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Abstract: 1 

    The discrete element modelling (DEM) of triaxial tests plays a critical role in 2 

unveiling fundamental properties of particulate materials, but the numerical 3 

implementation of a flexible membrane boundary for the testing still imposes 4 

problems. In this study, a robust algorithm was proposed to reproduce a flexible 5 

membrane boundary in triaxial testing. The equivalence of strain energy enables the 6 

particle-scale parameters representing the flexible membrane to be directly 7 

determined from the real geometric and material parameters of the membrane. Then 8 

the proposed flexible membrane boundary was implemented in the context of discrete 9 

element simulation of triaxial testing and was validated with laboratory experiments. 10 

Furthermore, comparisons of triaxial tests with flexible and rigid boundaries were 11 

performed from macro-scale to meso-scale. The results show that the boundary 12 

condition has limited influences on the stress-strain behaviour but a relatively large 13 

impact on the volumetric change, the failure mode, the distribution of contact forces, 14 

and the fabric evolution of particles in the specimen during triaxial testing. 15 

  16 

Keywords: DEM, Triaxial Tests, Flexible Membrane Boundary, Strain Energy, Shear 17 

Band, Fabric Evolution 18 
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1 Introduction 

    The triaxial test has long been one of the most fundamental methods for 

geotechnical testing. It is commonly used to determine the strength and stiffness of 

soil and rock for engineering design and construction. Furthermore, it also acts as the 

calibration foundation for theoretical developments, such as the development of 

constitutive relations for geotechnical materials. The extensive use of triaxial tests in 

practice and research has encouraged a large body of work to fully understand the 

mechanical behaviour of the specimen during triaxial testing.  

    The discrete element method (DEM) is a powerful numerical method for 

reproducing the behaviour of granular materials and has exhibited particular 

superiorities over conventional continuum mechanics based methods, such as finite 

element methods (FEM) and finite difference methods (FDM). Numerical triaxial 

tests have long been used for meso-scale parameters calibration for geotechnical 

discrete element models. The details of triaxial cells vary from laboratory to 

laboratory but the sides of testing samples are almost always covered with a flexible 

rubber or latex membrane which allows implementation of hydrostatic confining 

stress. It is the DEM simulation of the latex membrane boundary during triaxial 

shearing that has suffered from unquantifiable errors. 

    Existing research has shown that the confining membrane can dramatically affect 

the behaviour of tested triaxial samples [1, 2]. Henkel and Gilbert [3] found that the 

measured clay strength bounded by the standard rubber membrane increased by 14% 

compared with unconfined compressed tests. Vermeer [4] showed that the formation 

and development of shear band are closely related to membrane properties, 

particularly for larger-sized particles. Therefore, a critical issue for the accurate DEM 

modelling of triaxial tests consists in realistically representing the latex/rubber 
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membrane.  

    The most straightforward strategy is to assume a rigid wall boundary [5, 6]. By 

using the servo control mechanism on a rigid wall, external forces will be imposed on 

the outer layer of particles in the sample and a relatively uniform stress distribution 

within the specimen can be iteratively obtained. However, this widely used boundary 

treatment approach is fundamentally different from a flexible membrane boundary: 1) 

The rigid boundary prohibits the development of strain localization within the 

specimen during axial loading;  2) the rigid constraint leads to an oversized confining 

pressure at the local failure zone and may mistakenly estimate a wrong strength of the 

tested specimen, giving rise to different post-peak behaviours; 3) Particles close to the 

rigid wall are inclined to align with the boundary, causing some regular particle 

packing configurations and non-uniform stress distributions along the boundary [7].  

    In this paper, existing membrane treatment approaches for triaxial tests were first 

critically reviewed within the DEM framework. Then a physically more realistic ball 

representation method for flexible membranes was proposed in detail. To verify the 

method, numerical results for triaxial tests simulated with the proposed flexible 

membrane were compared with experimental results. In addition, to show the 

influence of the boundary on the mechanical behaviour of the specimen during triaxial 

loading, some critical features at both particle-scale and macro-scale in specimens 

enclosed with rigid and flexible boundaries were investigated.  

 

2 Overview of flexible membrane simulation 

    To accurately apply the hydrostatic confining stress but at the same time to allow 

free deformation of the membrane boundary are two main difficulties imposed to the 

DEM modelling of triaxial tests with latex/rubber membranes. Existing DEM models 
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that consider flexible membrane can be classified into four categories: stacked walls 

method [8-11], periodic boundary [12], equivalent force algorithms [7, 13-15], and 

particle membrane method [5, 16-20].  

 

2.1 Stacked walls  

The main idea of the stacked walls method is that the membrane is constituted of a 

number of stress-controlled rigid planar walls. These planar walls can deform 

independently of one another and their velocities are determined by a numerical servo 

algorithm to maintain the prescribed confining stresses. The method was initially 

reported by Zhao and Evans [9, 11], and later Ergenzinger et al. [8] reported a similar 

simulation method. Khoubani and Evans [10] improved the deformable ability of 

stacked-wall boundary further. This method is conceptually simple and easy to be 

implemented. Li et al. [21, 22] applied the method to the simulation of torsional shear 

testing. However, this approach also has unavoidable disadvantages: 1) it is incapable 

of characterising the “clamped effects” at the two ends of the triaxial sample (see the 

illustration of the effect in Fig. 1), and thus affects stress distribution and shape 

configurations during testing; and 2) the real deformation behaviour of the membrane 

during triaxial testing is stretch-dominated, while the rigid-wall boundary is 

equivalent to having an infinitely large stiffness and does not allow elastic 

deformation, thus it cannot reproduce the influences of membrane properties. 

 

2.2 Periodic boundary condition 

    The periodic boundary condition (PBC) is used to reduce the computation scale of 

a large (or infinite) model or eliminate the boundary effects of simulations [23]. Its 

application in DEM simulation of triaxial tests can be traced back to Cundall [24]. A 
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periodic boundary always has an exact copy on the opposite side. Particles that move 

out of a periodic boundary will re-appear back to the sample space with the same 

velocity from the opposite boundary. Therefore, a numerical model with PBC is 

assumed to be infinite in the direction normal to the boundaries [12]. The infinite 

domain is approximated in the sense that it can be characterised by repeated 

representative volume elements or RVEs. As the physical nature of a PBC differs 

from a physical latex membrane, the PCB technique exhibits the following problems: 

1) models with PBC may not be able to correctly characterise some boundary 

deformation in triaxial samples (e.g. dilating boundary) [25], so that the volume strain 

of the model with PBC may be different from a physical sample [24]; 2) it is hard to 

capture localised shear bands accurately, as the periodic boundary eliminates the 

effects of local boundary locations with concentrated deformation or stress [24]; and 3) 

it is difficult to maintain a stable confining stress when a large shear strain occurs [12]. 

   

2.3 Equivalent force algorithms 

    The membrane works by applying forces on the outmost particles of the specimen 

that are in touch with the membrane during triaxial testing. By calculating the 

equivalent force arising from the membrane and imposing on the outmost particles, 

the flexible boundary can be replaced numerically. This method contains two critical 

procedures: 1) identification of the outmost particles; and 2) calculation of the 

equivalent confining forces. Since introduced by Bardet and Proubet [26] in DEM 

modelling of triaxial testing, different algorithms solving these two procedures are 

proposed [7, 13-15, 19, 27-29]. Particularly, Cheung and O’Sullivan [13] extended 

this method by using the Voronoi polygon projection technique. However, these 

algorithms also have some disadvantages: 1) the effects of membrane properties, such 
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as elastic modulus and thickness on the mechanical response of the test specimen 

cannot be properly considered; and 2) the “clamped effects” at the two ends of the 

triaxial sample cannot be reproduced, but the reinforcement arising from “clamped 

effects” cannot be ignored. 

 

2.4 Bonded-particle membrane  

    Membrane can be modelled by bonded particles in DEM, namely bonded-ball 

membrane. This method applies confining forces on particles but is fundamentally 

different from the equivalent force algorithms, as the membrane itself is modelled in 

the former while the latter ignores the existence of latex membrane. 

The practice of simulating a flexible boundary by bonded particles has long been 

proposed [30]. Iwashita et al [31] applied this scheme to biaxial simulation. After the 

implementation on triaxial modelling was reported by Bono and McDowell [16], the 

bonded-ball method was later used in a few studies [32-34].  Furthermore, Lu et al 

[17] improved the deformability of membrane by extending the size of the membrane. 

Cil and Alshibli [18], and Li et al [20] improved the algorithms on applying the 

hydrostatic confining pressure.  

    Although this ball membrane method has the potential to take account of properties 

of a latex or rubber membrane, the current algorithms still suffer from problems, such 

as a reliable numerical representation for the deformation properties of a real 

membrane.  In addition, it is not clear how the boundary condition will affect the 

responses of the specimen under triaxial loading. 

 

3 The proposed framework of improved membrane representation 

3.1 Geometrical arrangement 
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    Membrane is a continuous material, but bonded particles are not. Thus a deficiency 

of the ball membrane method is that the represented membrane surface is not 

sufficiently smooth. There are two possible ways to partially resolve this issue: 1) to 

use the closest particle arrangement pattern, i.e. one-layer hexagonal packing to 

represent a membrane; and 2) to make the radius of the equal-sized membrane balls 

less than those of particles for the specimen. Saussus and Frost [35] experimentally 

obtained the sand-membrane contact patterns during triaxial testing, according to n-

nearest-neighbour analysis of sand-membrane contact points (The n-nearest-

neighbour distance of a point is defined as the average distance between the point and 

the n nearest points).  They found that the side length of the hexagonal contact pattern 

(with the 6-nearest-neighbour distance) is approximately between 16% and 57% 

greater than the d50 of specimen particles (namely 1.16~1.57d50). Thus the size of 

membrane particles has a limited effect on the sand-membrane contact pattern, if the 

particle size constituting the membrane is properly selected. Considering the 

computational costs, the size of membrane particles is selected to be around 1/3 of 

sample particles based on existing empirical reports [16]. 

 

3.2 Boundary condition 

    One of essential features for triaxial cells is that the flexible membrane is attached 

to a cap at the top and a pedestal at the bottom using either rubber o-rings, or a rubber 

band that is wrapped around and thus is restrained at both ends. The constraint of the 

membrane when the triaxial specimen is subject to the confining stress is called 

“clamped effects”. To reproduce this feature, the radial horizontal displacements at the 

two ends of the membrane have to be fixed. 
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3.3 The determination of membrane parameters 

3.3.1 Bond strength 

    As pointed by many researchers [36, 37], thin membranes are stretching-dominated 

and the bending stiffness can be reasonably ignored. Therefore, the linear bonded 

contact model was introduced for modelling a bonded-ball membrane, as it enables 

particles to undergo tensile forces but do not transfer moment. This linear bonded 

model allows tensile forces to develop until a critical force failure criterion is met in 

the normal and/or shear directions. Assuming that the membrane is linearly elastic, the 

tensile strength should be set sufficiently large to accommodate all possible 

deformations of the membrane during triaxial shearing. In the presence of contact 

bonds, no friction between bonded particles is present for the flexible boundaries, thus 

avoiding unnecessary energy loss of the membrane. The deformation of the 

membrane is completely controlled by the stretch strain.  

 

3.3.2 The density 

    The density of a real membrane is trivial for triaxial testing, but the stiffness and 

mass of a particle are two dominant parameters for determining the critical time step 

used in DEM. As the contact stiffness is controlled by the elastic properties of the 

equivalent continuum membrane, artificially determining the density of the simulated 

membrane can be considered from the perspective of numerical efficiency. 

 

3.3.3 The stiffness  

    The accurate characterisation of deformation for the membrane is critical for 

establishing a successful model. Inspired by the work of Griffths and Mustoe [38], the 

elastic parameters of a physical membrane can be used to determine the contact 
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stiffness of numerical membrane particles based on the equivalence of strain energy. 

The detailed derivation will be introduced in the next section. 

 

4 Deformation parameters for bonded-ball membrane 

    In order to make a reasonable approximation, the stiffness parameters (Kn, Ks) for 

bonded particles cannot be chosen arbitrarily, but must be determined according to the 

elastic parameters (E and ν) of the continuum membrane.  

 

4.1 Representative unit cell for ball membrane 

    The fundamental idea of matching micro-particle parameters and macro membrane 

parameters is the equivalence of strain energy stored in a unit cell and the 

corresponding area of the membrane [39]:  

 cell memU U  (1) 

   The criterion for choosing a unit cell is that it can repeat itself in space and restore 

the original particle packing. This unit cell should be sufficiently large to contain 

enough structural details (being able to represent the whole model), but should be 

small enough to enable it to be easily analysed. With these considerations in mind, a 

hexagonal cell was chosen as the unit cell (Fig. 2). A similar representative cell was 

also used in [38, 40, 41]. Each particle has a corresponding unit cell and only contacts 

with its 6 next neighbouring particles (or 6 unit cells).  

    Considering two bonded particles as shown in Fig. 3, a local (or rotated) coordinate 

system 1x , 2x , 3x  is chosen where the 2x  is oriented along the link connecting the 

geometry centres of the two particles. Each particle has six local degrees of freedom 

(DOF): three translational DOFs ( 1u , 2u , 3u ), representing the relative position change 
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of the two particle centres; and three angular rotations around the centre ( 4u , 5u , 6u ). It 

should be noted that the topology of a particle assembly is independent of the rotation 

of particles, and thus only displacements in both normal and tangential contact 

directions are responsible for changes in strain energy of the equivalent continuum 

[38]. Assuming that the energy stored in each contact is distributed equally to two 

contacting particles, the total energy stored in a unit cell is: 

  
6

1

1

4
cell n s

c

U


     n sF Δu F Δu  (2) 

where 
nΔu  and 

sΔu denote the normal and tangential relative displacements of two 

contacting particles, respectively, and will be derived in Section 4.2.  

    Under the small deformation assumption, the relationship between interaction 

forces and relative displacements of two bonded particles can be written in the linear 

form. Then Equation (2) can be re-written as: 

  
6

1

1

4
cell n n s s

c

U K K


     n sΔu Δu Δu Δu   (3)       
 

4.2 Strain energy formulation based on the relative displacement of particles 

    The relationship between the relative displacement of particles u (global 

coordinate) and the equivalent strain ε in continuum was determined by letting the 

particle displacements of the lattice be equal to the displacements of the 

corresponding points in the continuum when deformed 

 
   

( )
B AAB

i ij j ju x x     (4) 

where 
 A

jx  and 
 B

jx  are the coordinates of particles A and B along the xj direction, 

AB

ij  is the equivalent strain between particles A and B.  

As the local coordinate frame is chosen to make the local 2x  direction oriented 
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along the link connecting particles A and B, it has: 

 
   

=
B A

j j AB 2jx x L l  (5) 

 

where ABL  is the distance between the two particles, and  l2j is the cosine angle 

between the 2x  direction in the local coordinate system and the jx  direction in the 

global coordinate system. 

    To link the relative displacement iu  in the global coordinate with the relative 

displacement iu in the local system, the following coordinate transformation is 

conducted: 

 
   

2( )
B AAB AB

i j ji jk k k ji jk AB k jiu u l x x l L l l         (6) 

where jil  is the cosine angle between the global and local coordinate axes: 

  cos ,ji j il e e  (7) 

in which ie  is the basis vector along the xi direction in the global coordinate system, 

and je  is the basis vector along the jx direction in the local coordinate system. 

The normal relative displacement 
nΔu can thus be easily derived as  

 
   

2 2 2 2 2( )
B AAB AB

i i jk j j i jk AB j iu u l x x l L l l        
n

Δu   (8) 

    While the tangential relative displacement 
sΔu  can be written as

  

       1 3 1 3 3 1 2 1 3( )
B AAB AB

i n i i i i jk j j i i jk AB j i iu u u u l u l x x l l L l l l                  
s

Δu Δu  (9) 

    Substituting Equations (9) and (10) into (3), the energy stored in a unit cell can be 

rewritten as 

    
26 6

2 2 2 2 2 1 3 2 1 3
4

c c c c cc
cell n ij j i kl k l s ij j i i kl l k k

c c

L
U U K l l l l K l l l l l l            (10) 

where Lc, 
c

ij  and cU  are the contact distance, equivalent strain, and equivalent strain 
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energy for each contact c (the contact that connects the central particle to each 

surrounding particle in the unit cell as shown in Fig. 2), respectively. 

 

4.3 Strain energy density 

    To determine the strain energy density, the volume of the unit cell Vcell must be 

computed. In Fig. 2, any zone connecting two neighbouring nodes represents one 

third of the equilateral triangle, so the area of each unit cell is 

 
22 3v r  (11) 

where r is the radius of bonded membrane particles;
 

    Assuming that the thickness of the membrane always equals to t, then the volume 

Vcell of the unit cell should be: 

 22 3cellV tr  (12) 

     If the distance between two particles equals two times of the ball radius ( 2cL r ), 

then the stain energy density is: 
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4.4 Stress and elastic tensor in membrane 

By assuming that the corresponding strain field in the unit cell is uniform, a local 

strain equals to the overall strain in the unit cell (
c

ij ij  ). According to theory of 

elasticity [6], the stress tensor of a continuum can be obtained by differentiating the 

strain energy density with respect to the corresponding strain component as follows: 
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(14) 

The elastic stiffness tensor can be obtained by differentiating the stress component 
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with respect to the corresponding strain component: 
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4.5 Stiffness tensor for ball membrane 

For the case that the radius of the cylindrical membrane for enclosing the triaxial 

specimen far outweighs that of bonded particles constituting the membrane, the unit 

cell involving 6 contacts can be viewed as a plane. In our model described in Fig. 3, 

the local coordinate frame ( ix ) is obtained by changing the coordinate axes in the 

global coordinate frame ( ix ). Specifically, the x1 axis remains unchanged, and x2 and 

x3 always rotate the same angle, so that the direction cosine lij can be obtained as 
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 (16) 

For a general elastic material, considering the symmetry condition of elastic 

component ijkmC , a shorter matrix notation for the elastic matrix form is written as: 
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Substituting Equations (16) and (17) into (18) leads to 
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    Assuming that the response of the membrane in the plane x2-x3 is isotropic, the 

bonded-ball membrane can be regarded as a transversely isotropic material. It follows 

that the constitutive relationship matrix can be expressed in terms of engineering 

constants E, ν, and G as follows: 
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For the proposed bonded-ball membrane, the thickness of the membrane is 

assumed unchanged when subjected to potential stress conditions, namely 1E   . 

Therefore, Equation (20) can be expressed as:  
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where E=E1=E2 and ν=ν1=ν2, correspond to the elastic modulus and Poisson ratio in 

the isotropic plane. Without involving 11  and 11 , the stiffness matrix can be 

reduced to  
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       (21) 

By comparing the stiffness matrixes of the elastic membrane between Equations (19) 

and (22), we can derive: 
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Thus the relation between the contact stiffnesses of bonded balls in the hexagonal 

pattern and its equivalent elastic continuum can be expressed as  
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The above derived formula can be applied to determine the contact stiffness in the 

whole membrane. 

 

4.6 Verification of bonded-ball membrane  

Several uniaxial tension tests were conducted to validate the proposed bonded ball 

membrane. The numerical results were compared with the analytic solution derived 

from classical elastic mechanics.  

Taking a triaxial specimen with a height of 98mm, a cylindrical radius of 25mm 

and a membrane particle radius of 0.001mm as an example, the uniaxial tension cases 

for membrane was performed. Consider the cylindrical membrane subject to a vertical 

tensile force on the two ends of the numerical membrane, and assume that the 

membrane is lineally elastic. From the perspective of elastic mechanics, the extension 

subjected to an axial force F can be expressed as: 

 
FL

l
EA

   (25) 

where E, L, A are the elastic modulus, length and sectional area of the membrane, 

respectively.  

The particle radius constituting the membrane bears resemblance with the element 

size in FEM or FDM. A finer discretisation will achieve a more accurate solution. The 

ball representation for a membrane, however, has another issue: the particle number 

constituting each line or column must be an integer and thus a random radius probably 

lead to some differences in membrane arrangement. Performing several sets of 

uniaxial tension tests with increasing the ratio of the cylindrical radius to the radius of 
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particles constituting the membrane, the analytical solution from Equation (24) was 

compared with the DEM numerical solution based on the derived particle-scale 

parameters from Equation (23), as shown in Fig. 5. The results show that the errors 

are less than 5% when the radius ratio between the cylindrical membrane and the 

membrane particles is larger than 35.  The general agreement also demonstrates that 

the bonded-ball membrane is a reliable approximation to the elastic behaviour of 

membrane. 

    Although no clear pattern can be found, an empirical rule to determine a radius 

range of membrane particles can still be proposed. When the radius ratio is less than 

35, which leads to a coarse discretisation, the numerical error may be unsatisfactorily 

large. When the radius ratio is over 100, the resulting particle system may have too 

many elements, giving rise to practically unaffordable computation costs. Therefore, 

the radius ratio ranging between 35 and 100 appears to strike a reasonable balance 

between accuracy and computational cost. 

5 Implementation of bonded-ball membrane on triaxial testing 

5.1 The implementation steps of bonded-ball membrane 

    The triaxial specimen and ball membrane tend to be generated by two methods [32]. 

One generates the specimen and the membrane independently, and is called the “step-

by-step membrane forming method”. Another method is the “once membrane-forming 

method”, which generates the specimen and the membrane at the same time. The 

latter method develops the predefined confining stress by relocating positions of 

membrane particles. The initial hexagonal packing configuration of membrane 

particles probably becomes disordered and the accuracy of parameter equivalence 

(macro and meso) can be compromised by the disordered packing configuration. 
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Therefore, the first “step-by-step membrane forming method” is considered here. 

    The first step of the method is to generate a specimen within a cylindrical wall and 

load the specimen to the predefined confining stress by using the conventional servo-

wall method.  

    Having prepared a specimen roughly within the predefined stress and geometric 

condition, the bonded-ball membrane is then installed in the second step based on the 

following sub-steps: 1) Set all linear and rotational velocities of the specimen particles 

to 0; 2) Delete the original lateral wall boundary; 3) Install the hexagonal ball 

membrane (Note the radius of the cylindrical membrane should be slightly larger than 

the rigid wall boundary considering the volume of membrane particles. Empirically, 

this gap may be 0.9-0.95 times of the radius of the membrane ball); and 4) Deactivate 

the contact interaction between the membrane and the loading wall.  

    After the bonded-ball membrane has been installed, the loading of the confining 

pressure is implemented based on the following sub-steps: 1) Fix the velocity of the 

bonded particles; 2) Release the velocity of the specimen and iterate the whole system 

to a rough state of equilibrium; 3) Assign external forces on the bonded ball 

membrane (This step corresponds to the experimental step of loading hydrostatic 

pressure on the membrane. The main idea of assigning external forces follows the 

contribution of [20] and will be briefly introduced in Section 5.2); 4) Release the 

velocity of the bonded-ball locating between the top and bottom loading plates and fix 

the membrane particles outside the top and bottom loading plates to reproduce the 

clamped effects as the experiment does; and 5) iterate the model to a state of 

equilibrium. 

The axial loading is simulated by giving an identical speed on both loading plates 

and the membrane particles outside them. The loading rate should be slow enough to 
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maintain a quasi-static condition. 

 

5.2 The implementation of confining stress condition 

    The hydrostatic pressure is characterised by isotropic stress, so the critical point for 

the implementation of confining stress consists in exerting static forces uniformly in 

all orientations. With the hexagonal ball packing, the whole membrane can be viewed 

as being discretised into a set of triangular networks, as illustrated in Fig. 2a. The 

hydrostatic force exerted on each triangle can be assumed to be shared equally among 

the three balls that constitute the triangle. Then the resultant force acting on each 

particle can be computed from the 6 neighbouring particle triangles. For example, the 

total force 0
F  acting on particle 0, illustrated in Fig. 2b, is: 

 
6

3

static
i

i

S

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inF  (26) 

where static  is the confining stress; ni and Si are the normal direction and area of the 

i
th

 triangle, respectively.  

Both horizontal and vertical confining stresses can be considered in the above 

formulation. As all the coordinates for membrane particles are known, the total force 

shared by each particle can be determined. Furthermore, the directions of the 

confining pressure can be updated after every few cycles to fit the possible 

deformation of the triaxial specimen. This means that the confining pressure can be 

accurately characterised even the shape of the specimen undergoes a large 

deformation. 

 

5.3 Volume calculation for sample with flexible boundary 

Another problem arising from particle membrane is the determination of the 
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specimen volume. The volume of a deformed specimen with a bonded-ball membrane 

representation is not as straightforward as for the specimen with a rigid boundary. 

Here several effective methods are provided. 

The first method is based on the Gauss divergence theorem [20]. The idea is that 

the specimen is bounded by the surface triangles (of the flexible membrane) and the 

loading planes (both top and bottom), and thus it can be viewed as a closed space. 

Then the volume calculation of the whole specimen can be simplified to the integrals 

of the surface enclosing the specimen. For each surface triangle, their vertex 

coordinates are the corresponding coordinates of membrane particles, and then their 

outward normal can be easily determined by the known positions. By using the Gauss 

theorem, the volume of specimen can be obtained: 
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where Vs is the volume of the specimen; S is the surface of the closed specimen 

space(including the top and bottom loading plates). For the ith triangle (or element) c 

on the membrane surface, the centroid coordinate 1 2 3= c c cx x x（ , , ）c

ix , the outward 

normal  1 2 3=c c c c

i n n n, ,n , cA  is the area of corresponding triangle or element c.  

    The second method is called the radial polyhedron. As the membrane can be fully 

represented by a set of triangulated elements, a tetrahedron can always be generated 

by connecting an arbitrary point inside the specimen and the three vertices of an 

arbitrary surface triangle. The volume of each tetrahedron can be simply computed. 

Then the volume of the specimen can be given as follows: 
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 (28) 

where Send is the contact area between the top or bottom platen and the specimen; h is 
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the height of the triaxial specimen; ai, bi, and ci are three vectors connecting a point 

inside the specimen and the three vertices of the i
th

 surface triangle, respectively. 

    The last method is to use the Voronoi tessellation [42]. The Voronoi tessellation 

enables each particle within specimen to be uniquely assigned a polyhedral volume. 

The sum of all polyhedral volumes will be the volume of the specimen. 

    As the deformation of a triaxial specimen takes place incrementally during testing, 

the logarithmic strain (also called true strain or Hencky strain) was adopted to 

consider the influence of the strain path. In this study, the axial strain ε1 and 

volumetric strain εv are given as follows [43]: 

 
0

0
1

0

= ln ln
H

H

HH H

H H H


 

   
      

  
   (29)

 

 
0

0

0

= = = ln ln
V

V V
V

VV V

V V V


 

   
      

  
   (30)

 

where H and V are their current height and volume of the specimen, respectively, and 

H0 and V0 are respectively the initial height and volume of the specimen before testing. 

Note the compression is assigned a positive value. 

 

6 Triaxial testing 

6.1 Triaxial testing configuration for DEM simulation and experiment  

    To verify the effectiveness of the proposed bonded-ball membrane, two sets of 

triaxial testing simulations were performed based on the reported laboratory 

experiments [18]. Table 1 summarises the experiment data, and Table 2 lists the 

corresponding membrane and specimen parameters. A set of common elastic 

parameters for latex membrane were selected (the elastic modulus is 1.25 MPa, the 

Poisson ratio is 0.2, and the membrane thickness is 0.3mm). The corresponding 
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particle-scale parameters are determined based on Equation (25) and can be found in 

Table 2.  

The step-by-step procedures for making a specimen enclosed with a flexible 

membrane can be referred to Section 5.1. After having prepared the triaxial specimen 

with the predefined confining stress, the specimen was loaded by moving both the top 

and bottom plates simultaneously towards each other at a rate of 0.05m/s, which has 

been checked to be slow enough to ensure a quasi-static condition. When the axial 

strain reaches 16%, the triaxial loading process terminates. 

  

6.2 Stress-strain relation 

The stress-strain relationship for soils is fundamental to understand their 

mechanical behaviours such as the strength and stiffness. As particle packing 

configurations in experiments cannot be perfectly reproduced in any DEM specimen, 

some mechanical behaviour of granular assemblies therefore will inevitably be 

influenced by some random factors. To obtain meaningful comparisons, numerical 

tests with two different random seeds (R1 and R2) are performed to show the 

sensitivity due to random packing.  

Figure 6a compares stress-strain responses obtained from experimental data and 

DEM simulations with the flexible membrane boundary (T1 and T2 represent 

confining stresses of 50kPa and 100kPa, respectively). It shows that the proposed 

membrane algorithm is generally reliable in reproducing the experimental outputs. 

Fig6b shows comparison of stress-strain responses arising from triaxial testing with 

both flexible membrane and rigid-wall boundary, respectively. To make the data 

clearer, and to further understand the influence of confining stress, two groups of 

additional tests (T3) with a higher confining stress (200 kPa) were added in Fig.6b.  
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It is evident that the discrepancies of the results due to different boundary 

conditions are comparable with those due to random variations in packing. Thus it can 

be concluded that the boundary condition may have limited impacts on the stress-

strain responses of granular materials, especially in the initial elastic zone of stress-

strain curves. However, it is still observed that models with a rigid wall boundary 

slightly underestimate the deviator stress in the post-elastic zone compared to the 

simulations with a flexible membrane boundary. Similar conclusions are obtained in 

[10, 18-19]. The mechanism responsible for this difference is that the end restraint in 

our models with the flexible boundary acts as an additional confinement at the ends of 

the specimen, preventing the soil from moving outwards freely. In the elastic zone, the 

packing structure and particle stiffness play dominant roles in determining the initial 

stress-strain curves, but in the post-elastic zone, the restraints of lateral deformation at 

the two ends of the specimen (including end friction) may reinforce the strength of the 

specimen. Thus discrete element models with flexible boundaries but without end 

restraints generally show that the boundary condition has limited influences on the 

stress-strain behaviour [13]. 

In the post-peak regime of the stress-strain curves, the specimen with the flexible 

membrane under 50 kPa always match well with the experimental results, but its 

counterparts under 100kPa exhibits a softening phenomenon, similar to the other two 

sets of testing with the rigid boundary. The reason for the softening occurred in the 

case of 100kPa may be related to the initial particle structure and will be further 

discussed in Section 6.4. Overall, a generally satisfactory agreement between the 

laboratory experiment and the numerical results with the flexible membrane boundary 

demonstrates that the proposed membrane algorithm is reliable.  

     In addition to the friction and stiffness of a single particle, the density, pre-shear 
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stress, and soil structure are also critical to determine the shearing resistance of soils 

[44-46]. For the granular assembly, the homogenisation of density, stress distribution 

and packing structure within the specimen may be compromised by particulate 

jamming, where only several strong force chains along the compressional direction 

bears most of the external load but the weak contacts out of the strong force chains 

make a practically negligible contribution in terms of resisting the external load [47, 

48]. In addition, the loading rate or strain rate also affects the stress-strain relations of 

granular sand [49-51]. Although no clear explanation is reported, the widely used 

method by matching the stress-strain curves of sheared granular assembly to calibrate 

the parameter of a single particle is just a rough reflection for the macro responses.  

A recognisable slip-stick phenomenon is experimentally observed, but both DEM 

models show no such visibly related behaviour. The slip-stick phenomenon tends to 

be viewed as the production of the evolution of force chains in granular assembly [52]. 

As the granular assembly transmits external forces in the form of force networks [53], 

the strain-dominated compression method in triaxial testing will cause the continuous 

break and reconstruction of force chains. The break or collapse of strong force 

columns gives rise to a sudden reduction in the stress during compression, but newly 

developed strong force chains occur as the compression continues, and then the 

resistance to shear or stress within specimen comes back right away. The difference of 

particle structures between experiments and numerical models may be another factor 

that affects the evolution of force chains.  

In addition, the mechanism responsible for the slip-stick phenomenon may be 

related to the behaviour of frictional strength between two sliding interfaces. The 

sliding of real interfaces between two bodies also tends to show a similar slip-stick 

phenomenon [54]. The evolution of frictional strength is governed by the real contact 
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area and the shear strength of contact [55]. Typically, the applied forces on the contact 

interface are just supported by several micro-contacts comprising only a small part of 

the apparent contact areas and the shear strength of contacts are rate-dependent. 

However, the frictional motion is conceptually viewed as the motion in an ideal point 

contact and is simply described by the Coulomb law in the numerical model. 

Therefore, the simplified contact model may be another reason for the difference of 

the slip-stick phenomenon. 

 

6.3 Volume change 

    A significant feature of soils is that the shear deformation process is accompanied 

by a change in volume, partly due to the rearrangement of soil particles when 

subjected to external forces. As a macro index to characterise the whole behaviour of 

soils, the shear-induced volume change of the specimen with both rigid and flexible   

boundaries are investigated. The volume strain for the specimen with the membrane 

boundary is calculated based on Equation (31).  

As Fig. 7 shows, all the specimens exhibit the volume contract behavior during the 

shearing as relatively loose specimens were used, but their stress-strain relations are 

not necessarily stress hardening. In particular, the triaxial tests with the rigid boundary 

tend to show softening in the post-peak regime of stress-strain relations.  

Under the identical axial strain, the specimens with the membrane boundary show a 

larger volumetric strain compared with the specimens with the rigid boundary in both 

confining stress conditions. The volumetric strain of triaxial testing with a flexible 

boundary is approximately the twice of its counterpart with a rigid boundary. In 

addition, the volumetric strain in all of the tests show a similar trend and similar 

values at the initial development stage of axial strain, because the initial axial strain of 
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triaxial shearing is dominated by the elastic deformation, and the boundary conditions 

play a lesser role in this stage.  

 

6.4 Failure modes and shear band 

    The localisation of plastic deformation in the form of shear bands is a common 

feature for the instability of ductile solid [56]. However, the faillure modes of 

geological materials under triaxial shearing show not only the brittle failure with shear 

planes but also the barrelling failure [57, 58]. Bono et al. [59] stated that the failure 

mode of triaxial testing is related to the cementation strength of specimen particles and 

the confining stress.  

    In this work, the failure model of triaxial testing is found to be related to the boundary 

condition. Figure 7 depicts the deformation of the triaxial specimen with both flexible 

and rigid boundaries after sheared to a final axial strain of 16%. The specimen with 

the rigid boundary always keeps a cylindrical shape, as the particles within the 

specimen are forced to adapt to the kinematics of the boundary walls.  However, this 

is not the case for the flexible boundary. Particles enclosed by the flexible boundary 

are able to move freely at any position. The specimen shows a barrelling deformation 

under the confining stress of 50 kPa, and the deformation of the specimen under the 

confining stress of 100kPa cannot be easily concluded yet but it also shows free 

movement characteristics clearly. 

In a specimen undergoing triaxial loading, the strain near the loading plates is 

significantly larger than the other parts within the specimen, as the specimen deforms 

due to the strain-controlled loading. Therefore, the shear band of the triaxial specimen 

tends to be recognised by non-strain indications such as the particle rotation, the 

rotation of principal stress, the rotation of principal fabric tensor and displacement 
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within the specimen subjected to triaxial testing [60, 61].  

Figure 8 shows the displacement field of the triaxial specimen sheared to an axial 

strain of 16%. A highly localised deformation pattern is captured. A slant and band-

like shear zone was clearly found in the specimen enclosed with a rigid boundary. The 

specimens enclosed with a membrane boundary show a slant band-like zone under the 

confining stress of 100 kPa and a horizontal ring-like zone under the confining stress 

of 50 kPa. Although the similar slant band-like shear zone was captured in the 

specimen enclosed with a flexible membrane under the confining stress of 100kPa, 

the position and orientation of the shear band are different.  

The generation of shear band in triaxial testing with a flexible boundary under the 

confining stress of 100kPa can be explained with the Griffith flaw. As pointed by Rice 

[56], the localised instability may be in situations that are dominated by some strong 

local inhomogeneity. There are some local and initial flaws or relatively large voids 

within the randomly distributed particulate assembly that may cause the initiation of a 

localised zone and subsequently gives rise to concentrating deformation in its vicinity. 

Particularly, a granular specimen with a relatively small number of particles is easier 

to be affected by such initial inhomogeneity. As only 2303 particles in total were 

considered in our current model in order to reduce the computational costs, the present 

numerical results may not be difficult to match experiments, as actual packing 

configurations in experiments cannot be perfectly reproduced in DEM specimens; 

However, by performing the triaxial tests with the same packing configuration but with 

different boundary conditions, it is shown that different boundary conditions can give rise 

to different failure models for a specimen subjected to triaxial shearing. 
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7 Micro explanation for macro responses with two different boundaries 

    The macro response tends to have some micro origins for granular assemblies. In 

this section, the particle-scale quantities, including contact forces and contact fabric, 

were investigated to understand how boundary conditions affect the micro behaviour 

of granular materials. 

 

7.1 The distribution of contact forces 

Contact forces are the internal resistances or counterforces of a granular assembly 

when subjected to external forces. The contact force distribution can reveal how the 

external load is transferred within in a granular assembly.  As a straightforward 

characterisation of contact forces is difficult to achieve in a 3-dimensional model, a 

statistical analysis is adopted here for estimation and quantitative comparisons [62, 

63].  Define strong contacts as their normal contact force above the mean normal 

force <fn> within a granular assembly and vice versa for weak contacts. Aze´ma and 

Farhang Radja¨ [64] proposed a mathematical model to reflect the probability 

distribution of strong and weak contact forces within a granular assembly subjected to 

biaxial shearing and found that the probability distribution of strong contacts varies 

exponentially, whereas the probability distribution of the weak contacts follows a 

power law.  

The logarithmic probability density function (pdf) of normal contact forces 

normalised by the mean normal force of triaxial tests with a flexible membrane was 

plotted in Fig. 10. It clearly shows that the boundary condition has a significant effect 

on the distribution of contact forces. Particularly, the probability distribution of strong 

contacts for triaxial shearing tests with a rigid boundary is evidently larger than those 

with a flexible boundary. From the fitted curves of the probability distribution for all 
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triaxial cases, strong and weak force networks are also dependent on the boundary 

condition. Furthermore, the confining stresses seem to have very limited influences on 

the probability density function of normal contact forces. 

   An interesting phenomenon observed from our simulations is worth mentioning.  

The specimen with the flexible membrane boundary is much easier to reach the 

predefined stress condition, while the specimen with the rigid boundary tends to 

achieve an undesired stress state inside the specimen, even if the servo-stresses 

condition on the boundary has been satisfied. This phenomenon can be well-explained 

by the distribution of contact forces. The specimen with a flexible boundary tends to 

develop well-distributed contact forces, but the one within a rigid boundary generally 

develops a non-homogeneous distribution of contact forces where some contacts bear 

excessive contact forces while some contacts share a very limited portion of overall 

external forces (similar to the jamming phenomenon). This indicates that the 

boundary condition is also a factor for leading to jamming of a granular assembly.  

 

7.2 Fabric evolution 

It is well-known that the spatial arrangement of particles and voids tends to exhibit 

anisotropy and evolves to a specially preferred orientation during loading, namely the 

stress-induced anisotropy, because the particle contacts tend to separate in the 

directions that are approximately orthogonal to the direction of the major principal 

stress during shear deformation [65, 66]. Fabric refers to the spatial arrangement of 

particles and associated voids [67]. The initial fabric of granular specimen is an 

important factor for determining its mechanical behaviour. 

    The commonly used second-order fabric tensor was characterised with the 

distribution of contact normal and branch vectors. The mathematical definition of a 
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second-order fabric tensor is proposed by Oda [68] as follows: 

 
c
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ij i j i j
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n n E n n n
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
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where Nc is the number of contacts, ni is the i-direction component of the unit vector 

along the normal direction of the contact plane, and E(n) is the contact normal 

distribution function. As shown in Fig.11, Ω is a unit sphere and dΩ is the differential 

surface representing the contact plane. The expansion of Equation (32) gives a three-

dimensional matrix as: 
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    For an arbitrary contact K, the normal orientation of the contact plane can be 

expressed with the angles defined in Fig. 11 as: 
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Then the fabric tensor can be expressed as: 
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 (34) 

 

    The preferred orientations and the magnitude of the structural anisotropy within a 

granular specimen can indicate the contact intensity in the direction of principal 
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stresses and can be expressed with the principal fabric components and its 

corresponding orientations [69]. Similar to the stress tensor and principal stress 

components, the eigenvalues and eigenvectors of the fabric tensor give the principal 

fabric components and their orientations. To capture the effect of boundary conditions 

on the structural evolution of granular assembly, the principal fabric tensors ϕ11, ϕ22, 

ϕ33 were calculated during the whole course of testing, as shown in Fig. 12. 

Initially the fabric distributions of four triaxial specimens are roughly isotropic. 

During the triaxial shearing, the contact orientations tend to be lined with the vertical 

direction but gradually deviate from the minor principal fabric direction (horizontal 

direction). The changes of the fabric tensors also show the irreversible plastic 

deformation (sliding of particles) that develops throughout the shearing process of 

specimen rather than after shear bands emerge. Furthermore, after the shear-band fully 

develops, the major principal fabric tensor, at least from the perspective of overall 

specimen, starts to decrease gradually.  

By using the solid angle representation, the contact normal distribution function 

E(n) can be expressed as E(γ,β), and Equation (32) can be rewritten as follows: 

 
2
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 

         (35) 

    The contact normal distribution function E(γ,β) is determined by the packing 

structure of the assembly and thus can be of any form. Kanatani [70] and Chang at al. 

[71] derived a Fourier series representation of the distribution function for a particle 

assembly statistically symmetric about the direction of the vertical direction. 

Practically, a simple truncated even-order Fourier series is widely used for the 

approximation: 

 
3(1 cos 2 )

( , )
4 (3 )

a
E

a


 







 (36) 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

33 

 

where a is a parameter that is generally ranged from -1 to 1, and can be used as an 

indication of fabric anisotropy. When a>0, the contact normals of particles within the 

specimen tend to align with the vertical direction; when a<0, the contact normals tend 

to concentrate along the horizontal direction. In addition, Equation (37) is 

independent of β and has the following property: 

 ( ) ( )E E     (37) 

Yimsir and Soga [66] derived the fabric tensor further by substituting Equation (35) 

into Equation (36) and evaluating the integral. The resulting new fabric tensor can be 

described with the single variable a as: 
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 (38) 

     By letting the above fabric tensor equal to the corresponding component calculated 

from the numerical model based on Equation (35), a mathematically overdetermined 

system of equations (three equations but only one unknown) is obtained. Here the least 

squared method (LSM) is introduced to find the approximate solution of a. In this 

method, the parameter a is required to minimise the sum of squares for error (SSE) 

defined as 
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i.e. the derivative of S(a) with respect to the parameter a must be zero: 

 =0
dS(a)

da

 (40) 
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By solving Equation (41), we obtain: 

 
15( + -2 )

=
(-8+5 +5 -10 )

xx yy zz

xx yy zz

a
  

  
 (41) 

    With the substitution of the fabric tensor calculated from the simulated results 

based on Equation (35), an approximation value of the parameter a can be 

quantitatively determined. In the present work, we term the parameter a as the 

anisotropy degree, as this single parameter can effectively characterise the degree of 

anisotropy within a three-dimensional granular assembly. 

 Figure 13 shows the evolution of a during the loading and demonstrates the 

differences between different boundary and stress conditions. Basically, the specimen 

with a rigid boundary undergoes stronger fabric anisotropy during triaxial shearing 

under the identical confining stress. In addition, the anisotropy degree is also related 

to the confining stress: a stronger degree of fabric anisotropy is captured with a higher 

confining stress. 

    The evolution of fabric anisotropy is very similar to the changes of the major 

principal fabric tensor. The position with the highest degree of anisotropy undergoes a 

larger axial strain over the peak position of stress-strain curves. As the axial strain 

further develops, the anisotropy appears to decrease gradually in all the triaxial testing 

cases. The change of fabric anisotropy of triaxial testing shows that the boundary 

condition has a significant influence on the microstructure of specimens. 

 

8 The effect of membrane thickness  

The thickness of membrane has some effects on the behaviour of triaxial specimen, 

such as the membrane compliance [72], membrane penetration [73], and even 

liquefaction tests [74]. The thickness of membrane can be simulated by our proposed 
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numerical procedure. Particularly, the commonly used thicknesses of membrane are 

0.3mm, 0.6mm, and 1mm, respectively. Assuming that the elastic modulus and 

Poisson ratio are respectively 1.25MPa and 0.2 for the latex membrane, the 

corresponding particle-scale stiffness parameters for the bonded-ball membrane are 

obtained, according to our derived Equation (25) and are listed in Table 3.     

The stress-strain relations for the triaxial tests with different membrane thicknesses 

are depicted in Fig. 14. Small but recognisable differences can be observed. The 

results show that vertical stresses tend to have a larger value when the thickness 

increases. This means that an overestimated strength for the specimen may be 

obtained for thick membrane boundaries. Henkel and Gilbert [3] also had 

experimentally obtained a similar conclusion. The reason behind it is that a stronger 

boundary constraint is provided from the membrane with a larger thickness. Under an 

identical deformation (strain condition), a stronger constraint of thicker membrane 

enables the triaxial specimen to bear a larger induced-stress.  

In addition to the thickness, the stiffness parameters of the membrane can also be 

directly determined and numerically considered. The increase in the membrane 

stiffness has a similar effect as the increase in the thickness of membrane, as the both 

increases will give rise to increases in particle-scale stiffness parameters of membrane.  

 

9 Conclusion and Discussion 

An algorithm has been proposed in the present work to simulate the flexible 

boundary of triaxial testing in the DEM framework. The actual properties of a 

physical membrane, such as elastic parameters and thickness can be represented by 

numerical particle-scale parameters of flexible boundary. Furthermore, the specimen 

can deform freely with the hydrostatic confining stress from arbitrary directions to be 
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implemented accurately. The proposed algorithm has been validated with laboratory 

experiments. Numerical triaxial tests with both flexible and rigid boundaries have also 

been compared from the meso scale to the macro scale. The results show that the 

boundary conditions of triaxial testing have limited influences on the stress-strain 

behaviour but a relatively large impact on the volumetric change, the failure mode, the 

distribution of contact forces, and the fabric evolution of particles in the specimen 

during triaxial testing. 

Nevertheless, the proposed algorithm deals with the triaxial testing with drained 

conditions or with dry particles only. For undrained loading cases, one can couple a 

DEM code with a CFD code to simulate undrained cases [75]. A possible solution is 

to couple DEM with the lattice Boltzmann method (LBM) [76-78]. Alternatively, one 

can also use DEM models involving only dry particles to simulate the undrained 

condition approximately by performing constant-volume shearing [43,66,79]. By 

adjusting the horizontal strain continuously with the vertical compression, a constant 

value for the total assembly volume can be maintained during shearing. It is possible 

to fit the assumption of constant volume during shearing in our model. Particularly, it 

can be easily implemented if the boundary is assumed to move with a constant rate, 

although this scheme will make the flexible particle membrane degenerate into a 

method similar to the rigid wall method. Alternatively, to keep the membrane 

deformed freely considering the “clamped effects” at the two ends of the triaxial 

specimen when simulating the undrained condition, a possible solution is to assume a 

deformation pattern for the membrane (such as barrelling), but it is necessary to verify 

the approach with a number of laboratory experiments.     

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

37 

 

ACKNOWLEDGMENTS 

Financial supports from the National Natural Science Foundation of China (Grants No. 

51579237 & 51779017) are appreciated.  

 

Reference 

[1] Frost JD, Evans TM. Membrane Effects in Biaxial Compression Tests. Journal of Geotechnical and 

Geoenvironmental Engineering. 2009;135(7):986-91. 

[2] Newland P, Allely B. Volume changes during undrained triaxial tests on saturated dilatant granular 

materials. Geotechnique. 1959;9(4):174-82. 

[3] Henkel D, Gilbert G. The effect measured of the rubber membrane on the triaxial compression 

strength of clay samples. Geotechnique. 1952;3(1):20-9. 

[4] Vermeer P. The orientation of shear bands in biaxial tests. Geotechnique. 1990;40(2):223-36. 

[5] Potyondy DO, Cundall PA. A bonded-particle model for rock. International Journal of Rock 

Mechanics and Mining Sciences. 2004;41(8):1329-64. 

[6] Cheng Y, Nakata Y, Bolton M. Discrete element simulation of crushable soil. Geotechnique. 

2003;53(7):633-41. 

[7] Wang Y, Tonon F. Modeling triaxial test on intact rock using discrete element method with 

membrane boundary. Journal of engineering mechanics. 2009;135(9):1029-37. 

[8] Ergenzinger C, Seifried R, Eberhard P. A discrete element model predicting the strength of ballast 

stones. Computers & Structures. 2012;108-109:3-13. 

[9] Zhao X, Evans TM. Numerical analysis of critical state behaviors of granular soils under different 

loading conditions. Granular Matter. 2011;13(6):751-64. 

[10] Khoubani A, Evans TM. An efficient flexible membrane boundary condition for DEM simulation 

of axisymmetric element tests. International Journal for Numerical and Analytical Methods in 

Geomechanics. 2018;42(4):694-715. 

[11] Zhao X, Evans TM. Discrete simulations of laboratory loading conditions. International journal of 

geomechanics. 2009;9(4):169-78. 

[12] Thornton C. Numerical simulations of deviatoric shear deformation of granular media. 

Géotechnique. 2000;50(1):43-53. 

[13] Cheung G, O'Sullivan C. Effective simulation of flexible lateral boundaries in two- and three-

dimensional DEM simulations. Particuology. 2008;6(6):483-500. 

[14] Cui L, O'Sullivan C, O'Neill S. An analysis of the triaxial apparatus using a mixed boundary three-

dimensional discrete element model. Géotechnique. 2007;57(10):831-44. 

[15] O'Sullivan C, Cui L. Micromechanics of granular material response during load reversals: 

Combined DEM and experimental study. Powder Technology. 2009;193(3):289-302. 

[16] de Bono J, McDowell G, Wanatowski D. Discrete element modelling of a flexible membrane for 

triaxial testing of granular material at high pressures. Géotechnique Letters. 2012;2(4):199-203. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

38 

 

[17] Lu Y, Li X, Wang Y. Application of a flexible membrane to DEM modelling of axisymmetric 

triaxial compression tests on sands. European Journal of Environmental and Civil Engineering. 

2018:1-18. 

[18] Cil MB, Alshibli KA. 3D analysis of kinematic behavior of granular materials in triaxial testing 

using DEM with flexible membrane boundary. Acta Geotechnica. 2013;9(2):287-98. 

[19] Binesh SM, Eslami-Feizabad E, Rahmani R. Discrete Element Modeling of Drained Triaxial Test: 

Flexible and Rigid Lateral Boundaries. International Journal of Civil Engineering. 2018. 

[20] Li Z, Wang YH, Ma CH, Mok CMB. Experimental characterization and 3D DEM simulation of 

bond breakages in artificially cemented sands with different bond strengths when subjected to 

triaxial shearing. Acta Geotechnica. 2017;12(5):987-1002. 

[21] Li B, Zhang F, Gutierrez M. A numerical examination of the hollow cylindrical torsional shear test 

using DEM. Acta Geotechnica. 2014;10(4):449-67. 

[22] Li B, Guo L, Zhang F-s. Macro-micro investigation of granular materials in torsional shear test. 

Journal of Central South University. 2014;21(7):2950-61. 

[23] Wang M, Feng Y, Wang Y, Zhao T. Periodic boundary conditions of discrete element method-

lattice Boltzmann method for fluid-particle coupling. Granular Matter. 2017;19(3):43. 

[24] Cundall P. Computer simulations of dense sphere assemblies.  Studies in Applied Mechanics: 

Elsevier, 1988. p. 113-23. 

[25] Kruyt NP, Rothenburg L. Shear strength, dilatancy, energy and dissipation in quasi-static 

deformation of granular materials. Journal of Statistical Mechanics: Theory and Experiment. 

2006;2006(07):P07021. 

[26] Bardet J, Proubet J. Numerical investigation of the structure of persistent shear bands in granular 

media. Geotechnique. 1991;41(4):599-613. 

[27] Ng T-T. Triaxial Test Simulations with Discrete Element Method and Hydrostatic Boundaries. 

Journal of Engineering Mechanics. 2004;130(10):1188-94. 

[28] Cui L, O'sullivan C, O'neill S. An analysis of the triaxial apparatus using a mixed boundary three-

dimensional discrete element model. Geotechnique. 2007;57(10):831-44. 

[29] Wang Y, Tonon F. Modeling Lac du Bonnet granite using a discrete element model. International 

Journal of Rock Mechanics and Mining Sciences. 2009;46(7):1124-35. 

[30] Cundall PA. Numerical experiments on localization in frictional materials. Ingenieur-archiv. 

1989;59(2):148-59. 

[31] Iwashita K, Oda M. Rolling resistance at contacts in simulation of shear band development by 

DEM. Journal of engineering mechanics. 1998;124(3):285-92. 

[32] Tang H, Zhang X, Ji S. Discrete element analysis for shear band modes of granular materials in 

triaxial tests. Particul Sci Technol. 2016;35(3):277-90. 

[33] Wilson JF, Sáez E. Use of discrete element modeling to study the stress and strain distribution in 

cyclic torsional shear tests. Acta Geotechnica. 2017;12(3):511-26. 

[34] de Bono JP, McDowell GR. DEM of triaxial tests on crushable sand. Granular Matter. 

2014;16(4):551-62. 

[35] Saussus D, Frost J. Simulating the membrane contact patterns of triaxial sand specimens. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

39 

 

International journal for numerical and analytical methods in geomechanics. 2000;24(12):931-46. 

[36] Begley MR, Mackin TJ. Spherical indentation of freestanding circular thin films in the membrane 

regime. Journal of the Mechanics and Physics of Solids. 2004;52(9):2005-23. 

[37] Liu KK, Ju BF. A novel technique for mechanical characterization of thin elastomeric membrane. 

Journal of Physics D: Applied Physics. 2001;34(15):L91. 

[38] Griffiths D, Mustoe GG. Modelling of elastic continua using a grillage of structural elements 

based on discrete element concepts. International Journal for Numerical Methods in Engineering. 

2001;50(7):1759-75. 

[39] Ostoja-Starzewski M. Lattice models in micromechanics. Applied Mechanics Reviews. 

2002;55(1):35-60. 

[40] Wang Y, Mora P. Macroscopic elastic properties of regular lattices. Journal of the Mechanics and 

Physics of Solids. 2008;56(12):3459-74. 

[41] Asahina D, Ito K, Houseworth J, Birkholzer J, Bolander J. Simulating the Poisson effect in lattice 

models of elastic continua. Computers and Geotechnics. 2015;70:60-67. 

[42] Rycroft CH, Grest GS, Landry JW, Bazant MZ. Analysis of granular flow in a pebble-bed nuclear 

reactor. Physical review E. 2006;74(2):021306. 

[43] Guo N, Zhao J. The signature of shear-induced anisotropy in granular media. Computers and 

Geotechnics. 2013;47:1-15. 

[44] Terzaghi K, Peck RB, Mesri G. Soil mechanics in engineering practice: John Wiley & Sons, 1996. 

[45] Wang S, Luna R, Onyejekwe S. Effect of Initial Consolidation Condition on Postcyclic Undrained 

Monotonic Shear Behavior of Mississippi River Valley Silt. Journal of Geotechnical and 

Geoenvironmental Engineering. 2015;142(2):04015075. 

[46] Wang S, Luna R, Onyejekwe S. Postliquefaction behavior of low-plasticity silt at various degrees 

of reconsolidation. Soil Dynamics and Earthquake Engineering. 2015;75(259-64. 

[47] Cates M, Wittmer J, Bouchaud J-P, Claudin P. Jamming, force chains, and fragile matter. Physical 

review letters. 1998;81(9):1841. 

[48] Antony S, Kruyt NP. Role of interparticle friction and particle-scale elasticity in the shear-strength 

mechanism of three-dimensional granular media. Physical Review E. 2009;79(3):031308. 

[49] Yamamuro JA, Abrantes AE, Lade PV. Effect of strain rate on the stress-strain behavior of sand. 

Journal of Geotechnical and Geoenvironmental Engineering. 2011;137(12):1169-78. 

[50] Behringer RP, Bi D, Chakraborty B, Henkes S, Hartley RR. Why do granular materials stiffen with 

shear rate? Test of novel stress-based statistics. Physical review letters. 2008;101(26):268301. 

[51] Hartley R, Behringer R. Logarithmic rate dependence of force networks in sheared granular 

materials. Nature. 2003;421(6926):928. 

[52] A. Alshibli K, E. Roussel L. Experimental investigation of slip‐ stick behaviour in granular 

materials. International journal for numerical and analytical methods in geomechanics. 

2006;30(14):1391-407. 

[53] Sun Q, Jin F, Liu J, Zhang G. Understanding force chains in dense granular materials. 

International Journal of Modern Physics B. 2010;24(29):5743-59. 

[54] Ben-David O, Rubinstein SM, Fineberg J. Slip-stick and the evolution of frictional strength. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

40 

 

Nature. 2010;463(7277):76. 

[55] Dieterich JH, Kilgore BD. Direct observation of frictional contacts: New insights for state-

dependent properties. Pure and Applied Geophysics. 1994;143(1-3):283-302. 

[56] Rice JR. The localization of plastic deformation. Proceedings of the 14th International Congress of 

Theoretical and Applied Mechanics, 1976; 1: 207-220 

[57] Asghari E, Toll D, Haeri S. Triaxial behaviour of a cemented gravely sand, Tehran alluvium. 

Geotechnical & Geological Engineering. 2003;21(1):1-28. 

[58] Haeri SM, Hosseini SM, Toll DG, Yasrebi SS. The behaviour of an artificially cemented sandy 

gravel. Geotechnical & Geological Engineering. 2005;23(5):537-60. 

[59] de Bono J, McDowell G, Wanatowski D. Investigating the micro mechanics of cemented sand 

using DEM. International Journal for Numerical and Analytical Methods in Geomechanics. 

2015;39(6):655-75. 

[60] Andò E, Hall SA, Viggiani G, Desrues J, Bésuelle P. Grain-scale experimental investigation of 

localised deformation in sand: a discrete particle tracking approach. Acta Geotechnica. 

2012;7(1):1-13. 

[61] Scott DR. Seismicity and stress rotation in a granular model of the brittle crust. Nature. 

1996;381(6583):592. 

[62] Radjai F, Jean M, Moreau J-J, Roux S. Force distributions in dense two-dimensional granular 

systems. Physical review letters. 1996;77(2):274. 

[63] Liu C-h, Nagel SR, Schecter D, Coppersmith S, Majumdar S, Narayan O, et al. Force fluctuations 

in bead packs. Science. 1995;269(5223):513-5. 

[64] Azéma E, Radjai F. Force chains and contact network topology in sheared packings of elongated 

particles. Physical review E. 2012;85(3):031303. 

[65] Thornton C, Antony S. Quasi-static deformation of particulate media. Philosophical transactions-

royal society of London series a mathematical physical and engineering sciences. 1998:2763-82. 

[66] Yimsiri S, Soga K. DEM analysis of soil fabric effects on behaviour of sand. Géotechnique. 

2010;60(6):483. 

[67] Oda M. Initial fabrics and their relations to mechanical properties of granular material. Soils and 

foundations. 1972;12(1):17-36. 

[68] Oda M. Fabric tensor for discontinuous geological materials. Soils and Foundations. 

1982;22(4):96-108. 

[69] Zhou W, Liu J, Ma G, Chang X. Three-dimensional DEM investigation of critical state and 

dilatancy behaviors of granular materials. Acta Geotechnica. 2017;12(3):527-40. 

[70] Ken-Ichi K. Distribution of directional data and fabric tensors. International Journal of 

Engineering Science. 1984;22(2):149-64. 

[71] Chang CS, Sundaram SS, Misra A. Initial moduli of particulated mass with frictional contacts. 

International Journal for Numerical and Analytical Methods in Geomechanics. 1989;13(6):629-44. 

[72] Nicholson P, Seed R, Anwar H. Elimination of membrane compliance in undrained triaxial testing. 

I. Measurement and evaluation. Canadian Geotechnical Journal. 1993;30(5):727-38. 

[73] Baldi G, Nova R. Membrane penetration effects in triaxial testing. Journal of Geotechnical 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

41 

 

engineering. 1984;110(3):403-20. 

[74] Martin GR, Seed HB, Finn W. Effects of system compliance on liquefaction tests. Journal of the 

geotechnical engineering division. 1978;104(4):463-79. 

[75] Shafipour R, Soroush A. Fluid coupled-DEM modelling of undrained behavior of granular media. 

Computers and Geotechnics. 2008;35(5):673-85. 

[76] Feng Y, Han K, Owen D. Coupled lattice Boltzmann method and discrete element modelling of 

particle transport in turbulent fluid flows: Computational issues. International Journal for 

Numerical Methods in Engineering. 2007;72(9):1111-34. 

[77] Feng Y, Han K, Owen D. Combined three‐ dimensional lattice Boltzmann method and discrete 

element method for modelling fluid–particle interactions with experimental assessment. 

International journal for numerical methods in engineering. 2010;81(2):229-45. 

[78] Wang M, Feng Y, Pande G, Zhao T. A coupled 3‐ dimensional bonded discrete element and lattice 

Boltzmann method for fluid‐ solid coupling in cohesive geomaterials. International Journal for 

Numerical and Analytical Methods in Geomechanics. 2018;42(12):1405-24. 

[79] Hanley KJ, Huang X, O'Sullivan C, Kwok F. Challenges of simulating undrained tests using the 

constant volume method in DEM.  AIP Conference Proceedings: AIP, 2013. p. 277-80. 

 



Table1 Experimental parameters 

Experiment 
Confining stress 

(kPa) 

Diameter 

(mm) 

Height 

(mm) 

Density 

(g/cm
3
) 

Test1 50 70.8 138.1 0.57 

Test2 100 70.7 138.2 0.57 

Table



Table2 Numerical parameters used in DEM simulations 

Simulation properties Specimen particles Membrane particles 

Contact model Linear model Linear contact bond model 

Radius (m) 0.035 0.035 

Density (kg/m
3
) 920 2000 

Friction coefficient 0.26 0 

Normal stiffness (N/m) 2×10
6
 541.266 

Tangential stiffness (N/m) 1×10
6
 180.422 

Normal and tangential 

Bond strength (Pa) 
0 1e100 

Critical damp ratio 0.5 0 



Table3 Thicknesses and corresponding particle-scale stiffness values for membrane 

Membrane Thickness (mm) Normal stiffness (Pa) Tangential stiffness(Pa) 

M1 0.3 270.63 90.21 

M2 0.6 541.27 180.42 

M3 1 902.11 300.70 
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Fig. 1 Illustration of a triaxial test with a clamped membrane boundary

Figure



2 

 

 

 

Fig. 2 Bonded particle configuration for a flexible membrane: a) hexagonal 

representative unit cell; b) the unit cell of a particle and its neighbouring contacts 
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Fig. 3  Diagram for kinematics of two contacting particles in local coordinate system 
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Fig. 4 Illustration for shear and normal displacement 
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Fig. 5 Deformation errors between the analytical elastic solution and the DEM 

approximation 
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(a) Experiment and DEM modelling with membrane boundary 

 

(b) Simulations with membrane and rigid boundaries 

Fig. 6  Stress-strain behaviour subjected to triaxial shearing 
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Fig. 7 Volumetric strain of triaxial testing 
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Fig. 8 The shapes of the specimen after sheard to the axial strain of 16%: (a) Rigid 

boundary; (b) T1_Membrane; (c) T2_Membrane 
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(a) T1_Rigid Boundary                        (b) T1_Membrane Boundary                                            

     

            (c) T2_Rigid Boundary                        (d) T2_Membrane Boundary                                            

Fig. 9 Shear bands after triaxial shearing
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Fig. 10 Probability distribution function of normal forces <fn>  normalised by the 

average normal force 
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Fig. 11  Illustration of elementary solid angle 
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Fig. 12  Evolution of principal fabric tensors  
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Fig. 13 Evolution of anisotropy during triaxial shearing
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Fig. 14 Stress-strain behaviour during triaxial shearing with varied membrane 

thickness 


