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ABSTRACT Photovoltaic (PV) power generation is highly intermittent in nature and any accurate very
short-term prediction can decrease the impact of its uncertainties and operation costs and boost the reliable
and efficient integration of PV systems into micro/smart grids. This work develops a new generalized
technique for very short-term prediction of PV power generation from the lagged power generation data
using fuzzy techniques. A preprocessor extracts relevant statistical features from the PV data which are
fed to the fuzzy predictor. A modified version of Wang-Mendel training algorithm is employed to directly
extract the fuzzy rules from the training data pairs. This methodology exploits the limited training data
more efficiently. In addition, an online additive learning routine is proposed, which enables the predictor
to learn from new data while running the predictions. So, the prediction accuracy increases over time and
the predictor updates to account for long-term changing conditions of weather and PV system performance
and its surroundings. Numerical results of the comparison of the proposed approach with simple fuzzy and
traditional artificial neural network methods on a live PV system in the United Kingdom demonstrate its
improved prediction accuracy, outperforming the benchmark approaches with a normalized mean absolute
error (NMAE) of 3.6%.

INDEX TERMS Fuzzy theory, photovoltaic (PV), power generation forecasting, Wang-Mendel.

I. INTRODUCTION
With the global shift away from fossil fuels towards renew-
able energy sources, solar energy is expected to be one of the
most profitable sectors. Estimates show that the global solar
energy market share will jump to almost twice the wind share
in 2025, while the residential end-users hold a dominant share
in the global renewable energy market currently and in fore-
casts for 2025 [1]. At the end of September 2018, the over-
all UK solar PV capacity reached approximately 13 GW,
an increase of 1.8% compared to September 2017 and more
than half of this energy is derived from installations of less
than 50 kW [2]. In Germany, which has the largest proportion
of residential PV systems among European countries, the PV
power feed-in tariff is less than the electricity price at the
household level [3].

In the UK, the feed-in tariff for installations smaller than
50 kW is much less than the electricity price and the PV

The associate editor coordinating the review of this manuscript and
approving it for publication was Canbing Li.

generation tariffs have now stopped for new applications
since April 2019 [4]. Also, since the uncontrolled nature of
PV export will increasingly impact the grid, many countries
have already imposed some constraints to limit the export
of PV energy to the public grid. For example, in Germany,
the maximum PV power feed-in is limited to 50% of the peak
power [3]. Indeed, in recent years, many countries encourage
the self-consumption of the electricity generated from PV
systems instead of feeding it into the grid [5]. This new
approach necessitates using energy storage mechanisms to
make the most of the installed PV system. For example,
approximately 50% of the new PV installations in Germany
in 2018 are with a battery system [6]. Due to this shift in PV
system approach, a lot of research focus targeted at distributed
small-scale PV systems with storage units [7].

Obviously, the energymanagement strategy of a PV system
equipped with battery storage is different from that of a
direct grid-connected PV system. In this condition, any kind
of prediction of the very short-term intra-hour PV power
variations, sometimes called ramping events, enables optimal
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operation of the combined PV and storage units and makes
the most of the investment. It has been shown that short-
term forecast-based storage management can significantly
reduce the extent of PV power curtailment, such that the
total electricity price is halved for a typical combined 5kWp
PV and 5 kWh battery residential system in Germany [3].
As well as optimizing the operation, it is also demonstrated
that a short-term forecast of generation disturbances, with
around 15-minute forecast horizon, is necessary to prepare
the backup system of a microgrid with high PV penetra-
tion in order to avoid instability or black out events [8].
Recently, many regulatory market environments allow very
short-term electricity trading to reduce the required reserve
capacity. For instance, the Energy Imbalance Market in the
US or the Australian Energy Market Operator cover forecasts
down to 5 minutes [9], [10]. In such markets, therefore, any
improvement in very-short term PV forecasts directly leads
to an increase in revenue. Also, it is already proposed that
the distributed PV systems can be diagnosed by continuously
comparing the short-term power production predictions and
the actual values. Subsequently, a mismatch indicates a prob-
able problem in the system, e.g., due to unusual shading, dust
on panels or contacts corrosion [11], [12].

A. PV FORECAST BACKGROUND
Although the necessity of accurate and reliable short-term
forecasts is becoming more apparent, the solution is still
a real challenge. For example, ‘‘improving short-term fore-
casting of generation/supply and demand’’ is announced as
the second priority of the UK National Grid system oper-
ator innovation strategy in 2018 [13]. Currently, no docu-
mented standards or recommended practices or even widely
accepted definitions are available. However, the most com-
mon industry-requested very short-term predictions are for
time horizons from 15 minutes to 2 hours ahead, with res-
olutions of 30 seconds to 5 minutes [14], [15]. Alterna-
tively, the day ahead forecasts for up to two days ahead or
beyond are crucial for participation in electricity markets of
large-scale renewable farms and are widely in use by PV
farm owners, portfolio managers, grid operators and trading
companies to decrease the amount of procured reserves that
are necessary with a high penetration of intermittent energy
sources [15]–[17]. The forecasting techniques can be broadly
classified as physical (or deterministic), statistical (or prob-
abilistic) and hybrid (or ensembled) methods [17]–[25]. The
early methods were purely physical and calculated the PV
power from meteorological, topographical and geomorpho-
logical data as well as the PV characteristic curves. The
numerical weather prediction (NWP) models are mainly used
to forecast the solar data by evaluating extensive dynamic
equations subject to vast input data and initial conditions.
They are complex and the performance is highly dependent
on the weather forecast accuracy. Statistical techniques use
the historical PV power data to train forecasting models,
which are then used to forecast PV generation from past
inputs. The hybrid methods use the output of NWPmodels or

sky and satellite imagery as extra inputs for the probabilistic
techniques to improve the accuracy of predictions, espe-
cially for short-term estimations. Intra-hour and intra-day
forecasts are not currently as economically valuable as day-
ahead forecasts; however, with ever-increasing penetration
of combined solar and storage systems that demands smart
energy management strategies, significant market opportuni-
ties are anticipated. For very short-term forecasts applying
to a single point installation rather than a wide geographic
area, pure statistical techniques seem to be the most accu-
rate solutions [23], [26]. The most successful statistical
approaches reported in literature for very short-term intra-
hour PV forecast are time series [27], regression [28] and
Markov chain [29]. These techniques can be considered
as ensemble models that combine the classical statistical
techniques with the nonlinear correlation and classification
analyses. While these techniques can be capable of extract-
ing information from high-dimensional meteorological data,
they could not prove efficacy with very short-term intra-
hour time steps. Artificial Neural Networks (ANNs) are also
employed for very-short term PV predictions [22], [30]–[33].
Chu et al. [30] has successfully integrated the ANN to three
different baseline statistical prediction models to enhance
their forecast skills for time horizons of 5, 10, and 15 minutes.
Their method simply uses the predictions from the base-
line forecast model and the measured previous generation
values as inputs to the ANN. Rana et al. [31] has also
presented a hybrid ANN and Support Vector Regression
algorithm to generate the 5-minute to 60-minute predictions
from the previous PV power and the meteorological data.
Sharma et al. [32] has proposed amixedwavelet andANN for
15-minute solar irradiance forecasting, in which the hidden
layer neurons of the ANN uses the wavelets as activation
functions. Wang et al. [33] has employed the wavelet trans-
form to decompose the PV data into different frequencies
before feeding them to the ANN predictor. The output of
the ANNs at different frequencies will then go through the
inverse transform and then composed to construct the final
prediction. Common among all, the parameters of ANN
and the learning algorithm are chosen from trial and error
for the best performance and the optimal architecture of
the ANN varies for different weather conditions. Recently,
Asrari et al. [22] has used the gradient-descent and the meta-
heuristic optimization techniques to search for the parameters
of the ANN to predict 15-minute solar powers. Besides the
added complexity and computational burden their training
technique is still vulnerable to the overfitting problem of
ANN-based methods.

Recent literature shows that the nonlinear prediction algo-
rithms based on the ANNs have found popularity and perform
best for very short-term forecasts among other competi-
tors. However, some of the challenges with ANNs, that
cause severe barriers in industrial applications of them, are
(1) ANNs have various parameters to be set, especially those
related to the network topology, which is not a trivial task
to do; also, training results are usually non-deterministic and
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depend on the initial parameters [12], [18], (2) a serious prob-
lem in the training process is the possibility of overfitting,
i.e. if the training process is not stopped at the right point,
the ANN begins to ‘‘memorize’’ the training dataset rather
than achieve ‘‘generalization’’ from it [22] and (3) if one
decides to add new input-output data pairs to an existing
ANN, then the whole training process must be repeated; so
it is not possible to learn from new data while running the
forecasts.

B. FUZZY LOGIC FOR PREDICTION PURPOSES
Like ANNs, fuzzy logic is an artificial intelligence (AI)
technique, that has been proven to inherit the universal non-
linear mapping of input-output data pairs using soft linguis-
tic variables [34]. Some successful applications of fuzzy
logic in weather forecasting can be found in [35]–[38]. The
main advantage of fuzzy-based prediction techniques is that
they can provide comparable prediction results to the ANNs
without suffering from the three major problems mentioned
above.

A fuzzy logic system is composed of the Knowledge
Base (KB) and the Inference System (IS). The KB contains
the available knowledge about the problem in the form of
linguistic IF-THEN rules. The IS makes decisions on the
system outputs from inputs using the information in the KB.
A general method calledWang-Mendel is widely used to gen-
erate fuzzy rules from numerical input-output data pairs [34].
It is a five-step procedure for building the KB from numerical
data pairs. As a recent and successful work, reference [38] has
proposed a fuzzy model for the very short-term prediction of
wind speed, using the Wang-Mendel technique to generate
the KB of a Mamdani-type IS predictor. It has improved the
accuracy of forecasts and reduced the computational require-
ments by extracting some statistical properties of the wind
speed information, such as the standard deviation, the average
and the slope, and uses them instead of the measured wind
speeds, as inputs to the fuzzy predictor. Since the number
of inputs is limited to three, the size of the KB is also con-
siderably reduced. So, wind speed statistical properties can
be summarized in a smaller KB whilst at the same time the
accuracy of the predictions is improved. However, the choice
of the statistical properties used in [38] is purely arbitrary,
which can reduce the accuracy of the forecasts.

Taking inspiration from [38] this paper proposes a new
fuzzy predictor with an online additive learning capability for
very short-term PV power generation that just uses the histor-
ical PV power generation data. The main contributions of this
work are, first, unlike the previous work in [38], it investigates
different statistical properties of historical data based on a
scientific justification and proposes the best three statistical
features to be used as the outputs of the preprocessor to the
fuzzy predictor. Second, the conflict resolution logic of the
classical Wang-Mendel rule generation algorithm is modified
such that the rules, which are already considered as conflict-
ing with the classical algorithm (i.e. same IF parts) are no
longer ignored. Instead, they can cooperatively contribute to

the output formation, i.e. the same input can trigger different
outputs simultaneously but with different weights. Third,
an online additive learning algorithm, based on the modified
Wang-Mendel algorithm, is proposed that enables acquiring
additional knowledge about the process while the predictions
are running and at the same time makes sure that no available
information in the newly available data pairs are ignored or
lost. The theoretical achievements are experimentally proven
on a real PV system in the UK. The rest of this paper is
organized as follows. Section II presents the proposed tech-
nique. A comparative performance evaluation is then reported
in Section III and finally, Section IV concludes the paper.

FIGURE 1. Proposed PV power predictor based on [38].

II. PROPOSED FUZZY PREDICTOR
The main structure of the proposed predictor is shown in
Fig. 1. As it is illustrated in Fig.1, instead of directly
feeding the measured PV power data (i.e. PVk , PVk−1,
PVk−2, . . . ,PVk−m+1) to the predictor to estimate PVk+l,
PVk+2, . . . ,PVk+n, some statistical properties of time-series
inputs are calculated and used as inputs to the fuzzy pre-
dictor. Although using statistical properties instead of the
actual data was proposed in [38], that work does not provide
any scientific justification on the selected statistical proper-
ties. While the previous work uses the average, the standard
deviation and the slope of the measured data as the inputs,
in this work, it became clear based on a Pearson correlation
analysis (as will be demonstrated in the next subsection) that
with the PV power data, the combination of the average,
the standard deviation and the y-intercept offers much better
prediction accuracy. The Wang-Mendel algorithm and the IS
are also modified in this work. An online additive learning
processor is also proposed that enriches and updates the KB
while the prediction is running. More details are presented in
section II.B.

A. SELECTED FEATURES
Different statistical features can be extracted from the almost
non-stationary time series of PV power data. For the fol-
lowing analysis and the benchmark tests, the real PV power
data measured at Swansea University in the UK (SPECIFIC
Active Classroom) during 2018 are used. The one-minute
measured data have been averaged over 5-minute intervals,
which seems reasonable for the very unstable UK weather
condition.

The number of outputs from the predictor is chosen to
be three (n = 3) that means each run of the forecast algo-
rithm provides PV power generation data for the 15-minute
time ahead in three 5-minute consecutive steps. It has
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FIGURE 2. Sample days used for correlation analysis of different static
characteristics: (a) sunny and (b) highly cloudy day.

previously been shown that the power generation forecasts for
15 minutes in advance are adequate to efficiently manage the
backup system for a micro-grid [8], [28]. Also, the 5-minute
resolution provides more accuracy in response to rapid
weather changes, such as that experienced in the UK. Differ-
ent statistical characteristics, including average, y-intercept,
standard deviation, slope and delta are investigated as poten-
tial candidate features. The value of y-intercept and slope are
calculated from the first order fitted line to the corresponding
input data. The delta is defined as the difference between the
maximum and the minimum of the input data. To find the best
choices, a linear regression analysis using the well-known
Pearson correlation coefficient was conducted between the
stochastic values of the current and the two ahead data (out-
put) and different numbers of lagged data points (input) for
two different days of historical PV generation measurements.
These two days, shown in Fig. 2, are selected from sunny and
cloudy days. The other days have a power pattern between
these two extreme samples. The results are plotted in Fig. 3.
As well as selecting the best statistical characteristics to be
used at the preprocessing stage, another important step in
developing the forecasting algorithm is to determine the num-
ber of lagged (previous) data to be fed into the preprocessor,
i.e.m in Fig. 1. For this purpose, the number of input samples
in the correlation analysis was varied from 3 to 10. Clearly,
for both days, the average and the y-intercept show a high
correlation between the current/future and the lagged PV
power data. The slope, which was previously proposed by
Monfared et al. for the wind speed data in [38], is the worst
among the studied characteristics for the PV data, especially
under fast-changing conditions. The two other properties,

FIGURE 3. Correlation analysis of PV generation static characteristics
(output to input data): (a) sunny and (b) highly cloudy day, n = 3 and m
varies from 3 to 10.

i.e. the standard deviation and the delta, perform almost the
same. Based on this analysis, one may choose the average and
the y-intercept as the best characteristics for inclusion with
the option of either standard deviation or delta or even both
as extra characteristics. Indeed, by increasing the number of
outputs from the preprocessor to the fuzzy logic, the size
of KB increases, which demands higher computations. Also,
with a higher number of characteristics to be extracted from
the original data, a larger historical dataset is required in
the early training stage to ensure that the KB has adequate
information about the process to be forecast. Based on several
test studies, the standard deviation, which shows slightly
better performance in the correlation analysis with sunny
days, is chosen in this work. Based on the correlation analysis,
m is also chosen to be 5. It must be mentioned here that
with the proposed prediction algorithm the KB continuously
learns from new data while the forecasts are running based
on the available information up to that instance of time. So,
the size of KB increases gradually and therefore the quality
of predictions improves from prediction to prediction.

B. MODIFIED WANG-MENDEL ALGORITHM
The details of the original Wang-Mendel technique can be
found in [34]. This work proposes the following modifica-
tions to improve the performance of the predictor:

Firstly, the decision among the conflicting rules is now
revisited in order to avoid any loss of information by omitting
the rules that are already defined as conflicting in the original
version of the algorithm. It is worth noting that the original
Wang-Mendel algorithm interprets any two or more gener-
ated IF-THEN rules with the same IF parts as conflicting
and only includes the one with the higher weight in the KB.
The others will simply be ignored, which reduces the forecast
accuracy. However, in the alternative algorithm, any new
rule generated from new input-output data pairs that has the
same IF part as another rule in the current KB is no longer
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classified as conflicting rule if the THEN parts are different.
In doing this, it is accepted that the same input can trigger
different outputs simultaneously but with different levels of
effect (i.e. weight). Also, the IS is modified by using the
sum aggregator instead of the maximum (one-winner) of the
classical Mamdani-fuzzy version. Therefore, different rules
with the same IF parts have the opportunity to contribute to
the formation of the output according to their weights [39];

Secondly, to further prevent possible loss of information
by ignoring the conflicting rules that have the same both
IF and THEN parts, this paper proposes to modify the new
conflicting rule such that it can be eventually added as a piece
of new information to the KB. The proposed procedure can
be summarized as below:

- find the input or the output variable with the minimum
membership;

- for that variable, change the membership function (MF)
to the adjacent one and update the membership value,
which consequently changes the rule and its weight;

- if the new rule does not have the same both IF and THEN
parts as another already available rule in the KB, then
add it to the KB, otherwise, from the two conflicting
rules keep the one with the higher weight.

The flowchart of the proposed fuzzy predictor with online
additive learning is depicted in Fig. 4. The blocks in grey con-
stitute the additive learning algorithm by the proposed con-
flict solving procedure. As it is illustrated, any new available
datapoint is simultaneously employed to generate a possible
new rule to be added as a piece of new information to the
current KB. The proposed approach is especially valuable
when the input-output pairs at the time of first training are
not sufficient to successfully constitute a rich KB. Also,
with the proposed online additive learning of the predictor,
the maximum possible information is extracted from new
examples. Moreover, this modification to the Wang-Mendel
way of selecting the rules along with the sum aggregator
offers inherent filtering of wild-data, i.e. the data-pairs that
are generated as a result of noise or malfunction of equipment
that can lead to an incorrect rule with a high weight. Thus,
as the KB size increases, the effect of wild-data on the output
formation decreases. Moreover, it can adaptively change the
KB when new examples are available.

Evidently, after a while of running the prediction and at
the same time learning (extracting new rules from new data),
the KB size will increase sufficiently, and the accuracy will
improve. While the shape and number of MFs are arbitrary,
this work assumes 30 MFs as 50% overlapping isosceles
triangles for all input and output variables. The more MF
numbers mean the more prediction accuracy at the price of
a larger KB dimension.

III. PERFORMANCE EVALUATION
In order to investigate the effectiveness of the proposed
prediction strategy, many benchmark tests have been car-
ried out using actual PV power data measured in Swansea
University’s Bay Campus in the UK for July 2018 and

February 2019. These measured data have been averaged to
obtain 5-minute interval data sets. For all studies, the mea-
sured data for the first week of July are used as the training
data. Corresponding measurements for the next 13 days of
July 2018 are used as the test data. Also, in order to verify
the effectiveness of the proposed approach during different
seasons, predictions for February 2019 are also provided. It is
worth emphasizing again that the data of the first week of
July 2018 are used for initial training of all predictors and
for both prediction periods. In order to quantitively examine
the performance of different prediction methods, the root
mean square error (RMSE), the mean absolute error (MAE),
the normalized mean absolute error (NMAE), the standard
deviation of error (STDE) and the coefficient of determina-
tion (COD), defined below [38], [40], are employed.

RMSE =

√√√√ 1
N

N∑
i=1

(
PVi − PVip

)2 (1)

MAE =
1
N

N∑
i=1

∣∣PVi − PVip
∣∣ (2)

NMAE =
100
N

N∑
i=1

∣∣PVi − PVip
∣∣

PVinst
(3)

STDE =

√√√√ 1
N

N∑
i=1

(
PVi − PVm − (PVip − PVmp)

)2 (4)

COD = 1−

N∑
i=1

(
PVi−PVip

)2
N−2

/ N∑
i=1

(PVi−PVm)2

N−1
(5)

In the above equations, N is the total number of samples,
PVi and PVip are the actual and the predicted values of
generated PV power data, PVm and PVmp are the mean of
PVis and PVips, respectively and PVinst is the maximum
power capacity of the PV system. The ideal values for the
RMSE (kW), MAE (kW), NMAE (%) and STDE (kW) are
0 and for the COD is 1, respectively. In order to better
highlight the superior performance of the proposed method,
three different fuzzy prediction strategies are implemented as
follows:

- (Fuzzy-1) using the original PV data as inputs to the
fuzzy predictor;

- Fuzzy-2) using the preprocessor with the proposed fea-
tures, i.e. the average, the y-intercept and the standard
deviation, as the inputs to the fuzzy system;

- (Fuzzy-3) using the proposed features, the same as the
previous strategy, while simultaneously running the pro-
posed online additive learning algorithm from the new
data (test data).

The third strategy (i.e. Fuzzy-3) continuously learns from
the new measured data, considered as new examples, as time
goes on. In this way, after any 5 minutes, a new data
pair is available to be amended, as a possible new rule,
to the current KB. As a competitor, the classical multi-layer

VOLUME 7, 2019 91187



M. Monfared et al.: Fuzzy Predictor With Additive Learning for Very Short-Term PV Power Generation

FIGURE 4. Flowchart of the proposed fuzzy predictor with online additive learning (n = 3 and m = 5).

feed-forwardANN,which is themost used in the literature for
the PV prediction purposes, is implemented to be included
in the benchmark study. The ANN predictor has a 30-node
hidden layer and is trained by a standard back-propagation

algorithm [41]. The training process of the ANN uses the
actual PV power measurements as the input-output pairs. The
numerical comparative results are summarized in Table 1. All
metrices show that the prediction accuracy has increased with
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FIGURE 5. Predictions by different strategies for 8-20 July 2018: red (predicted) and
black (actual).

TABLE 1. Statistical performance analysis.

the preprocessor, i.e. strategies Fuzzy-2 and Fuzzy-3. The
best results are obtained from the third fuzzy strategy, where
the proposed online learning is also in progress during the
predictions. While the effectiveness of the proposed additive
learning technique is clear for the prediction period of July,
it is better revealed for the prediction period of February.
The predictors are all trained by using the July data and
are now exposed to test with the February data. Clearly, the
accuracy of predictions is decreased, because all strategies
are providing predictions for a winter month whilst they
have been trained with a summer month data. However,
the Fuzzy-3, with additive learning, has the opportunity to
learn from new data and consequently its prediction accu-
racy, in terms of all indices and for all cases in Table 1,
is superior. Moreover, Fig. 5 compares the predicted PV
power data with the actual values for the July days of test

FIGURE 6. Zoomed view of predictions by different strategies for
11-13 July 2018: red (predicted) and black (actual).

and four different prediction techniques. For the sake of better
presentation, the night-time data are removed. A zoomed
view of days 4 to 6 and days 12 and 13 are also provided
in Figs. 6 and 7, respectively. The ANN shows adequate
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FIGURE 7. Zoomed view of predictions by different strategies for
19-20 July 2018: red (predicted) and black (actual).

prediction performance during the sunny days, but as can be
readily realized from Figs. 6 and 7, it is unable to provide
acceptable results under fast-changing conditions. Indeed, for
these days, no historical information was available during the
learning process and therefore the ANN is likely to generate
incorrect outputs, even in excess of the dataset boundaries.
The ANN just memorizes the relationship between the input
and the output data without any interpretation capability and
cannot deal with uncertainties. On the contrary, all fuzzy
models can predict 5-minute PV power data adequately even
with sudden falls and rises. The preprocessing enables the
extraction of more knowledge about the process from the
same amount of historical data available at the learning pro-
cess. This directly translates to improved prediction capa-
bilities, especially during fast-changing conditions. Also,
the additive learning from new data continuously updates the
KB at each prediction step with almost no effort and enables
the enrichment of the available information about the process
by using any available piece of recent measurement data.
As can be seen in Fig. 5 (Fuzzy-3), the accuracy of predictions
for the middle-day (day 5) has increased noticeably by learn-
ing from almost similar patterns of variations in the previous
day. The efficiency of the additive learning is more evident
in Fig. 7 (Fuzzy-3), where the predictions for the last test
day (day 13) are considerably more accurate compared to
the other strategies. Evidently, while the predictor goes on,
more data becomes available about the current process to
be included in the KB and consequently, the accuracy of
predictions will increase gradually over time.

Figures 8 and 9 compare the predicted and actual PV power
output during the first week of February 2019. An obvi-
ous difference to the training data is the lower level of PV

FIGURE 8. Predictions by different strategies for 1-7 February 2019:
red (predicted) and black (actual).

FIGURE 9. Zoomed view of predictions by different strategies for
6-7 February 2019: red (predicted) and black (actual).

power output. As already discussed, these figures again con-
firm the effectiveness of both preprocessing of PV data and
active additive learning on providing acceptable predictions
even under very different seasonal conditions in comparison
to those conditions during the initial training process. Evident
from Fig. 9, the Fuzzy-3 strategy can almost reach a very
good prediction accuracy at the end of the 7-day February test
period, which demonstrate the effectiveness of the proposed
active learning strategy.
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FIGURE 10. Performance comparison at higher prediction horizons.

As already mentioned in the introduction, the proposed
algorithm (as well as the benchmarks) are pure statistical
(probabilistic) techniques that only use the lagged PV power
generation data as the input to the predictor. Keeping the same
structure for all predictors, the interval of data samples is
increased to 10, 15 and 20 minutes. The prediction errors,
in terms of NMAE%, are calculated and compared in Fig. 10.
As it can be seen, the increase of forecasting horizon results
in higher forecasting errors. However, the proposed technique
still reduces the error of the fuzzy predictor for all resolutions
and provides the best accuracy among all benchmark tech-
niques for intra-hour predictions.

IV. CONCLUSION
This paper proposed a fuzzy logic-based predictor for PV
generation systems that uses the average, the standard devi-
ation and the y-intercept of the actual data to define the
KB. Moreover, an active additive learning feature is added to
the conventional fuzzy-based method through modifying the
Wang-Mendel algorithm. The main achievement and advan-
tages of the proposed strategy can be listed as:

it offers a more accurate very short-term prediction, while
the size of the KB and consequently the computational effort
remains low;

it is a generalized technique and does not need any site-
specific information;

it does not use any weather predictions; so, it is simpler
to operate and immune to errors related to meteorological
predictions;

it has the unique feature of an online additive self-learning
process using new data; so, the prediction accuracy increases
over time while it is running. Also, the KB will be adaptively
updated to accommodate long-term changing conditions of
weather or the PV system and its surroundings.

The experimental results of the prediction of 15-minute
ahead PV power generation in the UK demonstrate the effec-
tiveness of the proposed algorithm compared to the con-
ventional fuzzy logic approach and the well-known ANN
competitors. It presents a NRMSE of 3.6% and outperforms
the benchmark scenarios in terms of different performance
indices.
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