

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:

Computer Methods in Applied Mechanics and Engineering

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa51023

Paper:

Xiao, D. (2019). Error estimation of the parametric non-intrusive reduced order model using machine learning.

Computer Methods in Applied Mechanics and Engineering, 355, 513-534.

http://dx.doi.org/10.1016/j.cma.2019.06.018

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa51023
http://dx.doi.org/10.1016/j.cma.2019.06.018
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Error estimation of the parametric non-intrusive reduced
order model using machine learning

D. Xiaoa,∗

aZCCE, College of Engineering, Swansea University,

Bay Campus, Fabian Way, Swansea SA1 8EN, UK

Abstract

A novel error estimation method for the parametric non-intrusive reduced order model
(P-NIROM) based on machine learning is presented. This method relies on construct-
ing a set of response functions for the errors between the high fidelity full model so-
lutions and P-NIROM using machine learning method, particularly, Gaussian process
regression method. This yields closer solutions agreement with the high fidelity full
model. The novelty of this work is that it is the first time to use machine learning
method to derive error estimate for the P-NIROM. The capability of the new error esti-
mation method is demonstrated using three numerical simulation examples: flow past
a cylinder, dam break and 3D fluvial channel. It is shown that the results are closer
to those of the high fidelity full model when considering error terms. In addition, the
interface between two phases of dam break case is captured well if the error estimator
is involved in the P-NIROM.

Keywords: NIROM; machine learning; Gaussian process regression; error estimation

1. Introduction

Over the past decades, the reduced order modelling method has proven to be a
powerful tool of reducing the dimension of large dynamic systems. Among model
reduction techniques, the proper orthogonal decomposition (POD) is the most widely
used method. POD is capable of representing large systems using a few number of
optimal basis functions and it has been applied successfully to various research and
engineering fields such as modal analysis [1], air pollution [2], mesh optimization [3],
shape optimization problems [4], varying computational domain [5], cardiac electro-
physiology and mechanics [6], porous media [7], shallow water [8, 9, 10], aerospace
design [11] and neutron/photon transport problems [12].

In recent years, non-intrusive reduced order modelling (NIROM) methods become
popular due to the independence of the source code and physical system [13]. There-
fore, the NIROM is easy to modify, maintain and extend to other complicated ap-

∗Corresponding author
Email address: dunhui.xiao@swansea.ac.uk (D. Xiao)

Preprint submitted to Elsevier June 24, 2019

plications. The NIROM also avoids the issues of instability and non-linear ineffi-
ciency of the intrusive reduced order model (IROM) [14, 15]. The methods of im-
proving stability and non-linear efficiency for IROMs can be found in the work of
[16, 17, 18, 19, 20, 21, 22, 23]. Over the past few years, a number of NIROMs have
been presented. Audouze et al. presented a NIROM for nonlinear parametric time
dependent Partial Differential Equations (PDEs) using POD and Radial Basis Func-
tion (RBF) approximation [24]. Xiao et al. presented a number of NIROMs based on
interpolations and deep learning methods [14, 25, 26]. Guo and Hesthaven presented
a non-intrusive data-driven reduced order modelling method [27, 28]. The NIROMs
have been successfully applied into various problems like fluid structure interactions
[29], non-linear problems [30], car crash simulation [31] and compressor blades design
[32].

However, in some operational models, we hope our fast reduced order models are as
accurate as the high fidelity models. In uncertainty quantification or sensitive analysis,
it requires a number of simulations of the high fidelity full model at different parameter
settings to construct the reduced order model (ROM). After constructing the ROM, we
wish to know how accurate the ROM performs. There are a number of error estimation
methods being presented for ROMs. Homescu et al. presented an approach based on
statistical condition estimation and adjoint method [33]. This method defines ranges
of perturbations in the high fidelity full model over which the ROM is still appropri-
ate. Chaudhry et al. used the adjoint method to do posteriori error estimation. In this
method, a hierarchical ROM is used for the adjoint computation to quantify the error of
the finite element (FEM) and ROM solutions [34]. Chaturantabut et al. derived an error
bounds on the state approximations for the POD and Discrete Empirical Interpolation
Method (DEIM) based ROM solutions [35]. Wirtz et al. presented a local Lipschitz
constant estimation method and a A-Posteriori error estimator for ROMs and DEIM
based ROMs respectively [36, 37]. Moosavi et al.[38] introduced multivariate input-
output models to predict the errors of local parametric Proper Orthogonal Decomposi-
tion reduced-order models and used Gaussian processes and artificial neural networks
to approximate them. Stefanescu et al. used these multivariate input-output models
to generate decompositions of one dimensional parametric domains [39]. Alexandrov
et al. presented a multi-fidelity correction method, which makes the solutions of low
fidelity models converge globally to the original high fidelity models [40]. Drohmann
et al. presented a statistical ROMES method for modeling errors introduced by ROMs
[41].

In this work, a set of error functions was constructed to represent the remaining
(residual) errors between the high fidelity full model and P-NIROM using a machine
learning method. The machine learning method has been shown a great success in
a number of areas. In this work, the Gaussian Process Regression (GPR) machine
learning method is used. The GPR captures the uncertainty in the training data directly,
and fits the data accurately when training data is not big [42]. In addition, the GPR is a
probabilistic and non-parametric model, which means it can provide a reliable response
[43]. Firstly, we run the fidelity full model and the P-NIROM separately for different
simulations with different parameters. The P-NIROM is constructed using the method
described in the section 3. After obtaining the solutions of the P-NIROM, the errors
between the P-NIROM and the high fidelity full model can be calculated. The errors

2

(residual values between snapshots of the high fidelity full model and P-NIROM) are
used as the training data of constructing the error functions. After constructing the
error response functions using the GPR method, then we can use them to predict the
errors for any given new simulations with different parameters.

The structure of the paper is as follows: section 2 presents the general paramet-
ric reduced order Partial Differential Equations (PDEs); section 3 briefly describes a
general parametric non-intrusive reduced order model (P-NIROM); section 4 briefly
describes a GPR machine learning method; section 5 derives an error estimator for
P-NIROM using a Gaussian process regression method; section 6 demonstrates the
capability of this method using three numerical examples: flow past a cylinder, dam
break cases and 3D fluvial channel; Finally in section 7, summary and conclusions are
presented.

2. General parametric reduced order PDEs

In this section, a general parametric space-time linear and nonlinear partial differ-
ential equation (PDE) is given, and the parametric ROM is derived. The parametric
space-time linear and nonlinear PDE has a general form of:

F (u(x, t, β), x, t, β) = s(x, t, β), (1)

where u ∈ RD×N denotes a state variable vector including, for example, velocity com-
ponents, pressure, density and etc. D denotes the number of scalars and N the number
of nodes in the computational domain. x denotes a spatial coordinate system. t is the
time and s is a source term. β ∈ RQ is a parameter vector with a dimensional size of Q.

In reduced order modelling, the state variable u can be described as an expansion
of POD basis functions Φ(x, β) = (Φ1, . . . ,Φm, . . . ,ΦM) (m ∈ (1, . . . , M), M is the
number of basis functions and M << N):

u(x, t, β) = Φur, (2)

where ur(t, β) ∈ RM denotes a reduced state variable vector (the superscript r indicates
an operator or variable associated with the ROM). By using a proper orthogonal de-
composition (POD) method, the basis functionsΦ of the variable are derived optimally
from the snapshots sampled at time instants {t1, . . . , ti, . . . , tNt

}:

Φm(x, β) =
Nt
∑

i=1

u(x, ti, β)γm,i, m ∈ (1, · · · , M), (3)

subject to
M
∑

m=1

| < Φm,Φm >L2 |2 = 1, (4)

where < ·, · >L2 denotes the canonical inner product in L2 norm, and γm,i is obtained
via singular value decomposition (SVD):

Bγm = λmγm, (5)

3

where γm = (γm,1, . . . , γm,i, . . . , γm,Nt
) and the matrix B has a form of,

Bk,n =
1
Nt

∫

Ω

u(·, tk, ·)u(·, tn, ·)∗dx, k, n ∈ (1, . . . ,Nt), (6)

where ∗ denotes the transpose andΩ is a space that includes the functions u(·, tk, ·) and
u(·, tn, ·).

The singular values λ = (λ1, . . . , λm, . . . , λM) are listed in a decreasing order. Pro-
jecting Equation (1) onto a reduced space, yields,

ΦTF (Φur(β, x, t), x, t, β) = ΦT s(x, t, β). (7)

The parametric ROM in (7) can be re-formulated as:

F r(ur(β, x, t), x, t, β) = sr(x, t, β). (8)

3. Parametric non-intrusive reduced order modelling (P-NIROM) method

This section describes a general parametric non-intrusive reduced order model (P-
NIROM) method for a general parametric space-time linear and nonlinear PDE. Un-
like the traditional parametric ROM, as described in Equation (8), the work of [26]
presented a P-NIROM, which is independent of the source code of the original phys-
ical full system. The P-NIROM can predict solutions of the simulation given unseen
or different parameters (for example, initial conditions or boundary conditions). The
P-NIROM is constructed based on a number of simulations and each simulation has a
different set of parameters i.e. initial conditions or boundary conditions. The key idea
of P-NIROM is to construct a set of response functions for the parameter space and a
state space separately. The parameters and state space can be approximated using either
Smolyak spare grid interpolation method or Radial Basis Function (RBF) interpolation
method.

The P-NIROM includes offline and online procedures. The offline procedure has
two main procedures: (1) constructing a set of interpolation functions for the paramet-
ric space; (2) constructing a set of response interpolation functions for the state space
(we will use hyper-surfaces in the following paragraphs to represent this). In the first
procedure, a Smolyak sparse grid is used to represent the distribution of the parameters
(can be any varying variables for the model). For each node at the Smolyak sparse
grid, there is a simulation that is run using a parameter set. A set of basis functions can
be obtained from this simulation. In the second procedure, a set of hyper-surfaces are
generated to represent the underlying reduced state system using a radial basis func-
tion interpolation method. The offline process of constructing the P-NIROM can be

4

summarised in Algorithm (1),

Algorithm 1: Offline procedure of constructing the P-NIROM

(i) Determining the parameter space and choose a number of parameter sets using
Smolyak sparse grid;

(ii) Running the high fidelity full model for each parameter set, and each parameter
set is a simulation;

(iii) Calculating a set of basis functions and POD coefficients for each set of
snapshots generated by simulations using SVD;

(iv) Constructing a set of interpolation functions representing the parameter space
using RBF or Smolyak sparse grid interpolation method based on the snapshots
and basis functions;

(v) Constructing a set of hyper-surfaces representing the state using RBF
interpolation method;

In Algorithm (1) step (i), the parameter space includes different varying parameters,
for example, different initial or boundary conditions. One parameter set consists of
a combination of those different varying parameters in the parameter space for each
simulation. The number of parameter sets is equal to the number of Smolyak sparse
grid.

In step (iv), a set of interpolation functions representing the parameter space (P j) is
constructed for POD coefficients and POD basis functions. The interpolation function
can be constructed by the Radial Basis Function (RBF) interpolant. Given a set of G

distinct data points (k j,i)G
i=1, and corresponding data values ζ j,i, the RBF interpolant

P j(k j) for the jth POD coefficient is given by

P j(k j) =
G
∑

i=1

̟ j,i φ j,i(‖k j − c j,i‖), j ∈ {1, 2, · · · , B} (9)

where k j is an independent variable (a parameter set vector) including varying parame-
ters such as varying initial conditions or boundary conditions k j =

{

k j,1, k j,2, · · · , k j,G
}

.
G is the number of varying parameters (dimension of the parameter space). c j is a
vector containing the centre of the jth RBF function. In this work, the centres are
chosen such that c j,i = k j,i. G is the chosen number of Smolyak sparse grid and it is
the number of scatter points for RBF interpolation. B is the number of POD coeffi-
cients or basis functions and φ j,i is the ith point’s Radial Basis Function (RBF) for the
jth POD coefficient. The RBF can be Gaussian, Linear Spline, Multi-Quadratic and
etc. In this work, The RBF is chosen to be a Gaussian function. If we need to use
the interpolant P j(k j) to interpolate a new unseen point k j, we need to solve the right
hand side of Equation (9). This means the expansion coefficients (weights of RBFs)
̟ j,i should be determined. They can be determined from the interpolation conditions
P j(k j,i) = ζ j,i, i ∈ {1, 2, . . . ,G}, which leads to solving the following linear system:

A j̟ j = ζ j, (10)

5

where

A j =



































φ j (‖k1 − k1‖2) φ j (‖k1 − k2‖2) · · ·φ j (‖k1 − kG‖2)
φ j (‖k2 − k1‖2) φ j (‖k2 − k2‖2) · · ·φ j (‖k2 − kG‖2)

...
...

...

φ j (‖kG − k1‖2) φ j (‖kG − k2‖2) · · ·φ j (‖kG − kG‖2)



































, (11)

̟ j = [̟ j,1, · · · , ̟ j,G]T , ζ j = [ζ j,1, · · · , ζ j,G]T . (12)

The matrix A j for the jth POD coefficient is a distance matrix. It is known that
the distance matrix A j based on the Euclidean distance ‖ · ‖2 is always non-singular,
and therefore, the interpolation problem is well-posed [44]. ζ j,G is the target functional
values corresponding to the jth POD coefficients for the simulation set G. For example,
ζ j,1 is the jth POD coefficient associated with the first node at Smolyak sparse grid (the
simulation set 1). They are POD coefficients when calculating the weights for POD
coefficients. ‖ · ‖2 denotes the ℓ2 Euclidean norm. After obtaining the weights̟ j, the
RBF interpolant P j(k j) is known, and we can use it to do interpolation for any given
unseen points.

In Algorithm (1) step (v), a set of hyper-surfaces fm, m ∈ (1, . . . , M), are con-
structed to represent the physical state of the PDEs over the reduced order space:

ur, n+1
m = fm

(

α
r, n

1 , . . . ,αr,n
m , . . . ,α

r, n

M

)

=

Nt−1
∑

nt=0

wm φm,nt
(‖αr,n − cm‖), m ∈ (1, . . . , M),

(13)
where M denotes the number of basis functions. α is the POD coefficient nt, ∈ (0, . . . ,Nt−
1) and Nt is the total number of time levels. cm is a vector containing the centre of the
mth RBF function. In this work, the centres are chosen such that cm = α

r,n. If we need
to use the interpolant fm to interpolate solutions of current time level, the weights wm

have to be determined. The wm are weights in physical state, which are different from
the weights̟ j in the parametric space in Equation (10). The interpolation conditions
for determining them are fm

(

α
r, n

1 , . . . ,α
r, n
m , . . . ,α

r,n

M

)

= α
r, n+1
m , which leads to solving

the following linear system:









































φm

(∥

∥

∥αr,0 − αr,0
∥

∥

∥

2

)

φm

(∥

∥

∥αr,0 − αr,1
∥

∥

∥

2

)

· · ·φm

(∥

∥

∥αr,0 − αr,Nt−1
∥

∥

∥

2

)

φm

(∥

∥

∥αr,1 − αr,0
∥

∥

∥

2

)

φm

(∥

∥

∥αr,1 − αr,1
∥

∥

∥

2

)

· · ·φm

(∥

∥

∥αr,1 − αr,Nt−1
∥

∥

∥

2

)

...
...

...

φm

(∥

∥

∥αr,Nt−1 − αr,0
∥

∥

∥

2

)

φm

(∥

∥

∥αr,Nt−1 − αr,1
∥

∥

∥

2

)

· · ·φm

(∥

∥

∥αr,Nt−1 − αr,Nt−1
∥

∥

∥

2

)













































































w0
m

w1
m

...

w
Nt−1
m





































=





































α
r,1
m

α
r,2
m

...

α
r,Nt
m





































,

(14)
After constructing the P-NIROM, an arbitrary point, representing a new unseen

parameter set, in the Smolyak sparse grid can be given to the P-NIROM to predict the

6

solutions. This online process can be found in Algorithm (2).

Algorithm 2: Online procedure of solving the P-NIROM
Calculate reduced numerical solutions at the current time step (here Nt is the

number of time levels, u is the mean of snapshots):
for n = 1 to Nt do

for m = 1 to M do

(i) Assign a complete set of the reduced solution αr,n = (αr,n

1 , . . . , α
r,n

M
) at previous

time level n into the hyper-surface fm:

fm ← (αr,n

1 , . . . , αr,n
m , . . . , α

r,n

M
)

(ii) Calculate αr,n+1
m at the current time level n + 1 using:

αr, n+1
m = fm

(

α
r, n

1 , . . . , αr, n
m , . . . , α

r, n

M

)

(15)

endfor
Obtain the approximation of the high fidelity solution u at the current time

level n + 1 by projecting αr, n+1 onto the full space using:

un+1 = u +

M
∑

m=1

αr,n+1
m Φm

endfor

4. Gaussian process regression

The Gaussian process regression is used as a machine learning tool to construct a
set of error response functions representing the residual errors between the high fidelity
full model and the P-NIROM. The GPR is a non-parametric model, which assumes that
the data distribution is defined in terms of an infinite set of parameters. Compared to
the parametric model, the GPR depends more on the data points and is robust to such
changes. It can capture more information when given bigger training data, which is
more flexible [45].

The Gaussian process regression predicts the output αre associated to input data k

(varying parameter vector) based on the η sets of training data (η input-output pairs)
S ≡ (k1, α

re
1), (k2, α

re
2), · · · , (kη, α

re
η). The outputs αre are the POD coefficients of the

errors ∆F in Equation (24).
Assuming that the outputs αre

j
are calculated by a latent function g(k) and corrupted

by a mean function µ(k) and a Gaussian noise of constant variance σ2
η,

αre
j = g(k j) + δ j, δ j ∼ N(µ, σ2

η), (16)

where g(k j) is the regression model in k (also known as the trend function). The regres-
sion method aims to make inference about the function g(k). In this work, it is assumed

7

that the observational error δ j is identically and normal independent distributed with
zero mean (µ(k)=0).

Gaussian process regression is a probabilistic and non-parametric Bayesian method.
For any input ki, i ∈ (1, 2, · · ·η), the corresponding vector of function g = [g(k1), · · · , g(kη)]T

has a joint Gaussian distribution:

p(g|ki) = N(0,C), (17)

where 0 means setting the mean of the process to zero. The positive semi-definite
covariance matrix C is governed by the covariance function C: [C]i, j = C(ki, k j) =
E[g(ki)g(k j)]. In this work, a Radial Basis Function (RBF) kernel is used, which is
also known as squared exponential kernel. It is given by

C(ki, k j) = exp(−1
2

d(
ki

l
,

k j

l
)2), (18)

where d denotes the distance. l is a length-scale parameter, which can either be a
scalar or a vector with the same dimensional size with the inputs ki. The predictive
distribution p(αre

∗ |k∗) can be obtained by conditioning on the training outputs:

p(αre
∗ |k∗) = N(µ∗, σ2

∗), (19)

µ∗ = C(k∗, k)(C(k, k)+ σ2
nI)−1αre (20)

σ2
∗ = C(k∗, k∗) − σ2

nI − C(k∗, k)(C(k, k)+ σ2
n I)−1

C(k, k∗) (21)

where k and αre are the input training data vector and and output training data vector
respectively. k∗ and αre

∗ are the input and output test data vectors respectively. C(k∗, k)
denotes a η×η∗ covariance matrix evaluated at all pairs of η training datasets and η test
datasets, and this is similarly true for values of C(k, k), C(k∗, k) and C(k∗, k∗). I is the
η × η identity. The hyper-parameters in covariance functions determine how quickly
covariances decay with distances between inputs.

During the training process of Gaussian process regression, suitable covariance
functions and parameters must be chosen. The Gaussian process regression model
can be trained by performing Bayesian inference, that is, maximising the logarithmic
marginal likelihood, this leads to the minimisation of the negative logarithmic poste-
rior:

L(σ2|C) =
1
2
αreT (C + σ2I)−1αre +

1
2

log|C + σ2I| − logL(σ2) − logL(C) (22)

The hyper-parameters can be obtained by performing partial derivative of Equation
(22) with respect to σ2 and C. The log-marginal-likelihood (LML) can be maximised
by a gradient-based search method [46, 47]. As the optimisation of the LML may
have an issue of local minima, however, it is usually not a big issue with few hyper-
parameters [48]. In addition, it is advised that to start from several random positions in
the hyper-parameter space to avoid the local minima problem [49].In this work, scikit-
learn machine learning library is used. In Keras, when performing the optimisation, the
first run is carried out starting from the kernel’s initial hyper-parameter values. In order
to avoid multiple local optimal, the subsequent runs in Keras library are undertaken
from randomly chosen hyper-parameter values with a range of allowed values [50].

8

5. Error estimation for P-NIROM using Gaussian process regression

In this section, an error estimator for P-NIROM is derived using the Gaussian pro-
cess regression method. The essence of the method lies in constructing a set of error
response functions f re approximating the remaining (residual) errors ∆F between the
high fidelity full model and the P-NIROM.

∆F = F f ull − FP−NIROM , (23)

where F f ull and FP−NIROM denote solutions of the high fidelity full model and P-
NIROM. There are two types of error in P-NIROM: (i) error from the POD basis
functions; (ii) error from the parametric interpolation method. Both of these errors are
absorbed in f re. The process of deriving an error estimator function using Gaussian
process regression machine learning method can be summarised in algorithm 3.

Algorithm 3: Deriving error estimator functions

(1) Running a number of simulations for different parameter sets using high fidelity
full model;

(2) Constructing a P-NIROM using the method described in section 3.

(3) Running a number of simulations for different parameter sets using P-NIROM;

(4) Calculating errors (∆F) between the high fidelity full model and P-NIROM for
each simulation;

(5) Calculating the POD basis functions and POD coefficients of errors (∆F) using
the POD method.

(6) Constructing a set of error response functions f re to represent the errors using
machine learning method: Gaussian process regression.

(7) For a given unseen set of parameters, estimate the errors of P-NIROM using the
error functions f re.

(8) For a given unseen set of parameter kun, calculate the solutions using P-NIROM
and update the solutions by considering the errors.

The errors (∆F) in algorithm 3 step (4) are essentially a set of residual snapshots,
and therefore have the same dimensional size N with the full model. In order to reduce
the intensive computational cost of calculating the errors for a new simulation with a
different parameter set, a P-NIROM is constructed using the residual snapshots ∆F. A
set of basis functions φre = (φre

1 , · · · , φre
Q

) and POD coefficients αre = (αre
1 , · · · , αre

Q
)

can be obtained by projecting the ∆F in the full space into a reduced space. The errors
(∆F) can be represented as:

∆F = ψ
re
+

Q
∑

j=1

αre
j φ

re
j , (24)

9

where ψ
re

is the mean of snapshots of ∆F. αre
j

is the POD coefficients of errors (∆F).
φre

j
is the POD basis functions of ∆F and Q is the number of basis functions. The

POD basis functions φre
j

are generated from the residual snapshots ∆F considering
all of the training simulation sets. This set of global POD basis functions are used
for calculating the training POD coefficients. A set of error response functions f re is
constructed for each POD coefficients αre

j
using GPR machine learning method. Once

the response functions are constructed, then POD coefficients of the new simulation
can be predicted by the response functions. The error snapshots of the new simulation
can be obtained by projecting the POD coefficients back into the full space using the
global POD basis functions φre

j
.

In algorithm 3, step (6), the training datasets for constructing the response func-
tions f re are the distribution of parameter sets and POD coefficients of the ∆F (∆F is
the errors between the high fidelity full model and P-NIROM for each simulation). For
each single POD coefficient αre

1, j, a GPR network is constructed and it has G sets of
training data: (k1, α

re
1, j), (k2, α

re
2, j), · · · , (kG, α

re
G, j

). One single training sample for GPR
network, for example k1, is (k1, k2, · · · , kG). The target (output) for this single train-
ing sample is αre

1 , for example. The inputs and outputs that are used to construct the
f re

j
,∀ j ∈ {1, 2, . . . , B} using GPR are:

input: k =
(

k1, k2, . . . , kG
)

(25)

output: αre
j , (26)

We have B pairs of inputs and outputs for determining each of the B error response
functions, f re

j
. This involves training of the GPR. The calculation of basis functions

for the error snapshots ∆F and the GPR network training are offline procedures, which
means they are precomputed. After obtaining the error response functions, f re

j
, we can

use them to calculate the POD coefficients for any new unknown parameter sets using
the Equation (27) below,

αkun

j = f re
j (kun) = f re

j (kun
1 , kun

2 , . . . , kun
G), ∀ j ∈ {1, 2, . . . , B} (27)

where kun is the unknown new parameter set, and αkun

j
is the POD coefficient need to

be predicted associated with the unknown new parameter set.
In algorithm 3, step (8), the final solutions will consider an additional error term,

F f inal = FP−NIROM + ∆F = FP−NIROM + ψ
re
+

Q
∑

j=1

αre
j φ

re
j (28)

The POD coefficients and basis functions are obtained by the Proper Orthogonal De-
composition method, which involves a singular value decomposition of matrix E of
errors (∆F) between the high fidelity full model and P-NIROM.

E = UΣVT . (29)

The U and V are the matrices containing the orthogonal vectors for EET and ETE,
respectively and Σ is a diagonal matrix with a size of N × O consisting of singular
values λ. The POD basis functions are defined to be [51],

φi = EV:,i/
√
λi, for i ∈ {1, 2 . . .O}, (30)

10

Figure 1: Case 1: computational domain of flow past a cylinder.

An optimal set of functions corresponding to the largest singular values are chosen to
approximate the snapshot matrix E. Thus, using POD method, the ∆F can be expressed
by, ∆F = ψ

re
+
∑Q

j=1 α
re
j
φre

j
.

6. Illustrative numerical examples

The error estimation method based on machine learning has been implemented in
an advanced three-dimensional unstructured finite element mesh fluid model (Fluidity)[52].
The Fluidity model solves the Navier-Stoke and accompanying field equations on a 3D
finite element mesh. The Fluidity model is used to generate a number of snapshots for
different varying parameter sets, for example, different initial velocity, initial pressure.
And the results generated by the Fluidity model are also used to be compared with the
results of new presented method. Lapack, scikit-learning and Keras library are used to
perform SVD and Gaussian Regression Process [53, 54, 50].

6.1. Case 1: flow past a cylinder

In the first example, a 2D flow past a cylinder case is used to demonstrate the
capability of the newly present error estimation method. The computational domain of
the flow past a cylinder case is given in Figure 1. The domain has a rectangle size of
2.2 × 0.41 and a cylinder with a radius of 0.05 is centered at the point (0.2, 0.2). The
units are non-dimensional. An inlet velocity is given in the left side of the domain and
drives the fluid flows from the left and to the right side. The open boundary condition
is applied to the right side of the domain and through the right side of the domain. No
slip and zero outward flow conditions are specified at the upper and lower edges and
the Dirichlet boundary conditions are applied to the cylinder’s wall. The simulation
was carried out using Fluidity during the time period [0, 6] with a time step size of
0.01. In this example, 300 snapshots were taken at an equal time interval of ∆t = 0.02
to construct the ROM. The number of nodes in the computational domain is 3213.

The parameter space in this example includes two variables: the inlet velocity
k1 and viscosity k2. In this case, each parameter point k has two variables, the in-
let velocity k1 and viscosity k2, that is ki =

{

ki,1, ki,2
}

. A number of random points
(k1, k2, · · · , kG) were generated within the domain (0.45 6 k1 6 0.55, 0.333 × 10−4 6

k2 6 1.000 × 10−4).
Table 1 lists a combination of two variables (the inlet velocity k1 and viscosity k2)

for the case of the flow past a cylinder - labelled A1-A20 are the training parameter
points. In table 1, k1 and k2 denote the inlet velocity and viscosity respectively.

11

We run Fluidity to generate 20 simulations (A1-A20), and then run NIROM for
each simulation. After obtaining the solutions from the high fidelity full model and
NIROM, the errors between them can be calculated. We treated those errors as residual
snapshots for constructing a Residual Parametric NIROM (RP-NIROM). A set of basis
functions and POD coefficients can be obtained by projecting the residual snapshots
into a reduced space by POD method. We then use the POD coefficients and parameter
sets in Table 1 to train the GPR network. The inputs of the GPR network are the
parameter sets and the output of the GPR is a POD coefficient from the complete set of
POD coefficient at a time level, see Equations (25) and (26). In this case, the size of the
training set for each POD coefficients is 20. After training, the GPR networks can be
used to predict the POD coefficients of any unseen parameter set. After obtaining the
POD coefficients of the new unseen parameter set, the errors ∆F of the simulation with
the new parameter set can be obtained by projecting the POD coefficients back into the
full space by Equation (24). After obtaining the ∆F, we can obtain the final results by
absorbing the ∆F into the P-NIROM.

A new untrained parameter point (k1 = 0.520, k2 = 0.800×10−4) - labelled T1 is
chosen to demonstrate the capability of the Residual parametric NIROM (RP-NIROM).
In the following texts, RP-NIROM will be used to denote the P-NIROM considering
remaining errors between the high fidelity full model and P-NIROM.

Table 1: Case 1: a list of combination of two variables for the flow past a cylinder (parameter I k1: inlet
velocity; parameter II k2: viscosity)

Cases k1 k2 Reynolds cases k1 k2 Reynolds
A1 0.4800 0.800×10−4 1200 A11 0.515 0.800×10−4 1288
A2 0.5000 0.650×10−4 1538 A12 0.450 0.350×10−4 2571
A3 0.4500 0.650×10−4 1384 A13 0.550 0.350×10−4 3143
A4 0.5000 0.500×10−4 2000 A14 0.500 0.800×10−4 1250
A5 0.5500 0.650×10−4 1692 A15 0.450 1.000×10−4 900
A6 0.5000 0.350×10−4 2857 A16 0.550 1.000×10−4 1100
A7 0.5000 1.000×10−4 1000 A17 0.500 0.450×10−4 2222
A8 0.4250 0.650×10−4 1308 A18 0.500 0.900×10−4 1111
A9 0.5354 0.650×10−4 1647 A19 0.480 0.500×10−4 1920

A10 0.2354 0.650×10−4 724 A20 0.515 0.500×10−4 2060
T1 0.520 0.800×10−4 1300

Figure 3 shows the singular values and logarithmic singular values of a flow past
a cylinder case: k1 = 0.450, k2 = 1.000×10−4 (the sample training case A15 in Ta-
ble 1). The figure provides a criterion of choosing number of POD basis functions.
The larger number of POD basis functions is chosen, the more accurate results of
NIROM can be obtained. In this work, 12 basis functions were chosen to construct
the P-NIROM and demonstrate the capability of the RP-NIROM. After obtaining the
solutions of P-NIROM, the residual solution errors between the high fidelity full model
and P-NIROM can be calculated. And those solution errors constitute the residual error
snapshots. There are 20 training sets, and each training set has 300 residual error snap-
shots. Therefore, there are 6000 residual error snapshots in total. In order to reduce

12

the dimensional size, POD method was used to generate a reduced representation of
those residual solution error snapshots. 12 POD basis functions were generated from
those residual error snapshots. The first, second, third, 7th, 9th and 12nd POD basis
functions generated from the residual error snapshots are given in Figure 13. The figure
shows us the energy captured by the basis functions from the residual error snapshots.
The singular values and logarithmic singular values of the residual error snapshots are
given in Figure 4. It provides a criterion of choosing number of POD basis functions
for the residual error snapshots. The singular values in Figure 4 decrease slower than
those in Figure 3. As such, for the residual error snapshots, a larger number of POD
basis functions is needed to be chosen.

The predicted POD coefficients of the residual error snapshots (∆F) using GPR
is compared with the true values (standard ROM), in Figure 5, which shows the first
and second POD coefficients from the true and solutions predicted using GPR. 80% of
the data is used as the training, while the remaining 20 % is used for cross validation.
After projecting the POD coefficients back into the full space, the predicted errors using
GPR can be obtained. Figure 6 shows exact ∆F results (top) and predicted ∆F using
GPR (bottom). It can be seen that the predicted solutions of ∆F have close agreement
with exact ∆F and the GPR predicts well using training datasets with a moderate size.
This is an advantage of Gaussian-process kernel, which converges well even using a
moderately sized set of training points [41]. In order to see the performance of GPR
prediction, the prediction errors of all nodes in the computational domain is considered.
The prediction errors of GPR is analysed using root-mean-square error (RMSE) and
correlation coefficients. The correlation coefficient (CC) is defined as

CC(ϕ(t), ϕo(t)) =
cov(ϕ(t), ϕo(t))
σϕ(t)σϕo(t)

=
E(ϕ(t) − µϕ(t))(ϕo(t) − µϕo(t))

σϕ(t)σϕo(t)
. (31)

where µϕ(t) and µϕo(t) are expected values; σϕ(t) and σϕo(t) are standard deviations; ϕi(t)
and ϕo,i(t) denote the predicted solution and the exact solution at node i and time t,
respectively; The RMSE is defined as

RMSE(t) =

√

∑N
i=1(ϕi(t) − ϕo,i(t))2

N
, (32)

Figure 7 shows RMSE and correlation coefficients of predicted GPR results. The
RMSE shows that the predicted error of GPR is small and the the correlation coef-
ficients are very closer to 1, which indicates that the predicted results using GPR are
strongly associated to the exact solutions.

Figure 8 shows velocity solutions obtained from the high fidelity full model, P-
NIROM and RP-NIROM with 12 POD basis functions at t = 3s and t = 5s. As shown
in the figure, the results of RP-NIROM are closer to the high fidelity full model than
those of P-NIROM. In order to see the difference clearly of three models (high fidelity
full model, P-NIROM, RP-NIROM), velocity solutions from those three models at a
particular node (see the yellow point in Figure 11) within the domain (x = 0.49111, y =
0.29193) are shown in Figure 9. Again, it shows that the RP-NIROM performs better
than P-NIROM.

13

(a) First basis function (b) Second basis function

(c) Third basis function (d) Seventh basis function

(e) Tenth basis function (f) Twelfth basis function

Figure 2: Case 1: the figures displayed above show the first, second, third, seventh, tenth and twelfth POD
basis functions of the residual errors between the high fidelity full model and P-NIROM.

0 10 20 30 40
NUMBER OF POD BASES

0

100

200

300

400

500

600

S
IN

G
U

L
A

R
 V

A
L

U
E

S

0 10 20 30 40 50
NUMBER OF POD BASES

0

0.5

1

1.5

2

2.5

3

L
O

G
A

R
IT

H
M

IC
 S

IN
G

U
L

A
R

 V
A

L
U

E
S

(a) Singular values (b) Logarithmic singular values

Figure 3: Case 1: The figure shows the singular values and logarithmic singular values of the test case: k1 =

0.450, k2 = 1.000×10−4 .

The error analysis is carried out by RMSE and correlation coefficients considering
all nodes in the computational domain. In Figure 10, it shows the RMSE and correla-
tion coefficients of test case: k1 = 0.520, k2 = 0.800×10−4. As shown in the figure, the
results of P-NIROM are improved by considering the residual errors.

14

0 10 20 30 40 50
NUMBER OF POD BASES

0

5

10

15

S
IN

G
U

L
A

R
 V

A
L

U
E

S

0 10 20 30 40 50
NUMBER OF POD BASES

0

0.5

1

1.5

L
O

G
A

R
IT

H
M

IC
 S

IN
G

U
L

A
R

 V
A

L
U

E
S

(a) Singular values (b) Logarithmic singular values

Figure 4: Case 1: the figures displayed above show the singular values and logarithmic singular values of
errors between the high fidelity full model and P-NIROM from test case: k1 = 0.520, k2 = 0.800×10−4 .

0 50 100 150 200 250 300
Index of time level

-2

-1

0

1

2

P
O

D
 c

o
ef

fi
ci

en
t

True
GPR

0 50 100 150 200 250 300
Index of time level

-2

-1

0

1

2

P
O

D
 c

o
ef

fi
ci

en
t

True
GPR

(a) The first POD coefficient (b) The second POD coefficient

Figure 5: Case 1: Comparisons between the true and predicted values using GPR of the first and second
POD coefficients (the black line: true, the red dash line: GPR.

Figure 6: Case 1: The figure shows the ∆F results from exact solutions and predicted solutions using GPR.
Top: standard ROM; Bottom: GPR

15

0 50 100 150 200 250 300
Index of time levels

0.008

0.01

0.012

0.014

0.016

0.018

0.02

R
M

S
E

0 50 100 150 200 250 300
Index of time levels

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

C
o

rr
el

at
io

n
 c

o
ef

fi
ci

en
ts

(a) RMSE of GPR prediction. (b) correlation coefficients of GPR prediction.

Figure 7: Case 1: The figure shows the RMSE and correlation coefficients of GPR prediction for ∆F.

(a) Full model,t = 3s (b) Full model, t = 5s

(c) P-NIROM with 12 basis functions (d) P-NIROM with 12 basis functions

(e) RP-NIROM with 12 basis functions (f) RP-NIROM with 12 basis functions

Figure 8: Case 1: the figures displayed above show velocity solutions obtained from the high fidelity full
model, P-NIROM and RP-NIROM with 12 POD basis functions at t = 3s and t = 5s.

16

0 1 2 3 4 5 6
Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

V
el

o
ci

ty

Full model
P-NIROM with 12 basis functions
RP-NIROM with 12 basis functions

Figure 9: Case 1: Comparison of the velocity solutions at a particular node within the domain (x = 0.49111,
y = 0.29193).

0 1 2 3 4 5 6
Time (s)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

R
M

S
E

RP-NIROM with 12 basis functions
P-NIROM with 12 basis functions

0 1 2 3 4 5 6
Time (s)

0.5

0.6

0.7

0.8

0.9

1

C
o
rr

el
at

io
n
 c

o
ef

fi
ci

en
ts

P-NIROM with 12 basis functions
RP-NIROM with 12 basis functions

(a) RMSE (b) Correlation coefficient

Figure 10: Case 1: The figure shows the RMSE and correlation coefficients from P-NIROM and RP-NIROM
for the test case: k1 = 0.520, k2 = 0.800×10−4 .

17

6.2. Case 2: water dam break

The second example is a dam break problem, which has a collapsing column of
liquid, normally water, within a vacuum or atmosphere. In this example, a reservoir of
water is held behind a barrier that separates the water from the rest of the tank. There
is a cylinder inside the tank. The barrier is then instantaneously removed and the water
column collapses due to the gravity (g=9.81)[55, 56]. The computational domain of
the dam break case is given in figure 11. The domain has a rectangle size of 1 × 1 and
a cylinder with a radius of 0.1 is centered at the point (0.5, 0.125). Dirichlet boundary
condition was specified at the bottom, left and right side. The initial velocity of water
is 0. The simulation was carried out using Fluidity during the time period [0, 7.5] with
a time step size of 0.0001. In this example, 150 snapshots were taken at an equal time
interval of ∆t = 0.05 to construct the ROM. The number of nodes in the computational
domain is 4625. The parameter space in this example is the initial height of water. 12
different initial water heights between 0 and 1 were chosen to run the Fluidity, see Table
2. Those 12 simulations constitute the training data of the P-NIROM. Each simulation
has 150 snapshots. A new untrained initial water height 0.55 is chosen to demonstrate
the capability of the RP-NIROM. This example also shows the RP-NIROM’s capability
of interface capturing.

Table 2: Case 2: a list of cases (parameter I k1: initial height of water)

Cases k1 Cases k1 cases k1 Cases k1

A1 0.1 A4 0.35 A7 0.6 A10 0.9
A2 0.2 A5 0.4 A8 0.7 A11 0.95
A3 0.3 A6 0.5 A9 0.8 A12 1
T1 0.55

The singular values and logarithmic singular values of the training case A6 (k1 =

0.5) in Table 2 in order of decreasing magnitude are presented in Figure 12. The figure
provides a criterion of choosing number of POD basis functions for this case. In this
work, 48 basis functions were chosen to construct the P-NIROM and demonstrate the
capability of the RP-NIROM.

After obtaining the P-NIROM, the solution errors between the high fidelity full
model and P-NIROM can be calculated. And those solution errors constitute the resid-
ual error snapshots. In order to reduce the dimensional size, POD method was used
to generate a reduced representation of the residual solution errors. Figure 13 shows
the first, second, third, 7th, 9th and 12nd POD basis functions of the residual errors
between the high fidelity full model and P-NIROM. It can be seen that those basis
functions contain more information around the interface area (interface between the
water and the air) than other areas. Generally, larger number of basis functions are
required to capture the interface area. In this work, the error estimator is considered
into the P-NIROM in order to capture the more details of the interface area. The er-
ror estimator is constructed by the GPR networks. The GPR networks are trained for
each POD coefficients of the new case with new different parameter sets. The size of
the training set for each POD coefficient in this case is 12. Figure 14 shows the sin-
gular values and logarithmic singular values of the residual error solutions in order of

18

Figure 11: Case 2: Computational domain of water height = 0.9.

19

0 20 40 60 80
NUMBER OF POD BASES

0

100

200

300

S
IN

G
U

L
A

R
 V

A
L

U
E

S

0 20 40 60 80
NUMBER OF POD BASES

0

0.5

1

1.5

2

2.5

3

L
O

G
A

R
IT

H
M

IC
 S

IN
G

U
L

A
R

 V
A

L
U

E
S

(a) Singular values (b) Logarithmic singular values

Figure 12: Case 2: The figure shows the singular values and logarithmic singular values of training case (A6)
in Table 2: water height = 0.5.

decreasing magnitude.
Figure 15 shows the solutions obtained from the high fidelity full model, P-NIROM

and RP-NIROM with 48 basis functions at t = 0.05s and t = 0.125s. As shown in the
figure, the results obtained from both P-NIROM and RP-NIROM are close to those of
the high fidelity full model. In order to see the difference, the volume fraction solutions
at a particular node (see the pink point in Figure 11) within the computational domain
(x = 0.32289, y = 0.34007) are given in Figure 16. As shown in the figure, the P-
NIROM considering error estimate (RP-NIROM) perform better than P-NIROM.

20

(a) First basis function (b) Second basis function

(c) Third basis function (d) 7th basis function

(e) 9th basis function (f) 12nd basis function

Figure 13: Case 2: the figures displayed above show the first, second, third, 7th, 9th and 12nd POD basis
functions of the residual errors between the high fidelity full model and P-NIROM.

21

0 20 40 60 80
NUMBER OF POD BASES

0

1

2

3

4

5

S
IN

G
U

L
A

R
 V

A
L

U
E

S

0 20 40 60 80
NUMBER OF POD BASES

-0.2

0

0.2

0.4

0.6

S
IN

G
U

L
A

R
 V

A
L

U
E

S

(a) Singular values (b) Logarithmic singular values

Figure 14: Case 2: the figures displayed above show the singular values and logarithmic singular values of
errors between the high fidelity full model and P-NIROM from the test case: water height = 0.5.

22

(a) Full model, t=0.05 (b) Full model, t=0.125

(c) P-NIROM, t=0.05 (d) P-NIROM, t=0.125

(e) RP-NIROM, t=0.05 (f) RP-NIROM, t=0.125

Figure 15: Case 2: the figures displayed above show the solutions obtained from the high fidelity full model,
P-NIROM and RP-NIROM with 48 basis functions at t=0.05 and t=0.125.

23

0 2 4 6
Time

0

0.2

0.4

0.6

0.8

1

V
el

o
ci

ty

Full model
P-NIROM with 64 basis function
RP-NIROM with 64 basis functions

Figure 16: Case 2: Comparison of the volume fraction solutions at a particular node within the domain (x =
0.32289, y = 0.34007).

24

6.3. Case 3: 3D fluvial channel case

The third example is a three dimensional fluvial channel reservoir case. The reser-
voir contains three channels and each channel has a different permeability, as shown in
different color in Figure 17. The flow passes through the three channels from the right
side to the left due to the injected water pressure in the right side. The porosity is 0.2
in the computational domain and the viscosities of the irreducible water and residual
oil are 0.004 and 0.001 Pa.s respectively. The geometry of the reservoir is constructed
using B-splines (NURBS) surfaces and curves, which is an efficient way to represent
geological heterogeneity [57]. The simulations were run on IC-FERST, which is an
multiphase simulator based on Fluidity [58]. The simulation period is [0, 1000] days
with a fixed time step of 10 days. A snapshot is taken every 25 days and a total of 40
snapshots of solutions were taken for each solution variable.

The parameter space in this 3D case is the permeability of each channel. 30 training
simulations (A1-A30 in Table 3) were generated using IC-FERST and each simulation
includes 40 snapshots. A new unseen permeability set (T1 in Table 3) is chosen to
demonstrate the capability of the RP-NIROM. The error estimator is constructed using
the GPR networks. The GPR networks are trained for each POD coefficients of the
new case with new different parameter sets. The size of the training set for each POD
coefficient in this case is 30.

Figure 18 shows the solutions obtained from the high fidelity full model, P-NIROM
and RP-NIROM with 12 basis functions at day 250 and 750. As shown in the figure,
the results obtained from both P-NIROM and RP-NIROM are close to those of the
high fidelity full model. In order to see the difference, the solutions at a particular
node within the computational domain (x = 223.79, y = 496.56, z = 140) are given
in Figure 20. As shown in the figure, the P-NIROM considering error estimate (RP-
NIROM) perform better than P-NIROM. Figure 19 shows exact ∆F results (left) and
predicted ∆F using GPR (right). It can be seen that the predicted solutions of ∆F have
close agreement with exact ∆F and the GPR predicts well using training datasets with
a moderate size.

6.4. Computational efficiency

Table 4 shows the online CPU cost required for simulating the high-fidelity full
model and NIROM for each time step. It is worth noting that the online CPU time
(dimensionless) required for running the NIROM during one time step is only 0.004s,
while the full model for the dam break case is 238 seconds. The simulations were
performed on 12 cores of a workstation with Intel(R) Xeon(R) X5680 CPU proces-
sors of 3.3GHz and 64GB RAM. The CPU cost of the full model is dependent on the
resolution of mesh, which means the computation time increases when a finer mesh is
used.

25

Figure 17: Case 3: Computational domain of 3D fluvial channel case. It includes three channels: big one
(red), middle one(blue) and small one (cyan).

Table 3: Case 3: a list of combination of three permeabilities of the three channels for the 3D fluvial channel
case.

Cases k1 k2 k3 cases k1 k2 k3

A1 4.93×10−14 4.93×10−14 4.93×10−14 A16 1.97×10−13 3.95×10−13 9.87×10−13

A2 4.93×10−14 9.87×10−13 9.87×10−14 A17 5.92×10−13 4.93×10−13 4.93×10−13

A3 9.87×10−13 4.93×10−13 4.93×10−13 A18 2.76×10−13 9.87×10−13 1.97×10−13

A4 9.87×10−13 9.87×10−13 3.95×10−13 A19 3.45×10−13 3.45×10−13 9.87×10−13

A5 4.69×10−13 4.69×10−13 2.96×10−13 A20 7.40×10−13 7.40×10−13 9.87×10−13

A6 2.47×10−13 2.47×10−13 2.47×10−13 A21 3.45×10−13 6.42×10−13 8.39×10−13

A7 2.47×10−13 7.90×10−13 2.47×10−13 A22 5.43×10−13 1.48×10−13 6.42×10−13

A8 7.90×10−13 2.47×10−13 8.88×10−13 A23 8.39×10−13 3.45×10−13 8.88×10−13

A9 7.90×10−13 7.90×10−13 7.90×10−13 A24 2.96×10−13 1.97×10−13 6.42×10−13

A10 6.42×10−13 8.88×10−13 2.47×10−13 A25 8.39×10−13 4.93×10−13 6.91×10−13

A11 4.44×10−13 3.45×10−13 4.93×10−13 A26 1.97×10−13 6.91×10−13 9.87×10−13

A12 6.42×10−13 5.43×10−13 7.40×10−13 A27 4.93×10−13 4.93×10−13 4.93×10−13

A13 1.48×10−13 5.43×10−13 4.93×10−13 A28 7.40×10−13 7.40×10−13 7.40×10−13

A14 9.67×10−13 5.53×10−13 1.97×10−13 A29 9.87×10−13 9.87×10−13 9.87×10−13

A15 4.93×10−13 4.93×10−13 8.39×10−13 A30 9.87×10−14 7.40×10−13 9.87×10−14

T1 3.8×10−13 3.0×10−14 9.87×10−13

26

(a) Full model, t= day 250 (b) Full model, t= day 750

(c) P-NIROM, t = day 250 (d) P-NIROM, t = day 750

(e) RP-NIROM, t = day 250 (f) RP-NIROM, t = day 750

Figure 18: Case 3: the figures displayed above show the solutions obtained from the high fidelity full model,
P-NIROM and RP-NIROM with 12 basis functions at t= t = day 250 and t = day 750.

(a) Exact (b) GPR

Figure 19: Case 3: The figure shows the ∆F results from exact solutions and predicted solutions using GPR.
Left: standard ROM; Right: GPR.

27

0 200 400 600 800 1000
Time (days)

0.2

0.3

0.4

0.5

0.6

0.7

S
at

u
ra

ti
o
n

Full model
P-NIROM with 12 basis functions
RP-NIROM with 12 basis functions

Figure 20: Case 3: Comparison of the volume fraction solutions at a particular node (aqua point in Figure
17) within the domain (x = 223.79, y = 496.56, z=140).

Table 4: Comparison of the online CPU time (dimensionless) required for running the full model and NIROM
during one time step.

Cases Model assembling projection interpolation total
and solving

Flow past Full model 3.11 0 0 3.11
a cylinder NIROM 0 0.003 0.001 0.0040

Water Full model 238 0 0 238
dam break NIROM 0 0.003 0.001 0.0040

3D Full model 74.9200 0 0 74.9200
channel NIROM 0 0.003 0.001 0.0040

28

7. Conclusion

An error estimator for P-NIROM based on a Gaussian Processing Regression ma-
chine learning method has been, for the first time, presented in this paper. A GPR
machine learning method has been used to construct a set of error response functions
for remaining errors between the high fidelity full model and P-NIROM. The error es-
timator has been implemented in the framework of an advanced 3-D unstructured finite
element mesh fluid model (Fluidity). The performance of RP-NIROM considering the
error estimator has been illustrated by three numerical examples: flow past a cylinder,
water dam break and 3D fluvial channel test cases. A detailed comparison between the
RP-NIROM and high fidelity full model has been made. The numerical examples show
that the RP-NIROM performs better than P-NIROM when absorbing the remaining er-
rors between the high fidelity full model and P-NIROM. A significant CPU speed up
is also obtained compared to the high fidelity full model. The advantage of the pro-
posed method is that it can find valuable information from the residual error data. The
valuable information can be used to improve the accuracy of the P-NIROM. However,
compared to standard P-NIROM, an extra procedure of constructing a set of error re-
sponse functions using machine learning methods is required. This extra procedure
includes offline and online procedures. The offline procedure involves constructing the
error response functions, which is precomputed. The online procedure involves using
the error functions to predict, which is fast. Future work will investigate the perfor-
mance of this error estimator for more complex problems such as air pollution, large
city scale urban flows and flooding problems.

Acknowledgments

The author would like to acknowledge the support of IMPACT (Innovative Materi-
als, Processing And numeriCal Technologies, part-funded by the European Regional
Development Fund through the Welsh Government and Swansea University), EPSRC
grant: Managing Air for Green Inner Cities (MAGIC) (EP/N010221/1) and the In-
novate UK Smart-GeoWells consortium (EP/R005761/1). Thank Idris Abebayo for
setting up and running the dam break test case and thank Carl Jacquemyn and Pablo
Salinas for setting up the 3D channel case.

29

References

[1] Clarence Rowley and Scott Dawson. Modal analysis of fluid flows using variants
of proper orthogonal decomposition. Bulletin of the American Physical Society,
62, 2017.

[2] F. Fang, T. Zhang, D. Pavlidis, C.C. Pain, A.G. Buchan, and I.M. Navon. Reduced
order modelling of an unstructured mesh air pollution model and application in
2D/3D urban street canyons. Atmospheric Environment, 96:96–106, 2014.

[3] F Fang, C.C. Pain, I.M. Navon, GJ Gorman, MD Piggott, PA Allison, and AJH
Goddard. A POD goal-oriented error measure for mesh optimization. Interna-

tional Journal for Numerical Methods in Fluids, 63(2):185–206, 2010.

[4] M. Diez, E.F. Campana, and F. Stern. Design-space dimensionality reduction in
shape optimization by Karhunen–Loève expansion. Computer Methods in Ap-

plied Mechanics and Engineering, 283:1525–1544, 2015.

[5] Niccolò Dal Santo, Simone Deparis, Andrea Manzoni, and Alfio Quarteroni.
An algebraic least squares reduced basis method for the solution of nonaffinely
parametrized stokes equations. Computer Methods in Applied Mechanics and

Engineering, 2018.

[6] Andrea Manzoni, Diana Bonomi, and Alfio Quarteroni. Reduced order modeling
for cardiac electrophysiology and mechanics: New methodologies, challenges
and perspectives. In Mathematical and Numerical Modeling of the Cardiovascu-

lar System and Applications, pages 115–166. Springer, 2018.

[7] Manal Alotaibi, Victor M Calo, Yalchin Efendiev, Juan Galvis, and Mehdi Ghom-
mem. Global–local nonlinear model reduction for flows in heterogeneous porous
media. Computer Methods in Applied Mechanics and Engineering, 292:122–137,
2015.

[8] R.Stefanescu and I.M. Navon. POD/DEIM Nonlinear model order reduction of an
ADI implicit shallow water equations model. Journal of Computational Physics,
237:95–114, 2013.

[9] R. Stefanescu, A. Sandu, and I.M. Navon. Comparison of POD reduced order
strategies for the nonlinear 2D shallow water equations. International Journal for

Numerical Methods in Fluids, 76(8):497–521, 2014.

[10] D.N. Daescu and I.M. Navon. A Dual-Weighted Approach to Order Reduction in
4D-Var Data Assimilation. Monthly Weather Review, 136(3):1026–1041, 2008.

[11] A. Manzoni, F. Salmoiraghi, and L. Heltai. Reduced Basis Isogeometric Meth-
ods (RB-IGA) for the real-time simulation of potential flows about parametrized
NACA airfoils. Computer Methods in Applied Mechanics and Engineering,
284:1147–1180, 2015.

30

[12] AG Buchan, AA Calloo, MG Goffin, S Dargaville, F Fang, CC Pain, and
IM Navon. A POD reduced order model for resolving angular direction in neu-
tron/photon transport problems. Journal of Computational Physics, 296:138–157,
2015.

[13] H. Chen. Blackbox stencil interpolation method for model reduction. Master’s
thesis, Massachusetts Institute of Technology, 2012.

[14] D. Xiao, F. Fang, A.G. Buchan, C.C. Pain, I.M. Navon, and A. Muggeridge. Non-
intrusive reduced order modelling of the Navier–Stokes equations. Computer

Methods in Applied Mechanics and Engineering, 293:552–541, 2015.

[15] D. Xiao, P. Yang, F. Fang, J. Xiang, C.C. Pain, I.M. Navon, and M. Chen. A non-
intrusive reduced-order model for compressible fluid and fractured solid coupling
and its application to blasting. Journal of Computational Physics, 330:221–244,
2017.

[16] Michael Schlegel and Bernd R. Noack. On long-term boundedness of Galerkin
models. Journal of Fluid Mechanics, 765:325–352, 2 2015.

[17] Jan Osth, Bernd R. Noack, SiniÅa Krajnovi, Diogo Barros, and Jacques Bore.
On the need for a nonlinear subscale turbulence term in POD models as exem-
plified for a high-Reynolds-number flow over an Ahmed body. Journal of Fluid

Mechanics, 747:518–544, 5 2014.

[18] David Amsallem and Charbel Farhat. Stabilization of projection-based reduced-
order models. International Journal for Numerical Methods in Engineering,
91(4):358–377, 2012.

[19] Leopoldo P. Franca and Sergio L. Frey. Stabilized finite element methods: II. The
incompressible Navier-Stokes equations. Computer Methods in Applied Mechan-

ics and Engineering, 99(2-3):209–233, 1992.

[20] S. Chaturantabut and D.C. Sorensen. Nonlinear model reduction via discrete
empirical interpolation. SIAM J. Sci. Comput, 32:2737–2764, 2010.

[21] Feriedoun S. and Alireza J. α Regularization of the POD-Galerkin dynamical
systems of the Kuramoto-Sivashinsky equation. Applied Mathematics and Com-

putation, 218(10):6012 – 6026, 2012.

[22] D. Xiao, F. Fang, A.G. Buchan, C.C. Pain, I.M. Navon, J. Du, , and G. Hu. Non-
linear model reduction for the Navier-Stokes equations using Residual DEIM
method. Journal of Computational Physics, 263:1–18, 2014.

[23] D. Xiao, F. Fang, J. Du, C.C. Pain, I.M. Navon, A.G. Buchan, A.H. ElSheikh, and
G. Hu. Non-linear Petrov-Galerkin methods for reduced order modelling of the
Navier-Stokes equations using a mixed finite element pair. Computer Methods In

Applied Mechanics and Engineering, 255:147–157, 2013.

31

[24] C. Audouze, F.D. Vuyst, and P.B. Nair. Nonintrusive reduced-order modeling of
parametrized time-dependent partial differential equations. Numerical Methods

for Partial Differential Equations, 29(5):1587–1628, 2013.

[25] Z. Wang, D. Xiao, F. Fang, R. Govindan, C.C. Pain, and Y. Guo. Model identifi-
cation of reduced order fluid dynamics systems using deep learning. International

Journal for Numerical Methods in Fluids, 86(4):255–268, 2018.

[26] D. Xiao, F. Fang, C.C. Pain, and I.M. Navon. A parameterized non-intrusive re-
duced order model and error analysis for general time-dependent nonlinear partial
differential equations and its applications. Computer Methods in Applied Mechan-

ics and Engineering, 317:868–889, 2017.

[27] Mengwu Guo and Jan S Hesthaven. Reduced order modeling for nonlinear struc-
tural analysis using gaussian process regression. Computer Methods in Applied

Mechanics and Engineering, 341:807–826, 2018.

[28] Mengwu Guo and Jan S. Hesthaven. Data-driven reduced order modeling for
time-dependent problems. Computer Methods in Applied Mechanics and Engi-

neering, 2018.

[29] D. Xiao, P. Yang, F. Fang, J. Xiang, C.C. Pain, and I.M. Navon. Non-intrusive
reduced order modeling of fluid-structure interactions. Computer Methods in

Applied Mechanics and Engineering, 303:35–54, 2016.

[30] Jan S Hesthaven and Stefano Ubbiali. Non-intrusive reduced order modeling of
nonlinear problems using neural networks. Journal of Computational Physics,
363:55–78, 2018.

[31] Yves Le Guennec, J-P Brunet, F-Z Daim, Ming Chau, and Yves Tourbier. A para-
metric and non-intrusive reduced order model of car crash simulation. Computer

Methods in Applied Mechanics and Engineering, 338:186–207, 2018.

[32] Tariq Benamara, Piotr Breitkopf, Ingrid Lepot, and Caroline Sainvitu. LPC Blade
and Non-Axisymmetric Hub Profiling Optimization Using Multi-Fidelity Non-
Intrusive POD Surrogates. In ASME Turbo Expo 2017: Turbomachinery Tech-

nical Conference and Exposition, pages V02CT47A026–V02CT47A026. Amer-
ican Society of Mechanical Engineers, 2017.

[33] Chris Homescu, Linda R Petzold, and Radu Serban. Error estimation for reduced-
order models of dynamical systems. Siam Review, 49(2):277–299, 2007.

[34] JH Chaudhry, D Estep, and M Gunzburger. Exploration of efficient reduced-order
modeling and a posteriori error estimation. International Journal for Numerical

Methods in Engineering, 111(2):103–122, 2017.

[35] Saifon Chaturantabut and Danny C Sorensen. A state space error estimate for
POD-DEIM nonlinear model reduction. SIAM Journal on numerical analysis,
50(1):46–63, 2012.

32

[36] D. Wirtz and B. Haasdonk. Efficient a-posteriori error estimation for nonlin-
ear kernel-based reduced systems. Systems and Control Letters, 61(1):203–211,
2012.

[37] D Wirtz, DC Sorensen, and Bernard Haasdonk. A posteriori error estimation for
deim reduced nonlinear dynamical systems. SIAM Journal on Scientific Comput-

ing, 36(2):A311–A338, 2014.

[38] Azam Moosavi, Răzvan Ştefănescu, and Adrian Sandu. Multivariate predictions
of local reduced-order-model errors and dimensions. International Journal for

Numerical Methods in Engineering, 113(3):512–533, 2018.

[39] Razvan Stefanescu, Azam Moosavi, and Adrian Sandu. Parametric domain de-
composition for accurate reduced order models: Applications of MP-LROM
methodology. Journal of Computational and Applied Mathematics, 340:629–644,
2018.

[40] Natalia M Alexandrov, Robert Michael Lewis, Clyde R Gumbert, Lawrence L
Green, and Perry A Newman. Approximation and model management in
aerodynamic optimization with variable-fidelity models. Journal of Aircraft,
38(6):1093–1101, 2001.

[41] Martin Drohmann and Kevin Carlberg. The ROMES method for statistical mod-
eling of reduced-order-model error. SIAM/ASA Journal on Uncertainty Quantifi-

cation, 3(1):116–145, 2015.

[42] C.E. Rasmussen. Gaussian processes in machine learning. In Advanced lectures

on machine learning, pages 63–71. Springer, 2004.

[43] Jin Yuan, Kesheng Wang, Tao Yu, and Minglun Fang. Reliable multi-objective
optimization of high-speed WEDM process based on Gaussian process regres-
sion. International Journal of Machine Tools and Manufacture, 48(1):47–60,
2008.

[44] Stefano De Marchi and Emma Perracchione. Lectures on radial basis functions.
2018.

[45] Matthew S Caywood, Daniel M Roberts, Jeffrey B Colombe, Hal S Greenwald,
and Monica Z Weiland. Gaussian process regression for predictive but inter-
pretable machine learning models: An example of predicting mental workload
across tasks. Frontiers in human neuroscience, 10:647, 2017.

[46] Malte Kuss. Gaussian process models for robust regression, classification, and

reinforcement learning. PhD thesis, Technische Universität, 2006.

[47] Joaquin QuiÃ±onero-Candela, Carl Edward Rasmussen, AnÃbal R Figueiras-
Vidal, et al. Sparse spectrum Gaussian process regression. Journal of Machine

Learning Research, 11(Jun):1865–1881, 2010.

33

[48] Ed Snelson. Tutorial: Gaussian process models for machine learning. Gatsby

Computational Neuroscience Unit, UCL, 2006.

[49] David S Touretzky, Michael C Mozer, and Michael E Hasselmo. Advances in

Neural Information Processing Systems 8: Proceedings of the 1995 Conference,
volume 8. Mit Press, 1996.

[50] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[51] S. Chaturantabut. Dimension reduction for unsteady nonlinear partial differential
equations via empirical interpolation methods. Master’s thesis, Rice University,
2008.

[52] C.C. Pain, M.D. Piggott, A.J.H. Goddard, F. Fang, G.J. Gorman, D.P. Marshall,
M.D. Eaton, P.W. Power, and C.R.E. De Oliveira. Three-dimensional unstruc-
tured mesh ocean modelling. Ocean Modelling, 10(1-2):5–33, 2005.

[53] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LA-

PACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, third edition, 1999.

[54] Franois Chollet. keras. https://github.com/fchollet/keras, 2015.

[55] Deborah M Greaves. Simulation of viscous water column collapse using adapt-
ing hierarchical grids. International Journal for Numerical Methods in Fluids,
50(6):693–711, 2006.

[56] ZQ Zhou, JO De Kat, and B Buchner. A nonlinear 3-D approach to simulate green
water dynamics on deck. In Proceedings of the 7th International Conference on

Numerical Ship Hydrodynamics, page 5. Nantes, 1999.

[57] Carl Jacquemyn, Matthew D Jackson, and Gary J Hampson. Surface-based geo-
logical reservoir modelling using grid-free nurbs curves and surfaces. Mathemat-

ical Geosciences, pages 1–28, 2018.

[58] Matthew Jackson, James Percival, Peyman Mostaghimi, Brendan Tollit, Dim-
itrios Pavlidis, Christopher Pain, Jefferson Gomes, Ahmed H Elsheikh, Pablo
Salinas, Ann Muggeridge, et al. Reservoir modeling for flow simulation by use
of surfaces, adaptive unstructured meshes, and an overlapping-control-volume
finite-element method. SPE Reservoir Evaluation & Engineering, 18(02):115–
132, 2015.

34

