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Abstract This paper introduces a novel computational
approach for level-set based topology optimisation of
hyperelastic materials at large strains. This, to date,
is considered an unresolved open problem in topology
optimisation due to its extremely challenging nature.
Two computational strategies have been proposed to
address this problem. The first strategy resorts to an
arc-length in the pre-buckling region of intermediate
TO iterations where numerical difficulties arise (associ-
ated with nucleation, disconnected elements, etc.), and
is then continued by a novel regularisation technique
in the post-buckling region. In the second strategy, the
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regularisation technique is used for the entire loading
process at each TO iteration.

The success of both rests on the combination of
three distinct key ingredients. First, the nonlinear equi-
librium equations of motion are solved in a consistent
incrementally linearised fashion by splitting the design
load into a number of load increments. Second, the re-
sulting linearised tangent elasticity tensor is stabilised
(regularised) in order to prevent its loss of positive def-
initeness and, thus, avoid the loss of convexity of the
discrete tangent operator. Third, and with the purpose
of avoiding excessive numerical stabilisation, a scalar
degradation function is applied on the regularised lin-
earised elasticity tensor, based on a novel regularisa-
tion indicator field. The robustness and applicability of
this new methodological approach is thoroughly demon-
strated through an ample spectrum of challenging nu-

merical examples, ranging from benchmark two-dimensional

(plane stress) examples to larger scale three-dimensional
applications. Crucially, the performance of all the de-
signs has been tested at a postprocessing stage without
adding any source of artificial stiffness. Specifically, an
arc-length Newton-Raphson method has been employed
in conjunction with a ratio of the material parameters
for void and solid regions of 10712,

Keywords Topology optimisation - level-set - Nonlin-
ear elasticity - Polyconvexity

1 Introduction

Soft materials, such as rubbery polymers, capable of un-
dergoing large deformations, have experienced fast in-
dustrial development over the last decade. For instance,
a paradigm switch is expected in the field of robotics,
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where conventional hard robots will be progressively re-
placed by the emerging field of soft robotics (comprised
of soft and hard materials with a strategic combination
of maximum elasticity modulus of 1 GPa) (Rus and
Tolley, 2015; Wehner et al, 2016; Wallin et al, 2018;
Gursel, 2018). Soft robots possess desirable biomimetic
and dextrous features even superseding those of natu-
ral muscles and represent an emerging approach for the
design of new prosthetics. Furthermore, their softness
allow for safer interactions with humans. An additional
appealing feature of these materials is the suitability
for their rapid prototyping by means of cutting-edge
3D printing technologies (Wallin et al, 2018).

Since the pioniering work of Bendsoe and Kikuchi
(Bendsoe and Kikuchi, 1988), the scientific field of struc-
tural Topology Optimisation (TO) has been extraor-
dinarily prolific. According to (Sigmund and Maute,
2013), topology optimisation methods can be broadly
classified into: density-based methods (Bendsge, 1989;
Zhou and Rozvany, 1991), level-set methods (Allaire
et al, 2004; Wang et al, 2003), phase field methods
(Burger and Stainko, 2006; Takezawa et al, 2010), topo-

logical derivative methods (Norato et al, 2007; Sokolowski
and Zochowski, 1999) and evolutionary approaches (Munk

et al, 2015). Based on these techniques, scientists have
pushed the boundaries of topology optimisation to an
unprecedented level, with applications in a variety of
problems, from nanophotonics design (Jensen and Sig-
mund, 2011) to aircraft and aerospace structural design
(Zhu et al, 2016; Aage et al, 2017).

Despite the matured and consolidated stage of topol-
ogy optimisation in the linear elastic regime, where very
small displacements/strains are expected to occur, this
is unfortunately not the case for the topology opti-
misation of soft materials undergoing large displace-
ments/strains. One of the main reasons for this long
standing open problem stems from the numerical dif-
ficulties which arise when trying to satisfy exactly the
state equations (equilibrium equations). In essence, the
underlying reason for these numerical difficulties resides
in the co-existence of two crucial factors: (i) the loss of
convexity of the invariant-based representation of the
strain energy, which ultimately yields loss of positive
definiteness of the tangent operator; (ii) the presence
of low and intermediate density regions (in the case
of the SIMP! method Wang et al (2014)) or the nu-
cleation process that occur when initiating the algo-
rithm from a generic seed (in the case of the level-set
method Chen et al (2017)). The combination of these
two factors poses a serious limitation to the robust ap-
plicability of well-established techniques such as the
arc-length method (Bonet et al (2016b)), which were

1 Solid Isotropic Material with Penalisation

specifically designed to surpass limit points and to suc-
cessfully track snap-through and snap-back equilibrium
path-types. As a result, researchers in the field have
been working in order to develop methodological ap-
proaches capable of alleviating all of these numerical
difficulties. Although in a different context, these diffi-
culties are also present in the field of nonlinear contin-
uum mechanics for problems characterised by a saddle
point nature (Bonet et al, 2016b).

On another front, the presence of disconnected struc-
tural elements (islands) is not a feature exclusive of the
level-set method. (Bruns and Tortorelli, 2003) proposed
element removal and re-introduction strategies in order
to deal with this issue within the context of the SIMP
method. Furthermore, density-based methods can ex-
hibit an additional source of numerical instability re-
lated to the presence of low and intermediate densities
(notice that in level-set TO, densities are 1 or 0, and can
only adopt an intermediate value on the boundary of
the solid). Although many authors have proposed tech-
niques to alleviate this (Lahuerta et al (2013), Wang
et al (2014), Liu et al (2017)), low and intermediate den-
sities still pose a challenge for the robustness of density-
based TO at large strains (specially at low volume frac-
tions), as they are responsible for the development of
very low or even negative Jacobians, which seriously
hamper numerical robustness.

There exists an extremely valuable body of work in
topology optimisation of soft materials, specially using
the SIMP approach. The additive hyperelasticity tech-
nique (Liu et al, 2017) was created in order to alleviate
the numerical difficulties associated with the presence
of low and intermediate density regions. Very recently,
the authors in (Lahuerta et al, 2013) proposed the use of
polyconvex strain energy functions in conjunction with
an ad-hoc relaxation aiming to stabilise excessively dis-
torted elements of the finite element mesh, mainly as-
sociated also with low and intermediate regions. More
recently, an original interpolation scheme for strain en-
ergy of the material was proposed by (Wang et al, 2014)
in order to alleviate these numerical difficulties. All of
the aforementioned works adopted density based opti-
misation methods. With regards to the level-set based
topology optimisation method, only a reduced num-
ber of works address this problem. In this case, addi-
tional numerical difficulties may appear during the nu-
cleation process. When starting from an initial generic
seed, slender and even disconnected structural elements
might develop before a final stable shape is obtained.
(Ha and Cho, 2008) applied the level-set method to
topology optimisation of hyperelastic structures with
moderate finite deformations. They proposed an ex-
plicit representation of the boundary using a Delaunay
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triangulation scheme and a hyperelastic material law
to circumvent the convergence difficulty in nonlinear
response analysis due to the inaccurate tangent stiff-
ness when using an ersatz material approach. Recently,
the authors in Chen et al (2017) have shown that the
consideration of an initial seed, obtained from a pre-
liminary optimisation using linear analysis, can reduce
the instabilities associated with the nucleation process
up to a certain magnitude of the design load. Addition-
ally, when rather large deformation arises, a continua-
tion approach was used to update the material prop-
erties of the weak material from 0.01 to 0.001 times
those of the solid material. Very recently, in (Geiss
et al, 2018) a level-set approach together with the ex-
tended finite element method (XFEM) has been com-
bined with density-based topology optimisation to de-
scribe the evolving multi-material design problem in
the optimisation process. A finite deformation hyper-
elastic thermo-mechanical model is used together with
a higher order XFEM scheme to accurately predict the
behaviour of nonlinear slender structures during the de-
sign evolution.

A common feature in above approaches is the re-
lazation (regularisation) of the Lagrangian whose sta-
tionary point is sought?. In this paper, we follow a
similar idea and seek the relaxation of the Lagrangian
through a careful regularisation of the state equations,
within the context of level-set topology optimisation.
The new approach aims to circumvent the numerical
difficulties associated with the original problem (loss of
convexity and nucleation), by a combination of three
key ingredients. First, the nonlinear equilibrium equa-
tions of motion are solved in a consistent incrementally
linearised fashion by splitting the design load into a
number of load increments. Second, at each load in-
crement, the resulting linearised tangent elasticity ten-
sor is stabilised (regularised) in order to prevent its
loss of positive definiteness and, thus, avoid the loss of
convexity of the discrete tangent operator. Third, and
with the purpose of avoiding excessive numerical sta-
bilisation, a scalar degradation function is introduced,
based on a novel regularisation indicator field, in order
to penalise the regularised linearised elasticity tensor.
The proposed methodology alleviates numerical insta-
bilities emerging during the nucleation process associ-
ated with the level-set based topology optimisation. In
that regard, the robustness of the proposed methodol-
ogy is not dependant upon the choice of the material
properties of the void region or upon the choice of an
initial seed. Crucially, the performance of all the de-
signs obtained in the numerical examples section has

been tested at a postprocessing stage without adding
any source of artificial stiffness. Specifically, a standard
arc-length Newton-Raphson based technique has been
employed in conjunction with a stiffness of 107'2 times
the stiffness of solid elements for void elements. This
enables to verify the level of relaxation introduced in
the original Lagrangian and the reliability of the final
designs.

Notice that consideration of buckling has not been
incorporated at this stage (either in the objective func-
tion or as a constraint). Nonetheless, the proposed method
enables to obtain final stable designs for considerably
large design loads hence, yielding very large critical load
factors. Thus, the numerical strategy proposed indi-
rectly enhances the buckling response of the optimal
designs obtained.

The outline of this paper is as follows: Section 2 de-
scribes the necessary elements of nonlinear continuum
mechanics. Section 3 describes succinctly the minimi-
sation setting within the context of nonlinear elasticity.
Section 4 presents the new incrementally regularised
methodology proposed. Finally, Section 5 shows a series
of numerical examples in order to illustrate the robust-
ness and applicability of the new proposed methodol-
ogy. Section 6 provides some concluding remarks. Fi-
nally, Appendix A shows how to particularise the the-
ory on nonlinear continuum mechanics in Section 2 to
the case of plane stress.

2 Nonlinear continuum mechanics
2.1 Kinematics of a continuum

Let us consider the motion of a continuum with ref-
erence or material configuration 29 € R3 of boundary
012y with outward normal N (see Figure 2.1). After the
motion, the continuum occupies a deformed or spatial
configuration 2 € R3 of boundary 92 with outward
normal n. The mapping ¢ (X) € R3 links a particle
from the reference configuration X € 2y to a deformed
configuration x € 2 according to & = ¢ (X) = X + u,
with u the displacement field. Associated with ¢ (X),
it is possible to define the two-point® deformation gra-
dient tensor F' as

_ 99

F=Vi¢(X)=1+Vyu; Fi1—8X17 (1)

where V denotes the material gradient operator and I
represents the second order identity tensor. Associated
with F' (1) it is possible to define two extra kinematic

2 The well-known augmented Lagrangian method (Bonet
et al, 2016b) is a prototypical example of these approaches.

3 Lower (upper) case indices are used to refer to the spatial
(material) configuration.
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strain measures, namely its co-factor H and its Jaco-
bian J as

J=detF; H=JF T (2)

The three entities above {F,H,J} represent the
kinematic measures which transform differential length,
area and volume elements from the reference configura-
tion, namely {dX,dA,dV} to the spatial configuration,
namely {dz,da,dv}, according to {dx = FdX,da =
HdX,dv = JdV} (see Figure 2.1 for a visual inter-
pretation of the three kinematic measures). Alternative
but equivalent expressions for H and J to those in (2)
are (de Boer (1982); Bonet et al (2015b, 2016a, 2015a))

1

H:inF; J:%H:F, (3)

where the tensor cross product operation X between two
second order tensors A € R3*3 and B € R3*3 reads as
(A X B)i] = 5ijk€]JKAjJBkK, where gijk (and g[JK)
represents the third order alternating tensor.

X3, %3

/—\x=(p(i(,t)
av

JdA

(g

i

X1, x5

Fig. 1 The three kinematic measures: {F, H, J}.

2.2 Governing equations in nonlinear continuum
mechanics

The partial differential equations and associated bound-
ary conditions governing the motion of the continuum
2y described in Section 2.1 can be written under a La-
grangian formalism as

DIVP + f, = 0; in £2;
PN =t on On2; (4)
b= &); on O0gf2,

where (4) represent the classical equilibrium equations,
fo represents the body force per unit undeformed vol-
ume §2y and tg, the traction force per unit undeformed

area applied on dn {2y C 02y. Furthermore, 0y {2y rep-
resents the portion of the boundary 92y where Dirich-
let boundary conditions are applied on ¢, with Oy 29U
3¢QO = 0f29 and Oy N 8¢Qo = (). In addition, P
represents the first Piola-Kirchhoff stress tensor and
the local conservation of angular momentum leads to
the well-known tensor condition PFT = FPT . Finally,
DIV (e) represents the material divergence operator, i.e.

op;
(DIVP), = S8t

2.3 Constitutive model: polyconvex hyperelasticity

In order to close the system of equations in (4), a consti-
tutive equation relating the first Piola-Kirchhoff stress
tensor P and the deformation gradient tensor V¢
is needed. In the case of reversible elasticity, this is
achieved through the introduction of a strain energy
e per unit undeformed volume e = ¢(Vg¢). We con-
sider in this work polyconvex strain energy functionals,
namely
6(V0¢):W(V), V:{F3H7J}7 (5)
where W is a convex function with respect to the ex-
tended set V of kinematic measures. A commonly used
polyconvex constitutive model is the so-called Mooney-
Rivlin model, defined as

W= %HF + %IIH + F(J);

A

f()y=50~- 1)% = (1 + 2p2) In J — g (p1 + p2),

(6)

with 1o = A : A = A;;A;; and where the material
parameters {1, i2, A} are related to the Young’s mod-
ulus and Poisson ratio in the origin, namely FE and v,
respectively, as

H1+H2:m; .
Iy (7)

A—2 =
U+ 12) = G =)

Let da and Aa represent virtual and incremental
variations of a given vector field a. Thus, the directional
derivative of the strain energy e with respect to d¢
yields the first Piola-Kirchhoff stress tensor P as

D€[5¢] —P: VQ(Sd) =0=P= 6V0¢,€ (V0¢), (8)

where the symbol d4 B represents the partial deriva-
tive of B with respect to A. The fourth order elasticity
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tensor C results from the computation of the second
directional derivative of the strain energy as

D?e[6g; Ap| = Vo : C : Vo Ag;
C = 0%, 4voe€ (Vod) .

Remark 1. Alternative expressions for the first Piola-
Kirchoff stress temsor P and the elasticity tensor C
can be obtained when considering the extended repre-
sentation of the strain energy, namely W (V). Indeed,
as shown in Bonet et al (2016a, 2015a,b), P can also
be expressed as

(9)

P=0pW +0gWxF +0;WH. (10)

Similarly, as shown in Bonet et al (2016a, 2015a,b),
the elasticity tensor C can be expressed as

C=0ppW + FXOyWxF +07,WH® H

+ 05, W R H+ H®035W + 0pygW X F

+FXOypW + Fx03,WR H+H®J);zWxF

+ZIX(0gW + 0;WF),

(11)
where
Lirjg = 0i1657;

(AXA),; ;= AippEip€iroAq; (12)
(AXA); 17 = A0i1€pe€1PoApq.

for any A € R3*3%3X3 gqnd A € R®*3 and §;; denotes
the ij-th component of the Kronecker Delta tensor. The
reader is referred to Ortigosa et al (2015); Ortigosa and
Gil (2017) for a detailed derivation of C in (11).

|

3 Optimisation
3.1 The minimisation problem

As described in Section 2.2, the boundary of 2y is de-
composed as A2y = 0y (20U £2y. The boundary dn 2y
can be further decomposed as dn 2y = 0:820 U 0,82,
where 0,829 and 0,2y represent the Neumann portion
of the boundary where ty # 0 and ty = 0, respectively.
Therefore, 0,2y is the only part of the boundary 02
which can be evolved through the optimisation process,
changing at each topology optimisation (TO) iteration.
Let the evolving continuum {2y be contained within a
working (computational) domain D, i.e. 2 C D. We
introduce the set of admissible shapes U,q subjected to
the volume constraint V*, i.e.

Mad = {QQCD : |.Qo‘ = V*}, |Qo‘ :/ dav. (13)
20

The mimisation problem considered can be written
as

i 20, u
n?é%dj( 0, )

s.t. State equations (1), (4) and (8),

(P1)

(14)

where J (£29, u) represents the objective function to be
minimised and with w € H'(£;R3). In this work, the
end compliance is chosen as the objective function, de-
fined as

T ($20,u) =

o

f0~udV+/ to - udA. (15)

82

In the context of large deformations it is custom-
ary to solve the equilibrium constraint (4) in an in-
cremental manner (i.e. n = 0...N — 1). Hence, the
external forces (f, and to in (4)) are applied incremen-
tally, i.e. controlling their magnitude by the incremen-
tal load factor A,y1 at load increment n + 1, such that
Ant1 = (n+ 1)/N, with N the total number of load
increments. The Lagrangian functional associated with
the minimisation problem in (14) can be written within
this incremental setting as

L(QOaua’Pael) = j(QUauN>
N-1
+ Z I (907un+lapn+l)

n=0

+ 0 (1920] = V) + 2 (1920] = V)

P(Fn+1) : V0p7z+1 dV
20

+ Ang1 (/ Pri1 - fodV
20
+ / DPny1- tO dA> )
0t £20

where U = {uy, ..., Upi1, ..., un} (u, € HY(20;R?))
represent the set of incremental solutions of the equi-
librium constraint (4), P = {py, .., Ppi1, - Py} (Pn €
H}(£20;R3)) represent their adjoint state counterparts
and ¢, and 71, the Lagrange multiplier and the penalty
parameter, respectively, enforcing the volume constraint
(see (13)) at convergence.

11 (QOaun-‘rhpn-f—l) = -

(16)

3.2 Stationary conditions of the augmented
Lagrangian £

The stationary conditions of the Lagrangian £ (16)
yield the optimality conditions of (P;) (14). The sta-
tionary condition of £ with respect to dp,,; € Hj(£20; R?)
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yields

DL[op, 1] =— | P(Fuy1): Voop, 1 dV

20

+ Ant1 < fo-0Pny1dV (17)
20

+/ t()~(5pn+1dA) =0.
9t 820

Equation (17) represents the so-called weak form
of the equilibrium equations (4). For a given (2, so-
lution of (17) enables to obtain the displacement field
Up41 which is compliant with the Dirichlet boundary
conditions and that it is in equilibrium with the exter-
nal loads Ap41fo and Apy1to, at every load increment
n+1 and every TO iteration. Furthermore, the station-
ary condition of £ with respect to du, 1 € Hg(£20;R?)
for the specific case when n = N — 1 yields

D[:[(S’U,N] = — VOpN : C(FN) : VO(SUN dVv
20
+ f05uNdV+/ t0'5uNdA:0.
Q() OtQO
(18)

Equation (18) permits to obtain the adjoint state at
load increment N, e.g. pyy. Furthermore, the stationary
condition of £ with respect to du,41 € Hg(£20;R?) for
the case when n # N — 1 yields

D£[6un+1] =

(19)
- o Vopn+1 : C(Fn+1) . Vo(sun+1 dV = 07

0

which yields the trivial solution p,, ,; = 0 (if n # N —1
and if the problem is well-posed). Therefore, techni-
cally speaking, only the adjoint problem corresponding
to the last load increment N needs to be solved for (e.g.
equation (18)). It is worth noticing that stationary con-
ditions (17) and (18) do not coincide, except for the
particular case of linear elasticity. Therefore, problem
(Py) (14) is not strictly speaking a self-adjoint problem
in the general nonlinear case, i.e. uy # py-.

3.3 Shape derivative of the augmented Lagrangian £

A velocity field 9 € W (D;R3), subjected to Jy =
(9-N) = 0 on 0gf2) U 0482, is introduced in order
to account for the evolution of the boundary 0,(2y. The
shape derivative of £, namely DL[d], is the key ingredi-
ent to define a descent direction which permits to evolve
the boundary 9,2y at every TO iteration.

Remark 5. For the functional F defined as

F = fdv, (20)
20

it can be shown (see Reference Allaire (2006)) that DF 9]

can be obtained as

DF[9] = /a dnfda (21)

O
The shape derivative of £ (16) can now be shown
to be

DL[Y] = / InvdA;
90820

v = fO cUN
N—1
+ Z (An+1fo “Ppy1 — P(Fryr): V0Pn+1)
n=0

+ 01+ 71 ([20(9)] = V)
=fo - (un +Anpy) — P(Fy): Vopy
+ 4+ 7 ([20(9)] - V),
(22)

where use of p,,; = 0 (if n # N — 1) has been made
of in (22) (see (19)). In the case where f, = 0, v (22)
simplifies to

v:—P(FN):VOpN+€1 + 71 (|.Q()|—V*) (23)

3.4 Numerical solution of (P;) via the level-set method

Following the original idea by (Osher and Sethian, 1988)
and subsequently applied in the context of shape op-
timisation (Sethian and Wiegmann (2000); Wang et al
(2003); Allaire et al (2004)), the level-set method is used
to capture the evolving domain 2. For this, a pseudo-
time parameter 7 = 7(...7Ty is introduced, where T
is associated with a series of discrete topology optimi-
sation iterations. Thus, the initial configuration of the
continuum can be evolved in pseudo-time (i.e. £2y(7))
throughout an optimisation process from the initial it-
eration at 79 (£29(70)) passing through an intermediate
iteration at 7; (£20(7;)) and converging at 7,, (2o(7m))
(see Figure 3.4). In the level-set method, the evolving
domain (2y(7) is described through the zero level-set of
the function v = (X (7),7) defined on the working
domain D as follows

Y(X,7)<0; if X € 2(7);
VX € D, V7 €(0,T),q v(X,7)=0; if X € 9,02(7);
(X, 7)>0; if X ¢ (7).
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0682

30€20(70)) ) AN 00 (73))

00820(Tm))

Fig. 2 Evolution of the domain 2o(7) throughout the TO process at the initial iteration 7 = 0 (left), at intermediate iteration
7 =14 (center) and at the final iteration 7 = m (right). £20(7) corresponds to the portion of the (L-shaped) working domain D
where the level-set function ¢(7) adopts negative values. It can be seen that the boundaries 9,20 and (2o remain unaltered.

(24)

Let £2y(7) evolve with a velocity 9(X(7),7) € D.
Differentiation of the level-set equation (X (1), 7) =0
with respect to 7 yields

O +9-Vop=0; 7€(0,T); X €0,2(7). (25)

Noting that in the boundary 9,§2(7), 9 = YN and
Vo = |Voo| N, equation (25) can be expressed as

O+ 9V = 0; 1€ (0,T): X €d,2(r). (26)

Since ¥ € D, equation (26) needs to be extended to
the working domain D as

0+ 9| Vo =0; 7€ (0,T); X €D. (27)

We recall from (22) that DL[0] can be recast as
DL[Y] = / InvdA, (28)
00820(7)

with v € D (see (22) and (23)). A descent direction
(negative value for DL[Y] in (28)) is guaranteed if ¥n
is defined as

’l9N = —. (29)

Introduction of (29) into (27) allows to obtain the
final form of the Hamilton-Jacobi equation, i.e.

0 —v|Vop| =0; 7€(0,T); XeD, (30)
which is solved using an explicit first order upwind
scheme.

Remark 5. Typically, the stationary conditions (17))
and (18)) are solved approzimately by using the Finite
Element method on the whole working domain D (in-
stead of being exactly solved on (2y): the so-called er-
satz material method is used, whereby the void region

D\ 2y is filled with a very soft material characterised by

a linear constitutive law where the first Piola-Kirchhoff
stress tensor, denoted as P, is defined as

P.=¢Cly, 41 Vou; e << 1, (31)

where C |Vo o—1 represents the elasticity tensor of the
material in the domain 2y(7) evaluated in the origin
(i.e.Voop = 1I).

O
Remark 6. To avoid singularities, the level-set func-
tion is periodically reinitialized. The readers are referred
to Allaire et al (2004) for further details.

O

4 Proposed methodology
4.1 Introduction

One of the major challenges affecting the topology op-
timisation of structures undergoing large deformations
stems from the numerical instabilities which arise when
attempting to solve the equilibrium equations in (4).
These instabilities are exacerbated during the nucle-
ation that occurs when initiating the level-set method
from a starting generic seed. One of the underlying rea-
sons for the development of instabilities is the loss of
convexity of the strain energy functional e(Vy¢) or
W (V) in (5), leading to loss of positive definiteness of
the elasticity tensor C (in (9) or (11)). Classical post-
buckling or equilibrium path-tracking techniques, such
as the arc-length method, need to be used in order to
guarantee the resolution of (4) (notice that the use of a
standard Newton-Raphson method is restricted to the
pre-buckling region).

Unfortunately, there are situations where the ro-
bustness of these techniques can even be compromised,
specially within a TO context, where the following sce-
narios can occur: (i) situations where the prescribed
external loads cannot be in equilibrium with the given
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displacement boundary conditions, namely when it is
impossible to find a solution to (4) for a loading factor
A =1 (this is illustrated in red in Figure 3); (ii) complex
equilibrium paths as those resulting during the nucle-
ation process, where very slender and even disconnected
structural elements might develop before a final stable
shape is obtained.

In these extreme cases, the strict enforcement of the
state equations can be relaxed (or weakened) result-
ing in a regularised Lagrangian potentially capable of
circumventing the above difficulties. In principle, this
would only need to be done for those TO pseudo-time
steps and those load increments where the arc-length
method cannot converge. This is elaborated more in
detail in Section 4.6. A good example of this method-
ology is the augmented Lagrangian method typically
used in nonlinear continuum mechanics when enforcing
kinematic constraints (Bonet et al, 2016b). The objec-
tive of the next sections is to present the methodology
proposed in this work, with the following key distinct
ingredients: (i) a linearised incremental approach for
the solution of the equilibrium equations (4) (Section
4.2); (ii) the stabilisation of the elasticity tensor, guar-
anteeing ab initio the stability of (4) (Section 4.3); (iii)
a penalisation for excessively (numerically) stabilised
regions (Section 4.4). All these ingredients are eventu-
ally integrated into a single (regularised) Lagrangian
(Section 4.5).

4.2 A consistent incrementally linearised solid
mechanics approach

Following the work of (Poya et al, 2016) in the con-
text of mesh generation, we advocate in this work for
an approximate linearised incremental resolution of the
equilibrium equations (4). This is a valid approxima-
tion provided the number of increments controlling the
load application is carefully chosen. In this approach,
the external forces (f, and &g in (4)) are applied incre-
mentally, their magnitude being controlled by an incre-
mental load factor A, 41 at a given load increment n+1,
such that A,y1 = (n + 1)/N, with N being the total
number of load increments. At load increment n + 1,
the strain energy is thus approximated by means of the
following Taylor series expansion

e|ﬂ+1 ~ einc|n+1 = e‘n + P|n : VOAun+1
1
+ §V0Aun+1 : C|n : VoAun+1;

Aun+1 = Unp+1 — Unp,
(32)

with P|_ and C|, in (32) obtained as in (8) and (9),

i.e.

P|, = Ov,eel,; Cl, = 32V0¢V0¢6|n- (33)

From (32), the approximated first Piola-Kirchhoff
stress tensor and the elasticity tensor at load increment
n+ 1, namely P,.1 and C, 41, respectively, can be ob-
tained as

Pn+1 = 8V0¢einc‘n+1 = Pln + C|n : V0AUn+1;

Cn+1 L= 82V0¢V0¢ein0|n+1 = C‘n .
(34)

4.3 Regularisation/stabilisation of the elasticity tensor

One important ingredient of this work is the stabilisa-
tion of local instabilities, characterised by the loss of
positive definiteness of the elasticity tensor, which can
result in the possible development of global instabili-
ties. We propose a numerical strategy which permits to
take advantage of the computational efficiency of the
incremental approach described in Section 4.2 whilst
allowing for its use beyond the onset of instabilities. In
order to accomplish this, we propose a regularisation
(stabilisation) of the elasticity tensor at every load in-
crement n, namely C|, in (32). This is based on the
following additive perturbation of C|, through a posi-
tive definite elasticity tensor AC.cgl, as

Creg|n = c‘n + Acr9g|n;

35
ViCuel,: V>0 VeR¥. (33)
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In (35), ACiegl,, must be defined such that positive
definiteness of the regularised elasticity tensor at each
load increment 7, namely, Cegl,,, is satisfied. We inves-
tigate in this paper the following simple technique,

ACreg| = (14 06)I'T, (36)

with I' € RT such that all the leading minors of the
C|,, +I'Z (and hence C.g|,) are positive. Therefore, I"
stabilises the possible loss of convexity of the constitu-
tive model. An iterative bisection algorithm has been
implemented in order to find the minimum value of I"
complying with (35). An additional parameter § € R™
is used in order to prevent the appearance of possible
rigid body motions due to the presence of disconnected
parts in the structure. For all the simulations shown in
this paper, a value 6 = 1072 was used.

4.4 Penalisation of excessive stabilisation

After replacement of C|, (32) with C,egl,, (35), the fol-
lowing expansion is obtained for the incrementally lin-
earised energy at load increment n + 1, i.e.

einc|n+1 = €|n + Pln : VoAun+1
1 (37)
+ §VOA’U,n+1 : Creg|n . VoAun+1.

Unfortunately, equation (37) might yield an exces-
sively stiff response of the material due to the regular-
isation of the elasticity tensor. This could potentially
yield a final design for which the first critical load is
below the design load. In order to circumvent this, we
introduce a regularisation parameter at load increment
n, ie. s|, as

|| AC:reg,, ||

S :7’ 38
"= e (38)

with [|A]| = VA: A = VAirjsAirjy. Parameter s|,
(38) enables to quantify the violation of condition (35)
locally (e.g. at every quadrature point). From (36), s,
adopts the following expression, namely

s (39)

1 Clo Il
Inspired by the field of phase-field methods for frac-
ture Hesch et al (2017), we establish an analogy be-
tween the regularisation parameter (38) and the dam-
age model used therein in order to characterise the dam-
age state of a material. This enables us to define the de-
graded incrementally linearised strain energy éincl,,
by means of the following multiplicative decomposition

éin0|n+1 =49 (5|n) einC|n+1 5 g9 (5|n) >0,V 5|n )

P |4
Gmin = 0.5

0.5 =

04

03+

02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
s

Fig. 4 Graphical representation of the degradation function
in (42) with s, = 0.1 and gmin = 0.5.

(40)

with éincl,,; defined in (37) and with the function
g (s|,,) playing the role of a degradation function®. Specif-
ically, g(s) has been selected monotonically decreasing
and satisfying

9(0) = 1;

In this paper we have investigated the following C°
definition for g(s) as

9(s = Scr) = Gmin- (41)

in — 1)=2 1; < s,
g(s) = { (gmin =152 1 o= e (42)

Imin; $> Ser

where g, Tepresents the (user-specified) minimum value
that g can take at s = s, (also user-specified).

From (40), the approximated first Piola-Kirchhoff
stress tensor and the elasticity tensor at load increment
n+ 1, namely P, and C,, 41, respectively, can be ob-
tained as

Pn+1 L= 8V0¢éinc‘n+1 = g(8|n) (P|n
+ Cregl,, VOAun+1> ; (43)

Chi1:= 82V0¢V0¢'éinc|n+1 =g (s|n) Cr0g|n'

In order to illustrate how the proposed methodol-
ogy works, we carefully select the following simple but
insightful numerical experiment. A compressible plane
strain isotropic bi-axial deformation state is considered,
characterised by the deformation stretch A, yielding the
following expression for the deformation gradient tensor
F = diag ([)\ A 1]) Then, A is varied within the range
0.1 < XA < 4.4. The Mooney-Rivlin model in (6) has
been considered for this study, with pu; = 1, uo = 10

4 Note how the regularisation parameter featuring in equa-
tion (40) is frozen at incremental step n. This removes the
nonlinearity altogether and avoids the need to linearise in a
Newton-Raphson type manner.
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and x = 10. Thirty load increments have been con-
sidered (i.e. N = 30). We compare the incrementally
linearised approach in Section 4.2 against the regulari-
sation approach in Section 4.4 for two expressions of the
degradation function in (42), with gmin = 1, Gmin = 1/2
(ser = 0.1). Comparison of Figures 5, and 5, clearly
illustrates that the regularised approach with no degra-
dation (i.e. gmin = 1) yields an overestimation of the
elasticity tensor. On the contrary, the regularised ap-
proach degrades the value of the elasticity tensor. When
embedded in a topology optimisation setting, the aim
of the degradation function g(s) is revealed as crucial
as it intends to discard (if possible) a final shape prone
to exhibit instabilities.

4.5 The minimisation problem within the regularised
methodology

In the proposed incrementally regularised approach, the
equilibrium equations in (4) are replaced with their in-
crementally regularised counterparts, written as

DIVP, - )\n+1f0 = 0; in £g;
PN = Apiato; on 9;82;  (44)
¢ = ¢; on d¢ {20,

with Ppy1 defined in (43), Apy1 = (n + 1)/N, with
n = {0,1,..., N — 1}. Therefore, the original minimi-
sation problem (Py) (14) is replaced by its regularised
counterpart (Py,,,), defined as

min 7 (£2),

20 €U
s.t. [ =V"
State equations (1), (44), and (43),
(45)

(P1res)

The regularised augmented Lagrangian functional
Lycg is defined as

‘Creg (‘(207“77)761) = j(QO7UN)
N-1
+ Z Hreg (907un+17pn+1)

n=0

+ (192 = V) + 5 (192] = V)

Hreg (‘QOy un+17pn+1) = - P"+1 : Vop"+1 av

0

+)\n+1 (/;2 pn—&-l'-fodv

+/ Pit o dA) ,
¢ 20

(46)

where U = {uy, ..., Up41,...,un} represent the set of
solutions of the regularised equilibrium constraint (44)
and P = {py,..., P41, - PN}, the set of adjoint state
counterparts. Introduction of the expression for P|
(43) into (46) enables to re-express IT;eq as

n+1

Hreg (QOa un+l7pn+1) =

- / Vopn+1 : g(5|n) Creg|n : VOAU7L+1 av
20

+ )\n+l </ Pn+1 . fo dV + / pn+1 . to dA)
QO 8t-QD

1émewmammv

(47)

The stationary condition of L, (46) with respect
to 6p,,q € Hj(£20;R?) yields

D['reg [(Spn-&-l] =

- Voop,i1:9(5l,) Cregl,, : VoAt i1 dV
20

+ Ant1 (/ 0Ppy1 - fodV + / OPpt1 - to dA)
2 992

- Voop,1:9(s],) P, dV =0.
0

(48)

From (48) it is possible to obtain the displacement
field at load increment n + 1, namely w,4;1 (notice that
(48) is linear with respect to w,1). Furthermore, the
stationary condition of L,e; with respect to du,41 €
H}($20;R3) for the specific case where n = N — 1 yields

DL, eg[dun] = — Vopy : 9(5l,) Cregl,, : Vodun dV
20
+ fo~5uNdV+/ to‘éuNdA:O.
Q(] atQO
(49)

Equation (49) enables to obtain the adjoint state
at load increment n + 1, e.g. py. Furthermore, the
stationary condition of Lre, with respect to du,41 €
H(£20;R3) for the case when n # N — 1 yields

DLeg[0Upi1] = — Vopy : 9(5,,) Cregl,, : Vodun dV

0
= ()7
(50)
which yields the trivial solution p,,,, =0ifn # N —1

and the problem is well-posed. In this case, this is al-
ways the case due to the regularisation introduced into
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Fig. 5 Behaviour of incrementally regularised approach in Section 4.4. Evolution of: (a) [|C||; (b) minimum eigenvalue of C
(the minimum eigenvalue corresponding to the regularised approaches is always positive or zero).

the problem which now reveals crucial for the solution
of the adjoint problem. Solution of (48) enables to ob-
tain the displacement field at load increment n + 1,
i.e. Upy1. Comparison between (48) and (49) enables
to identify that the last term on the right hand-side of
equation (48) is the only difference between both equa-
tions. Therefore, this term accounts for the fact that
(P1,,,) (45) is not self-adjoint, i.e. uy # py. Finally,
the expression of the counterpart of the shape deriva-
tive in (22) for the incrementally regularised Lagrangian
Lyres (46) adopts the following expression

DLY) = / OyvdA:;
0820

v=4g (S|n) (P|n + creg|n : VoAunJrl) ?

(51)

where use of p,,,; = 0 (if n # N — 1) has been made
of in (51) (see (50)).
Remark 7. With regards to the strategy followed to ful-
fil the volume constraint (13), the Lagrange multiplier
{1 is updated at each TO iteration k + 1 according to
Y = k4 (1020] — V*). Furthermore, the penalty pa-
rameter is updated after every five TO iterations, mul-
tiplying its previous value by 1.2.

|
Remark 8. An appealing ingredient of the proposed
methodology is the solution of the equilibrium equations
in a consistent incrementally linearised fashion. This
yields a series of incremental linear problems where the
incremental displacement field is obtained without re-
sorting to an iterative strategy (e.g non-modified Newton-
Raphson). From the computational standpoint, this tech-
nique (in conjunction with the stabilisation proposed
in Section 4.3) circumvents the numerical difficulties
inherent to a (non-modified) Newton-Raphson scheme.
However, this incremental approach entails that the equi-
librium equations are mot solved exactly, but approxi-

mately, due to the regularisation introduced. Therefore,
the accuracy of this approach rests on a careful choice of
the number of load increments and a well-defined degra-
dation function in order to control the amount of sta-
bilisation introduced by the reqularisation parameter. In
the numerical examples to follow, we will analyse the
accuracy of this approach and demonstrate its impres-
sive range of validity.
O

4.6 Computational Strategies

In this section, we summarise the computational strate-
gies followed by the authors in order to perform topol-
ogy optimisation at large strains by means of the level-
set method.

4.6.1 Strategy I: Newton-Raphson/arc-length

This strategy corresponds to the classical approach used
in topology optimisation. At each TO iteration, a Newton-
Raphson method can be used in order to solve the equi-
librium equation (4) in an incremental fashion until
convergence problems are observed. At this instant, an
arc-length technique can be used in order to capture the
post-buckling response of the structure until the design
load is reached (A = 1). Therefore, the TO algorithm
must rely on the Lagrangian functional £ in (16).

However, as illustrated in Figures 3 and 14, the post-
buckling response of intermediate TO iterations can po-
tentially be extremely complex and, in fact, it could be
impossible to find an equilibrium configuration for the
design load (Figures 3 and 13 show examples where it
would be impossible to find the value of the compliance
at A=1).
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4.6.2 Strategy II: Continuation method

In order to circumvent the shortcoming associated with
Strategy I, we propose a continuation method which
combines the latter with the proposed technique de-
scribed throughout Sections 4.1-4.5. In order to better
explain this, let us assume that at a given TO iteration,
a critical point has been detected by means of Strategy
Iat A= Ag 2. From A to A = 1, the load is then ap-
plied in a number of increments Ny, in order to obtain
a fictitious regularised post-buckling response by means
of the regularisation technique proposed in Sections 4.1-
4.5. Crucially, the degradation function g(s) in (42) is
introduced with the aim of penalising the compliance
of excessively stabilised intermediate designs. Conse-
quently, the Lagrangian functional associated with the
pre-buckling region is that in (16), whereas in the post-
buckling region, the Lagrangian functional corresponds
to the regularised counterpart in (46).

4.6.3 Strategy I1I: Regularised approach

With the aim of reducing the computation burden and
taking inspiration from Strategy II, we put forward a
third strategy where the Newton-Raphson method of
the pre-buckling stage is now circumvented. In this
new strategy, at every TO iteration, the regularised ap-
proach described throughout Sections 4.1-4.5 is applied
incrementally using N load increments from A = 0 to
A = 1. Therefore, both pre- and post-buckling regions
are approximated by means of the proposed method in
Sections 4.1-4.5. Clearly, avoiding the use of a Newton-
Raphson/arc-length technique results in a higher com-
putational efficiency with respect to Strategy II.

5 Numerical experiments

The objective of this section is to demonstrate the per-
formance and applicability of the proposed incremen-
tally regularised methodology. For every increment n +
1, and following a standard Finite Element implementa-
tion, the out-of-balance of residual vector R, is com-
puted as R,+1 = T,, — A\, +1Fo, where F( represents the
equivalent (nominal) external nodal force vector, A\, 41
is the load factor and T, is the equivalent vector of
internal forces at increment n. The unknown incremen-
tal displacement vector U is computed after solution
of the discrete linear system K,U = R, 1, where K,
is the discrete tangent operator obtained at the end

5 Ao can be approximated by the point in the equilibrium
path where A\ decreases

of the load incement n. Assembly of K and R is car-
ried out following standard Finite Element methodol-
ogy (Bonet et al (2016b)). Five challenging numerical
examples have been considered with the following com-
mon characteristics:

— The constitutive model considered is that of a Mooney-

Rivlin model as defined in (6).

— 7 bi-linear (2D applications) or tri-linear (3D ap-
plications) have been used for the Finite Element
discretisation of displacements w and the adjoint
state field p.

— A uniform Cartesian grid characterised by the num-
ber of elements in the X, Y and Z directions, de-
noted as NV, N, and N, respectively, has been con-
sidered.

— The hypothesis of plane stress (refer to Appendix
A) has been considered for all 2D examples.

— The parameter s, of the degradation function g(s)
(42) is s = 0.1.

— The ratio of the material parameters for void and
solid regions for analysis is € = 1075, In order to
check the performance of the final designs, we have
employed ¢ = 10712,

Finally, it is important to emphasise that all the fi-
nal designs obtained have been tested at a postprocess-
ing stage using the exact nonlinear equilibrium equa-
tions, without adding any source of artificial stiffness.
Specifically, equilibrium paths have been obtained using
an arc-length Newton-Raphson method in conjunction
with a ratio of the material parameters for void and
solid regions of 10712,

5.1 Numerical example 1

The objective of this example is two-fold:

— OI.1. To benchmark our in-house level-set based
TO algorithm for small deformations against avail-
able results in the literature for a classical bench-
mark example.

— OI.2. To illustrate the dramatic changes with re-
gards to the topology and the structural behaviour
of the optimum structure between the linear (small
deformations) and nonlinear regimes (large defor-
mations) for problems which do not pose a challenge
for the application of Strategy I.

The geometry and boundary conditions for this ex-
ample are illustrated in Figure 6a. The initial seed or
initial design considered is depicted in Figure 6b. The
relevant material properties and simulation parameters
for this specific example can be found in Table 1.
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Fig. 6 Numerical example 1: (a) geometry and boundary conditions and (b) initial (non-optimum) seed.
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Fig. 7 Numerical example 1: Optimum design corresponding to: (a) P = 0.3 N (design obtained by means of linear solver);
(b) P =0.3 N (design obtained by means of Strategy I); (¢) P = 0.5 N (design obtained by means of Strategy I). The deformed
configuration and hydrostatic pressure contour plot have been obtained at a postprocessing stage through an arc-length method

with e = 10712,

With regards to objective OI.1, Figure 7a shows the
final topology (initial in black and deformed in colour)
configurations obtained under the unrealistic assump-
tion of small deformations (linear solver). The colour
contour represents the hydrostatic pressure p®. It can
be observed that this topology agrees well with that
in (Jung and Gea, 2004). Figure 8 provides very in-

6 The hydrostatic pressure is obtained as p = %tro- where
o is the Cauchy stress tensor defined as o = J~'PF7T in 3D
problems and o = (A33J2p) ' PFT for 2D problems.

sightful information with regards to objective OI.2.
Specifically, Figure 8a shows that the final design (ob-
tained under the assumption of small deformations) is
extremely compromised and exhibits a limit point for a
value of P smaller than the design value of P = 0.3 N.
Furthermore, its equilibrium path showcases perfectly
one of the plausible difficulties associated with the arc-
length technique described in Section 4.1, namely, the
fact that it is sometimes impossible to obtain a config-
uration in equilibrium with the external applied nodal
force P for some topological designs.
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Fig. 8 Numerical example 1: equilibrium path obtained at a postprocessing stage by means of an arc-length method and
e = 10712 for the three different topologies in Figure 7, corresponding to: (a) P = 0.3 N (design obtained with small strains
assumption); (b) P = 0.3 N with design obtained by means of Newton-Raphson (Strategy I); (¢) P = 0.5 N with design obtained

by means of Newton-Raphson (Strategy I).

Table 1 Numerical example 1. Material properties (see (7)),
material parameters in (6) and simulation parameters.

|
Material Properties . Bl 30 MPa
,,,,,,,,,,,,,, vl 03 __ ]
[
Material Parameters ' 11.5385 MPa
: I 0 MPa
,,,,,,,,,,,,,, LA _ 173077 _ MPa |
|
Simulation Parameters | N, 256
I Ny 64
v 02V

On the other hand, the design obtained using the
realistic large deformations assumption (see Figures 7b
and 8b), obtained with the Newton-Raphson method
(Strategy I), exhibits a limit point for a value of the crit-
ical load much larger than the design load P = 0.3 N
(refer to Figures 7b and 8b). This same method is now
exploited for the case of a larger design load P = 0.5 N.
Referring to Figures 7c and 8c, it can be observed that
the design for P = 0.5 N leads to a dramatically differ-
ent topology. Such extreme topology yields an equilib-
rium path exempt from limit points (see Figure 8c).

In this example, the specific boundary conditions
(both Dirichlet and Neumann) of the problem facili-
tate the development of a topological structure with-
out extreme numerical difficulties, where a standard
Newton-Raphson method (Strategy I) can be used to
successfully converge to a final design. However, in the
following examples, we will observe that other com-
binations of Dirichlet and Neumann boundary condi-
tions can lead to more challenging situations charac-
terised by severe numerical difficulties due to the pres-
ence of extensive compressive regions leading to local
and/or global instabilities. In these scenarios, the clas-
sical Newton-Raphson method requires to be enhanced

via the arc-length technique or, in extremely adverse
(but common) situations, by means of Strategy II (and
I1I).

5.2 Numerical example 2

The objective of this example is:

— OII.1. To illustrate the numerical difficulties intro-
duced by the nucleation process triggered by the
initialisation of the level-set method from a generic
seed and hence, the impossibility of applying Strat-
egy I in these cases.

— OII.2. To show how Strategy II can help stabilis-
ing extremely compromised regions and to provide
a clear visualisation of the distribution of the regu-
larisation parameter s over the intermediate designs
obtained during the nucleation process.

The geometry and boundary conditions for this ex-
ample are illustrated in Figure 9a. The initial seed con-
sidered is depicted in Figure 9b. The relevant material
properties, material and simulation parameters for this
specific example can be found in Table 2.

Figure 10 (left column) displays the initial topo-
logical design configurations for different design loads.
Figure 10 (right column) displays their respective de-
formed configurations and in colour the visualisation of
an invariant of the deformation gradient tensor. Fur-
thermore, the design shown in the first row is obtained
with the unrealistic small deformations assumption (lin-
ear solver). In contrast, the rest of the designs are ob-
tained by using the realistic large deformations assump-
tion, specifically by means of Strategy II.

As expected, it can be observed from comparison
between Figures 10a-10b and 10c-10d that the design
obtained with the unrealistic linear solver exhibits a
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Fig. 9 Numerical example 2: (a) geometry and boundary conditions and (b) initial (non-optimum) seed.

Table 2 Numerical example 2. Material properties (see (7)),
material parameters in (6) and simulation parameters.

|
Material Properties 1 Elg 0.596 MPa
,,,,,,,,,,,,,, |_vlq __049_ _ __ _ |
[
Material Parameters b 0.15 MPa
| pe 0.05  MPa
,,,,,,,,,,,,,, i A__ 97667  MPa |
[
Simulation Parameters | N, 256
I Ny 64
'V 025V

much larger displacement than that obtained by means
of Strategy II. This implies that the compliance (ob-
jective function) is clearly more optimum in the latter
case.

The designs in Figures 10c-101 have been obtained
by means Strategy II, with ¢,,;, = 1 in the regularised
post-buckling region of TO iterations where A, < 1,

which effectively translates into not activating the degra-

dation function in these iterations.

Figure 11 shows the equilibrium path (obtained by
means of arc-length technique and with ¢ = 10712 at a
postprocessing stage, hence without any source of artifi-
cial stiffness) corresponding to the six designs in Figure
10. It can be observed that for all the designs (including
that corresponding to the linear analysis in Figure 11a),
the limit point (in case this exists) occurs at a load value
above the design load (As > 1), which means that all
designs are safe.

Figure 10 shows also the deformed design configu-
rations along with the contour plot distribution of the
hydrostatic pressure p. This field is an extremely use-
ful indicator to illustrate the distribution of tensile or

compressive stress within the structure. Regarding ob-

jectives OIL.1 and OII.2, Figure 12 shows the contour

plot distribution of the regularisation parameter s (de-
fined in equation 39) for some intermediate TO itera-
tions where A, < 1 and hence, where the arc-length
is continued by means of the incremental regularised
approach in Sections 4.1-4.5 (Strategy II). It is worth
observing from this figure how the regularisation pa-
rameter s is concentrated in extremely localised regions
where the buckling occurs, attaining a value of almost
zero in the rest of the domain (2.

From Figures 12a-12c, it is worth noticing the pres-
ence of extremely thin structural parts highly compressed
as well as disconnected regions. These structural fea-
tures are responsible for the numerical difficulties for
the solution of the state and adjoint equations (17) and
(18), respectively, posing serious limitations to the ro-
bust applicability of the arc-length technique through-
out the entire equilibrium path. This can be observed
in Figure 13, where the equilibrium path exhibits a
complex snap-back pattern, with the arc-length even-
tually failing before the design load P = 2N is at-
tained. In addition, the effect of the regularisation in
the post-buckling region, both with no degradation (i.e.
9gmin = 1) and with degradation (i.e. gmin = 0.5), can
be observed in this Figure. In particular, both choices of
g successfully stabilise the thin structural components
highlighted in red in Figure 13, subjected to high com-
pressions. Clearly, when degradation is not considered
(gmin = 1), a stiffer response is observed.

5.3 Numerical example 3

The objective of this example is:
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Fig. 10 Numerical example 2: optimum design (left column) for: (a) P = 0.2 N (obtained with linear solver); (c) P = 0.2N
(obtained with Strategy II); (e) P = 0.6 N (Strategy II); (g) P = 0.8 N (Strategy II); (i) P = 1 N (Strategy II); (k) P=2N
(Strategy II). gmin = 1, N = 10 for the post-buckling region in Strategy II. Right column: postprocessing stage and contour

plot distribution of p and deformed configuration obtained by means of arc-length and ¢ = 10712.
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Fig. 11 Numerical example 2: equilibrium paths obtained by means of arc-length and ¢ = 10712 (no artificial stiffness) for
the six different topologies in Figure 10 corresponding to: (a) P = 0.2 N (design obtained with linear solver); (b) P = 0.2 N
(design obtained with Strategy II); (¢) P = 0.6 N (Strategy II); (d) P = 0.8 N (Strategy II); (e) P = 1 N (Strategy II); (f)
P =2 N (Strategy II). gmin = 1, N = 10 for post-buckling regions in Strategy II.

— OIII.1. To check the robustness of Strategy Il in a
classical benchmark problem of TO at large strains.

The geometry and boundary conditions for this ex-
ample are illustrated in Figure 14a. The initial seed
considered is depicted in Figure 14b. The relevant ma-
terial properties, material and simulation parameters
for this specific example can be found in Table 3.

Table 3 Numerical example 3. Material properties (see (7)),
material parameters in (6) and simulation parameters.

|
Material Properties . El, 0.8736 MPa
,,,,,,,,,,,,,, ' vlp_ 04559 |
|
Material Parameters T 0.15 MPa
: w2 0.15 MPa
,,,,,,,,,,,,,, _A _ 28034  MPa |
|
Simulation Parameters | N, 192
I Ny 64
v 04V

Figures 15a, 15¢ and 15e display the final (deformed)
topological design and equilibrium paths obtained for
loads P=0.1N, P=0.2N and P = 0.4 N using Strat-
egy II.

Figure 16 illustrates perfectly Strategy II. For a
given TO iteration (bottom axis), a blue bar repre-
sents the pre-buckling region of the equilibrium path
whereby the arc-length method can be employed. For
a large number of TO iterations, the evolving struc-
ture is stable and therefore, the bars are blue from
0 < A < 1, where X represents the applied load fac-
tor (vertical axis). However, we observe that at cer-
tain intermediate TO iterations, the corresponding in-
termediate design is unstable and hence, the arc-length
needs to be continued with the regularised approach
described throughout Sections 4.1-4.5. From the right
hand-side of Figure 16, it can be clearly appreciated
that for their corresponding critical load factors, the
designs are extremely compromised due to the pres-
ence of disconnected elements and localised buckling,
yielding extremely complex post-buckling behaviours.
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Fig. 12 Numerical experiment 2: deformed configuration and contour plot distribution of the regularisation parameter s in
(39) for design load P =2 N for the intermediate optimisation iterations (It): (a) It=32; (b) It=52; (c) It=181.

This precludes the use of Strategy I at these iterations,
justifying the use of the regularisation method for the
post-buckling region.

Crucially, from Figure 16 it can also be observed
that instabilities do not occur in the final TO itera-
tions. Therefore, only the arc-length is used in those
final iterations, guaranteeing that the exact physics are
solved (no regularisation needs to be added), hence re-
stricting the use of the regularised approach to those
TO iterations where numerical difficulties arise.

5.4 Numerical example 4

The objectives of this example are:

— OIV.1. To determine the applicability of the com-
putationally efficient Strategy III and compare it
against Strategy II.

— OIV.2. To determine the effect of the number of
load increments N and the value of g, (featur-
ing in the definition of the degradation function, see

equation (42)) on the accuracy of Strategy IIT with
respect to the exact satisfaction of the equilibrium
constraint.

The geometry and boundary conditions for this ex-
ample are illustrated in Figure 17a. The initial seed
considered is depicted in Figure 17b. The relevant ma-
terial properties, material and simulation parameters
for this specific example can be found in Table 4.

Objective OIV.1 is demonstrated in Figure 18, where
two different methodologies are compared: (1) Strategy
IT and (2) Strategy III, the latter with and without
degradation function. The first two rows correspond to
a design load P = 0.05 N and the last two rows corre-
spond to a design load P = 0.15 N.

In Figure 18a, topological (final configuration) de-
signs, shown in black colour contour in the left col-
umn (a, g), are obtained using Strategy II, whereby
the arc-length is continued with the proposed regu-
larised method with ¢, = 1 and N = 30. Like in
previous example 5.3, by using Strategy II, numerical
instabilities would be obtained at intermediate TO iter-
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Fig. 15 Numerical example 3: optimum design and deformed configuration (left column) for: (a) P = 0.1 N; (¢) P =0.2N; (e)
P =0.4N . The three designs have been obtained by means of Strategy II (gmin = 1, N = 30). Right column: postprocessing
stage and equilibrium path obtained by means of arc-length and e = 10~ 12.

ations, forcing the continuation of the arc-length with
the regularised approach (a similar behaviour as that
depicted in Figure 16 is in fact obtained). These insta-
bilities eventually vanish, yielding a stable design in the
final TO iterations.

The centre column of Figure 18 displays topologi-
cal (final configuration) designs, shown in black colour
contour (b, h), obtained using Strategy III all load in-
crements (with gy, = 1). Finally, the right column dis-
plays topological (final configuration) designs, shown in

black contour in the right column (c, i), obtained using
Strategy III for all load increments (with g, = 1/3).

Let us recall that when using Strategy III, the regu-
larised approach is applied for the entire design loading
at every TO iteration. In this strategy, the number of
load increments N is crucial in order to yield a suffi-
ciently accurate response based on this linearised and
stabilised approximation. For instance, if the equilib-
rium path associated with a design experiences a soft-
ening at a value of the accumulated factor close to the
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Table 4 Numerical example 4. Material properties (see (7)),
material parameters in (6) and simulation parameters.

|
Material Properties , El, 0.8736 MPa
,,,,,,,,,,,,,, | _vlo_ 04559 |
[
Material Parameters ' u 0.15 MPa
| e 0.15 MPa
,,,,,,,,,,,,,, |\ _ 28031 MPa |
|
Simulation Parameters | N, 192
I Ny 64
v 04V

design load i.e. A = 0.85, since we might be left with
few load increments in order to reach A = 1, the re-
sulting approximation could translate effectively in a
overestimation of the response of the structure (see

(b)

Fig. 17 Numerical example 4: (a) geometry and boundary conditions and (b) initial (non-optimum) seed.

for instance Figures 18b, 18h and 19a, where the red
line corresponds to the real deformation predicted by
an arc-length method whereas the black contour repre-
sents the deformation predicted by means of Strategy
III). The use of the function g(s) helps preventing this
shortcoming associated with Strategy III (see Figures
18c, 18i and 19b). This is a consequence therefore of
the fact that with Strategy III, a good approximation
of the physics is intrinsically related to the choice of a
sufficiently large number of load increments N, which is
a priori unknown. Nevertheless, we explore this strat-
egy in this example because of its benefits from the
computational efficiency standpoint.

In Figure 18, for the smaller design load P = 0.05 N,
left and centre approaches (Strategy II and Strategy III
with gmin = 1) give almost identical results and the
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differences between the black contour and the red line
are almost undistinguishable. In this case, no degrada-
tion function has been activated (i.e. gmin = 1), which,
as already discussed, can potentially incur in a (possi-
bly) undesired overestimation of the structural stiffness
when using Strategy III. This detrimental feature can
be clearly appreciated in Figures 18h and 19a, corre-
sponding to design loads P = 0.15 N and P = 0.3 N.
The objective of the degradation function g (introduced
in (40)) is precisely to circumvent this drawback. We
can clearly see from Figures 18c, 18i and 19b that when
using Strategy ITIT with g, = 1/3, the predicted defor-
mation (black contour) underestimates the exact defor-
mation (highlighted in red). Notice that although the
stabilisation yields a higher structural stiffness than the
exact structural response (see Figures 18h and 19a), the
degradation function is responsible for the in general,
softer (but stable) response with respect to the latter.

An interesting aspect that must be stressed, already
indicated in Section 5.1, is the fact that topological
changes in the nonlinear regime tend to minimise the
existence of areas subjected to compressions whilst max-
imising those subjected to tractions (for overall struc-
tural stability). See for instance Figure 20. In this exam-
ple, the specific choice of boundary conditions make it
impossible to completely eliminate the areas subjected
to compression (as opposed to the numerical example in
Section 5.1). Unavoidably, two (compressed) bars must
remain in the final design in order to transfer the ap-
plied nodal forces to the horizontal (tensioned) bar.
Therefore, it is the boundary conditions that dictate
the complexity and the challenging nature associated
with the solution of the state equation.

Furthermore, Figure 21 shows the contour plot dis-
tribution of the regularisation parameter s defined in
(39) for some intermediate optimisation iterations (It).
Let us recall that this parameter informs about the loss
of positive definiteness of the elasticity tensor. Notice
that 21a-b correspond to TO iterations 13 and 23. The
maximum value attained in these figures by the regu-
larisation parameter is considerably large (S0, = 27.1
and Spae = 2.13, respectively) and is extremely lo-
calised in the regions where instabilities would develop
if they were not stabilised. However, in Figure 21c, the
value of the regularisation parameter (extremely con-
centrated in the area where the nodal loads are applied)
is much smaller, i.e. S0 = 0.67. It is important to
clarify that even though s is not completely zero every-
where for Figure 21c, this figure corresponds to a stable
design, namely, its critical load is larger than the design
load (see the associated arc-length in Figure 19d). This
clearly showcases that local positive definiteness of the
elasticity tensor is a sufficient but not necessary condi-

tion to guarantee global stability. In other words, the
instability does not develop immediately after the elas-
ticity tensor loses positive definiteness locally, although
when the structure becomes unstable, then the maxi-
mum value of s increases considerably with respect to
pre-buckling stages.

Finally, within Strategy III we examine the effect of
the number of load increments N and the value of g,
in the correct satisfaction of the exact physics of the
problem (objective OVI.3). For the design obtained in
Figure 19, we see from Figure 22 that for g,,;, = 1, the
value of the predicted compliance tends to that pre-
dicted by the arc-length method (exact solution, see
dashed line in Figure 22) as N increases. For low values
of N, it is clear that the predicted compliance is slightly
smaller than the exact solution. On the contrary, we
can see from this figure that introducing penalisation
(gmin = 1/2 and gmin = 1/3), a softer response is ob-
tained.

5.5 Numerical example 5

The objective of this example is:

— OV.1. To demonstrate the applicability of the pro-
posed incrementally regularised approach in Section
4.3 to large scale three dimensional applications.

The geometry and boundary conditions for this ex-
ample are illustrated in Figure 23a. The initial seed
considered is depicted in Figure 23b. The relevant ma-
terial properties, material and simulation parameters
for this specific example can be found in Table 5.

Table 5 Numerical example 5. Material properties (see (7)),
material parameters in (6) and simulation parameters.

|
Material Properties | El, 0.8736 MPa
Loyl 0.4559
,,,,,,,,,,,,,, |- A0 R
Material Parameters : “1 0.15 MPa
o 0.15  MPa
DY 2.8034 MPa
,,,,,,,,,,,,,, - - smT o
Simulation Parameters : N, 82
I Ny 32
I N, 16
1 \% 0.2-Vo

Taking advantage of the computational efficiency of
Strategy III, and bearing in mind its limitations, we
apply Strategy III for the TO of this three-dimensional
example. The left column of Figure 24 shows the real de-
formed configuration and the contour plot distribution
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Fig. 18 Numerical example 4: final designs and associated equilibrium paths for P = 0.05 N (figures (a)-(f)) and P =0.15 N
(figures (g)-(1)) obtained by means of: (left column) Strategy II with g, = 1 in the post-buckling region; (center column)
Strategy III gmin = 1; (right column) Strategy III with gy,n = 1/3. The equilibrium paths have been obtained by means of
arc-length technique and € = 10~ !2 in order to avoid artificial stiffness. The red line represents the deformation obtained by
means of the arc-length technique with ¢ = 10712 (without numerical stiffness).

Displacement u (mm)



24

Rogelio Ortigosa et al.

Strategy III: {gmin =1, N = 30}

T T REEEE NN ST PR R R
] L —>4
0.35 ] Limit poiwt/ E
0.3 F
Z 025
a ]
® 024
g ]
© ]
£ 015
g ] /
& ]
0.1
o.05: N
E / =+ - - Design joad
0]

20 40 60 80 100 120 140 160
Displacement u (mm)

(©)

Strategy III: {gmin = 1/3, N = 30}

(b)
N TS I R I N R
] —>r
0.35 7 _imitpoint/ n
0.3 / b
.. 0254
g /
a ]
5 024
©
K=} ]
T 0.15
£ ]
£ ]
g 015
0.05: By r
1 / - - < Design load [
0_

20 40 60 80 100 120 140
Displacement u (mm)

(d)

Fig. 19 Numerical example 4: final designs and associated equilibrium paths for P = 0.3 N obtained by means of: (left column)
Strategy III with g, = 1; (right column) Strategy III with gy, = 1/3. The equilibrium paths have been obtained by means
of arc-length technique and € = 10712 in order to avoid artificial stiffness. The red line represents the deformation obtained
by means of the arc-length technique with ¢ = 10712 (without numerical stiffness).

of the hydrostatic pressure p for: (i) P = 0.001 N/mm?
using a linear solver; (ii) P = 0.001 N/mm? using Strat-
egy III with g, = 1/3; (iii) P = 0.002 N/mm? using
Strategy III with g, = 1/3. The right column of Fig-
ure 24 shows how a considerably large portion of the
structure obtained by means of the linear solver (see
Figure 24b) is significantly reduced when the solution
is analysed with a nonlinear solver (Strategy III), in
agreement with the previous numerical experiments.

6 Conclusions

The paper has introduced a novel computational ap-
proach for the topology optimisation of hyperelastic
materials at large strains, still representing a challeng-
ing open problem in topology optimisation. Specifically,
two computational strategies have been proposed. The
first strategy (denoted as Strategy II in the paper) re-
sorts to an arc-length in the pre-buckling region of inter-
mediate topology optimisation iterations where numer-
ical difficulties arise, and is then continued by a novel

regularisation technique in the post-buckling region. In
the second strategy (denoted as Strategy III in the pa-
per), the regularisation technique is used for the entire
loading at each topology optimisation iteration.

The regularisation technique (featuring in both com-
putational strategies) seeks the relaxation of the opti-
misation Lagrangian by combining the following key
features: the equilibrium equations are solved approxi-
mately in a consistently linearised incremental fashion,
splitting the total design load in N (user defined) load
increments. At each load increment, the elasticity ten-
sor is regularised preventing its loss of positive definite-
ness, and, hence, that of the tangent operator. In or-
der to prevent excessive regularisation (or equivalently,
stabilisation), we propose the definition of a scalar indi-
cator (at a quadrature point level) which can quantify
the violation of the positive definiteness of the elastic-
ity tensor. Based on this parameter, and inspired from
the field of damage mechanics and phase-field meth-
ods to fracture, we advocate for a combined use of the
regularisation approach with a penalisation function.
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Fig. 20 Numerical example 4: final designsfor: (a) P = 0.05N; (b) P = 0.1 N and (c) p = 0.3 N. Designs obtained by means
Strategy III with gm:n = 1/3 and N = 30. Deformed configuration and pressure contour plot obtained at a postprocessing
stage by means of arc-length technique and € = 10~12 in order to avoid numerical stiffness.

Finally, a series of numerical examples have been in-
cluded in order to illustrate in a comprehensive man-
ner the robustness and applicability of the proposed
methodology. Crucially, the performance of all the de-
signs obtained in the numerical examples section has
been tested at a postprocessing stage without adding
any source of artificial stiffness. Specifically, an arc-
length Newton-Raphson method has been employed in
conjunction with a ratio of the material parameters for
void and solid regions of 10712,
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8 Replication of Results

Regarding reproducibility of results, the following re-
marks apply:

— The code used to run the numerical examples in Sec-
tion 5 is comprised of the following standard ingredi-
ents: (i) level-set code (Laurain, 2018); (ii) nonlinear
continuum mechanics code (Bonet et al, 2016b); (iii)
incrementally linearised solver (Poya et al, 2016);
(iv) a bisection algorithm to determine the stabili-
sation required (Burden et al, 2015).

— Equilibrium paths displayed for the final designs
have been obtained by means of an standard arc-
length technique (Bonet et al, 2016b).

— For those readers interested in using our in-house
platform, the authors are happy to be contacted.

A Particularisation to plane stress

Plane stress is suitable for many industrial applications. In
this context, the three dimensional deformation gradient ten-
sor F is expressed in terms of its in-plane component Fsp
and the out of plane thickness stretch A33 component as

Fap 02x1
F = . 52
{01><2 As3 } (52)
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Fig. 21 Numerical experiment 4: deformed configuration and contour plot distribution of the regularisation parameter s in
(39)b for design load P = 2 N for the optimisation iterations (It): (a) It=11; (b) It=13; (c) [t=23. Strategy III with g,;n = 1/3

and N = 30.
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Fig. 22 Numerical example 4: Analysis at a postprocessing stage of the relative error between the real deformation (obtained
by means of an arc-length technique) at the point where the load P is applied and the incrementally linearised methodology
in Section 4 with an increasing value of the number of load increments N and the value of gp,;n. Analysis performed on the
final design obtained for P = 0.3 N (see Figures 15(c)-(d)). For N = 30 (the value used in the simulations) the relative error is

lower than 0.6%.
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Fig. 24 Numerical example 5: Contour plot distribution of p (left column) and contour plot distribution of compressions
(p < 0, right column) for: (a-b) P = 0.001 N/mm? (design obtained with linear solver); (c-d) P = 0.001 N/mm? (design
obtained with solver in Section 4: {gmin = 1/3, N = 15}); (e-f) P = 0.002 N/mm? (design obtained with solver in Section 4:
{gmin = 1/3, N = 15}). The deformed configuration and the contour plot distribution of p have been obtained by means of

arc-length technique and ¢ = 10~12.
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Making use of (2), the Jacobian J and the co-factor H of
F can be defined as

J = JapAss;

H=JFT= A33Hzp O2x1
O1x2  Ja2p |’

(53)

with Hop and Jop defined as

1
HzD:(FQDI)I—FgDi JZD:§H2DF2D (54)

Equations (52)-(53) enable to particularise the strain en-
ergy e (Vo) and its extended representation W (V) in (5) to
plane stress as
¢(Vo$) =2 (Vodop, Asz) = W (Vap, Asa) (55)

with Vop = {Fap, Jap}. Making use of (52) and (53), the
invariants IIr and [Tz featuring in the constitutive model in
(6) can be written in terms of the set {Vap,A3s} as

g =IIp,, + M33; I = \3311F,, + J3p. (56)

Making use of (56), the Mooney-Rivlin model in (6) can
be particularised to plane stress as

= [ 2 M2 H1 2 H2 ;2
W= (7 “')\337) Ip,, + ?A33 + 7J20

— (11 +2p2) (InJ2p +1InAs3) + g (JapAss —1)° (57)
3
~3 (1 + p2).

Let §¢p5p and A¢,p denote virtual and incremental varia-
tions of the in-plane mapping ¢, . The directional derivative
of €(Vogsp,A33) with respect to possible virtual variations
of the in-plane mapping is

Dg[6¢2D] = 6Vu¢2D€: V05¢2D + (8>\asg) D)‘33 [5¢2D]7 (58)

where the second term on the right-hand side of (58) vanishes
due to the plane stress assumption (refer to Remark 2 below
(60)). Making use of (58) and of the left-hand side of equation
(8), it can be concluded that the first Piola-Kirchhoff stress
tensor in plane stress is defined as

P3p = 0v,¢,,€(Vodap, A33) - (59)

Remark 2. The plane stress implies the out of plane component
of the stress to vanish, i.e,

a)\ssg(v()d)a >\33) =0. (60)

Generally, above equation (60) is nonlinear and needs to be
solved iteratively. In addition, the directional derivative of Ass
namely DA33[8¢pop| can be computed from the condition

D (akssg(V0¢'2D’ >\33)) [5¢'2D] =0. (61)

The directional derivative of the plane stress condition (61)
can be expanded as

D (0x;3€ (Vodap, A33)) [0pap] = Oy, P2 : Voddap
+ (03,,2,,€) DA33[6¢pop] = 0.
(62)

Finally, DA33[d¢op] can be obtained from (62) as

-1
DAss[d¢,p] = _(833@336) (Oxy5 P2 : Vodgap) - (63)

O
In the case of plane stress, the fourth order elasticity ten-
sor C emerges from the second directional derivative of the
strain energy as

D?e[5¢ap; Adapl = Voddap : 0,4, odbsp, ¢ : VOAP2D
+ (Voddap : O, Pap) DAss[Adop]-
(64)

Making use of (63) in (64) and comparison against (9)
enables to obtain the following expression for the in-plane
constitutive tensor Cop

2 ~ 2 > 1
C2D = 6V0¢2DVU¢2D€ - (8)\33A336) 8>‘33P2D ® 8A33 P2D'
(65)

Remark 3. Proceeding similarly as in Remark 1, the following
expression for the two-dimensional first Piola-Kirchhoff stress
tensor Pop can be obtained when considering the extended rep-
resentation W (55)

P2D:8F2DW+6J2DWH2D- (66)

Furthermore, the following expression (equivalent to that in
(65)) can be obtained for Cap in terms of the derivatives of W

Cop = 8%2DF2DW + 832D‘]2D WHQD ® Hsap
+ 81272DJ2DW ® H2D + H ® 8‘QIZDFZD/I;[;

— —\ —1
+o,W (Ie1-1I7) - (afmww) Oxya P2p @ Ox,, Pap,

(67)
with
8/\33P2D :81272D)\33W+8(2]2D)\33AW1H2D- (68)
O
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