and

CT = Cp := pC̃ ⊂ p int(Υ1) = int(Υp),

as, by (4.1), pΥ1 = Υp. We will get then

lim
n→∞

min
x∈npC̃

u(x,N + np) = θ. (4.15)

By (4.14), there exists M ∈ N such that one has(N
n

+ p
)
C ⊂ pC̃ , n ≥M. (4.16)

Therefore, by (4.16), one gets, for n ≥M ,

min
x∈npC̃

u(x,N + np) ≤ min
x∈n(Nn +p)C

u(x,N + np)

= min
x∈(Nk+n) 1

kC
u
(
x, (Nk + n)

1

k

)
≤ θ. (4.17)

By (4.15) and (4.17), one gets the statement.

Now, one can prove (4.7), under an assumption on the initial condition.

Proposition 4.12. Let (A1), (A2), (A4)�(A6) hold. Fix a σ ∈ (0, θ) and a
compact set C ⊂ int(Υ1). Let u0 ∈ Cθ ∩ Cub(Rd) be such that u0(x) ≥ σ,
x ∈ Brσ(Q1,C )(0), and u ∈ X∞ be the corresponding solution to (1.1). Then
(4.7) holds.

Proof. Suppose (4.7) were false. Then, there exist ε > 0 and a sequence tN →
∞, such that min

x∈tNC
u(x, tN ) < θ − ε, n ∈ N. Since tNC is a compact set and,

by (Q1) in Theorem 2.1,

u(·, t) ∈ Cθ ∩ Cub(Rd), t ≥ 0, (4.18)
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there exists xN ∈ tNC , such that

u(xN , tN ) < θ − ε, n ∈ N. (4.19)

Next, by (4.18) and [15, Proposition 5.1], there exists a δ = δ(ε) > 0 such that,
for all x′, x′′ ∈ Rd and for all t′, t′′ > 0, with |x′ − x′′|+ |t′ − t′′| < δ, one has

|u(x′, t′)− u(x′′, t′′)| < ε

2
. (4.20)

Since C is a compact, p(C ) := sup
x∈C
‖x‖ < ∞. Choose k ∈ N, such that 1

k <

δ
1+p(C ) . By (4.13), there exists M(k) ∈ N, such that, for all n ≥M(k),

u
(
x,
n

k

)
> θ − ε

2
, x ∈ n

k
C . (4.21)

Choose N > N0 big enough to ensure tN > M(k)
k . Then, there exists n ≥M(k),

such that tN ∈
[
n
k ,

n+1
k

)
. Hence∣∣∣tN − n

k

∣∣∣ < 1

k
<

δ

1 + p(C )
. (4.22)

Next, for the chosen N , there exists yN ∈ C , such that xN = tNyN . Set t
′ = tN ,

t′′ = n
k , x

′ = xN = tNyN , and x
′′ = n

k yN . Then, by (4.22),

|t′ − t′′|+ |x′ − x′′| =
∣∣∣tN − n

k

∣∣∣(1 + |yN |
)
< δ.

Therefore, one can apply (4.20). Combining this with (4.19), one gets

u
(n
k
yN ,

n

k

)
= u

(n
k
yN ,

n

k

)
− u(tNyN , tN ) + u(xN , tN ) <

ε

2
+ θ − ε = θ − ε

2
,

that contradicts (4.21), as n
k yN ∈

n
kC . Hence the statement is proved.

Now, we are ready to prove the second item of Theorem 1.1.

Proposition 4.13. Let the conditions (A1), (A2), (A4)�(A6) hold. Let u0 ∈
E+
θ be such that there exist x0 ∈ Rd, η > 0, r > 0, with u0(x) ≥ η for a.a. x ∈

Br(x0); and let u ∈ X∞ be the corresponding classical solution to (1.1) on R+.
Then, for any compact set C ⊂ int(Υ∗), the convergence (1.8) holds.

Proof. At �rst, we suppose that u0 ∈ Cθ ∩ Cub(Rd). For u0 ≡ θ, the statement
is trivial. Hence let u0 6≡ θ, u0 6≡ 0. Recall that, (A6) implies (A8).

Let C ⊂ int(Υ1) be an arbitrary compact set. It is well-known, that the
distance between disjoint compact and closed sets is positive; in particular, one
can consider the compact C and the closure of Rd \Υ1. Therefore, there exists
a compact set K ⊂ int(Υ1), such that C ⊂ int(K ). Let δ0 > 0 be the distance
between C and the closure of Rd \K .

Choose any σ ∈ (0, θ) and consider a radius rσ = rσ(Q1,K ) which ful�lls
Proposition 4.12, cf. Remark 4.9. By Theorem 2.5, there exists t1 > 0, such
that

u(x+ t1m, t1) ≥ σ, |x| ≤ rσ.
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We apply now Proposition 4.12 (with C replaced by K ) to the equation (1.1)
with

u0(x) := u(x+ t1m, t1), x ∈ Rd

By (4.7) and the uniqueness arguments, we will have then

lim
t→∞

min
x∈tK

u(x+ t1m, t+ t1) = θ. (4.23)

By (4.23), for any ε > 0, there exists t2 > 0 such that, for all t > t1 + t2 =:
t3 > 0 and for all y ∈ K ,

u
(
(t− t1)y + t1m, t

)
> θ − ε (4.24)

Without loss of generality we can assume that t2 is big enough to ensure

t1 max
x∈C
|x|+ t1|m| < δ0t2. (4.25)

Then, for any x ∈ C and for any t > t3, the vector

y(x, t) :=
tx− t1m
t− t1

is such that

|y(x, t)− x| =
∣∣t1x− t1m∣∣
t− t1

< δ0,

where we used (4.25). Therefore, y(x, t) ∈ K , for all x ∈ C and t > t3, and
hence (4.24), being applied for any such y(x, t), yields

u(tx, t) > θ − ε, x ∈ C , t > t3,

that ful�lls the proof of (4.7) for u0 ∈ Cθ ∩ Cub(Rd).
Let now u0 ∈ E+

θ satisfy the assumptions. Then there exists a function
v0 ∈ Cθ ∩ Cub(Rd) ⊂ E+

θ , v0 6≡ 0, such that u0(x) ≥ v0(x), for a.a. x ∈ Rd.
Next, by Proposition 2.2, u(x, t) ≥ v(x, t), for a.a. x ∈ Rd, and for all t ≥ 0,
where v ∈ X∞ is the corresponding to v0 solution to (1.1). Then, by the proved
above, we will get (4.7) for v, with the same Υ1, cf. (Q1) of Theorem 2.1. As a
result, the evident inequality

min
x∈tC

v(x, t) ≤ essinf
x∈tC

u(x, t) ≤ θ

implies (1.8). The statement is fully proved now.

Now one can prove Proposition 1.7.

Proof of Proposition 1.7. Suppose that, in contrast, for some ξ ∈ Sd−1, c ∈ R,
and ψ ∈Mθ(R), (1.16) holds. Then u0(x) = ψ(x ·ξ) satis�es the assumptions of
the �rst statement. Take a compact set K ⊂ Rd, such that c1 := max

y∈K
y · ξ > c.

Then (1.8) implies

θ = lim
t→∞

essinf
x∈tK

ψ(x · ξ − ct) = lim
t→∞

essinf
y∈K

ψ
(
t(y · ξ − c)

)
= lim
t→∞

ψ
(
t(c1 − c)

)
= 0,

where we used that ψ is decreasing. One gets a contradiction which proves the
second statement.
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Another important application of the second item in Theorem 1.1 is that
there are not stationary solutions u ≥ 0 to (1.1) (i.e. solutions with ∂

∂tu = 0),
except u ≡ 0 and u ≡ θ, provided that the origin belongs to int(Υ∗).

Proposition 4.14. Let (A1)�(A6) hold. If κ` = 0 in (1.1), we assume, addi-
tionally, that there exists r0 > 0 such that

α := inf
|x|≤r0

a−(x) > 0. (4.26)

Let also the origin belong to int(Υ∗). Then there exist only two non-negative
stationary solutions to (1.1) in E, namely, u ≡ 0 and u ≡ θ.

Proof. Since ∂
∂tu = 0, one gets from (1.1) that

u(x) =
±
√
D(x)−

(
m+B(x)

)
κ`

, x ∈ Rd, (4.27)

where

A(x) = κ+(a+ ∗ u)(x), B(x) = κn`(a− ∗ u)(x),

D(x) =
(
m+B(x)

)2
+ 4κ`A(x) ≥ m > 0.

Then, by [12, Lemma 2.1], one easily gets that u ∈ Cub(Rd).
Denote M := ‖u‖ = sup

x∈Rd
u(x). We are going to prove now that M ≤ θ. On

the contrary, suppose that M > θ. One can rewrite (4.27) as follows:

mu(x) + κ`u2(x) + κn`(a− ∗ u)(x)(u(x)− θ)
= (Jθ ∗ u)(x) ≤M(κ+−κn`θ), (4.28)

where
Jθ(x) := κ+a+(x)− θκn`a−(x) ≥ 0,

and hence
∫
Rd Jθ(x) dx = κ+−κn`θ.

Choose a sequence xn ∈ Rd, n ∈ N, such that u(xn) → M , n → ∞.
Substitute xn to the inequality (4.28) and pass n → ∞. Since M > θ and
u ≥ 0, one gets then that (a− ∗ u)(xn)→ 0, n→∞. Passing to a subsequence
of {xn} and keeping the same notation, for simplicity, one gets that

(a− ∗ u)(xn) ≤ 1

n
, n ≥ 1.

For all n ≥ r−2d
0 , set rn := n−

1
2d ≤ r0; then the inequality (4.26) holds, for

any x ∈ Brn(0), and hence

1

n
≥ (a− ∗ u)(xn) ≥ α(11Brn (0) ∗ u)(xn) ≥ αVd(rn) min

x∈Brn (xn)
u(x), (4.29)

where Vd(R) is a volume of a sphere with the radius R > 0 in Rd. Since

V (rn) = rdnVd(1) = n−
1
2Vd(1), we have from (4.29), that, for any n ≥ r−2d

0 ,
there exists yn ∈ Brn(xn), such that

u(yn) ≤ 1

α
√
nVd(1)

.
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Thus u(yn) → 0, n → ∞. Recall that u(xn) → M > 0, n → ∞, however,

|xn − yn| ≤ rn = n−
1
2d , that may be arbitrary small. This contradicts the fact

that u ∈ Cub(Rd).
As a result, 0 ≤ u(x) ≤ θ = M , x ∈ Rd. Let u 6≡ 0. By the third item

in Theorem 1.1, for any compact set C ⊂ int(Υ1), min
x∈tC

u(x) → θ, t → ∞,

as u(x, t) = u(x) now. Since 0 ∈ int(Υ1), the latter convergence is obviously
possible for u ≡ θ only.

Remark 4.15. It is worth noting that, by (2.11), (2.13), and (2.12), the assump-
tion 0 ∈ int(Υ1) implies that c∗(ξ) ≥ 0, for all ξ ∈ Sd−1. It means that all
traveling waves in all directions have nonnegative speeds only.
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