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Abstract 

In this work, a simple but robust 4-node displacement-based Trefftz plate element is proposed for 

efficiently analysis of orthotropic plate structures. This is achieved via two steps. First, the element’s 

deflection and rotation fields are directly formulated at the base of the Trefftz functions of the 

orthotropic Mindlin-Reissner plate. Second, to ensure the convergence property and further enhance 

the element performance, the generalized conforming theory is employed to satisfy the requirement 

for interelement compatibility in weak sense. The resulting displacement-based element belongs to 

the nonconforming models on coarse meshes and gradually converges into a conforming one with 

the mesh refinement. Numerical benchmarks reveal that the new element can produce high precision 

results for both displacement and stress resultant. Moreover, it is free of shear locking and has good 

tolerances to mesh distortions. 

  

Keywords: Displacement-based Trefftz element; Mindlin-Reissner plate; Generalized conforming; 
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1. Introduction 

Due to the superior strength to weight ratio and stiffness to weight ratio, orthotropic plate structures 

have been widely used in various engineering applications. For well understanding and effectively 

designing such structures, accurate numerical tools are clearly required, in which the finite element 



method (FEM) is usually regarded as the most popular choice. In the earlier history, most plate finite 

elements are developed based on the classical Kirchhoff thin plate theory [1]. However, because the 

transverse shear deformation is neglected in the Kirchhoff plate theory, these Kirchhoff plate 

elements are only appropriate for modeling thin structures. In contrast, in Mindlin-Reissner plate 

theory, the deflection and rotations are independently defined and the transverse shear strain is 

assumed to be constant through the plate thickness. Thus, the Mindlin-Reissner plate elements can 

appropriately describe the behaviors of thick plates. Another advantage of the Mindlin-Reissner 

plate theory is that it is applicable to both thick and thin plates. In addition, there are also some 

element models developed based on other plate theories, such as the higher order shear deformation 

theory [2], the zig-zag theory [3-5], etc. These plate theories indeed can provide improved shear 

deformation responses but at cost of a significant increase in computation expense.  

Over the past decades, how to develop high-performance Mindlin-Reissner plate elements has 

drawn great attentions from scholars in both computation mechanics and computation engineering 

communities. Various methodologies and schemes have been successfully proposed, such as the 

enhanced assumed strain (EAS) method [6-9], the smoothed FEM [10-15], the quasi-conforming 

element method [16-18], the mixed interpolated tensorial components method [19-21], the refined 

non-conforming element method [22, 23], the high-order linked interpolation method [24, 25], etc. 

A comprehensive literature review can be found in [26]. Amongst these available approaches, the 

hybrid-Trefftz finite element method [27-29], which successfully blends the attributes of the Trefftz 

method [30] with the usual hybrid element method, is a very attractive one. In hybrid-Trefftz 

element models, the internal displacement or stress trial field is assumed as the sum of the analytical 

homogeneous solutions and particular solution, namely the Trefftz functions, so that it can a priori 

satisfy related governing equations. As a benefit, good numerical accuracy can be expected and the 

challenging shear locking problem can be easily eliminated. Since its inception, the hybrid-Trefftz 

finite element method has become increasingly popular and been applied to solve various solid 

mechanics problems [31-37].  

However, to our best knowledge, a very few studies have been performed on the topic of the 

orthotropic thick plates. Among the existing works, Petrolito [38, 39] derived the Trefftz functions 

of the orthotropic Mindlin-Reissner plate by transforming all governing differential equations into 

one equation, and then used these Trefftz functions to develop a 3-node triangular hybrid-Trefftz 



element for analysis of the orthotropic thick plate structures. Karkon and Rezaiee-Pajand [40] also 

developed 3-node triangular and 4-node quadrilateral plate elements in an analogous manner. But, 

it is found that their approach for deriving the Trefftz functions will be inapplicable when the order 

of Trefftz function exceeds four. More recently, Ray [41] proposed a non-classical hybrid-Trefftz 

element formulation in which the Trefftz functions are obtained by directly solving the simultaneous 

governing equations and the particular solution is no longer required. 

Comparing with the hybrid element models, the displacement-based elements may be more 

preferred in practical applications because of some inherent advantages. For instance, the 

displacement-based elements can be extended to the nonlinear cases more directly [42]. However, 

it should be noted that the Trefftz functions are generally not compatible across the interface 

between two neighboring elements. A displacement-only finite element implementation using 

Trefftz functions will produce non-conforming models whose convergence properties are often 

queried. Thus, it delivers a question that: whether an efficient and robust displacement-based Trefftz 

element can be developed for analysis of orthotropic thick plates. 

This work aims to propose an answer to the above question. A novel 4-node 12-DOF (degree of 

freedom) quadrilateral displacement-based Trefftz plate element will be constructed via two steps. 

First, the polynomial Trefftz solutions of the orthotropic Mindlin-Reissner plate are solved by 

converting related simultaneous governing equations into three equations. Then, these Trefftz 

solutions are employed to formulate the element’s deflection and rotation fields in a straightforward 

way. Second, to ensure the convergence property and future improve the element’s performance, 

the generalized conforming theory [43-45] is introduced to meet the requirement for interelement 

compatibility in weak sense. The resulting generalized conforming Trefftz plate element will 

perform as a non-conforming model on coarse meshes and gradually converge into the conforming 

one as the mesh refined. 

Several benchmark examples are tested to assess the new element’s capability. Numerical results 

reveal that this new element can produce high precision results for both the displacement and stress 

resultant in analysis of thin and thick plate structures. Moreover, the proposed new element is free 

of shear locking and has exceptional tolerances to mesh distortion. 

 

 



2. Analytical solutions for orthotropic Mindlin-Reissner plate 

2.1 Basic governing equations 

For orthotropic plates, it’s common to firstly describe their behaviors by using a local coordinate 

system, in which x- and y- axes are the two material principal directions whilst z- denotes the plate 

thickness direction. As illustrated in Figure 1, in Mindlin-Reissner plate theory, the transverse 

deflection and rotations are independently defined and can be expressed in the following vector 

form: 

 
T

x yw   =  u . (1) 

The bending curvatures and transverse shear strains can be obtained by   
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with  
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For linear elastic cases, the constitutive relations between the strain and stress can be generally 

written as 

 
T

x y xy x yM M M Q Q = = σ Dε , (4) 

with 

 b

s

 
=  

 

D
D

D
, (5) 

in which 

 

1

1

0

0

0 0

x

b y

xy

D D

D D

D

 
 

=  
 
 

D , (6) 

 
xz

s

yz

C

C

 
=  

 
D . (7) 

Particularly for the single-layer plate composed of orthotropic material, the components of Equation 

(6) and Equation (7) can be calculated as follows: 
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 ,xz xz yz s yzC khG C k hG= = , (9) 

where , , , , , ,x y xy yx xy xz yzE E G G G    are the engineering material constants; h denotes the plate 

thickness; sk  is the shear deformation correction coefficient and usually taken as 5/6. 

Besides, the equilibrium equations are given by 
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2.2 Analytical solutions of Mindlin-Reissner plate 

To derive the analytical solutions of the orthotropic Mindlin-Reissner plate, the next assumptions 

proposed in [38] are introduced: 
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in which 

 1 2 xyH D D= + . (13) 

Then, by substituting Equation (11) and Equation (12) into the strain-displacement and constitutive 

relationships which have been given by Equation (2) and Equation (4), we can obtain 
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Next, by substituting above Equations (14a) to (14e) back into Equation (10), the three equilibrium 

equations of the Mindlin-Reissner plate theory can also be expressed in terms of the deflection w, 

as follows:  
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Note that it’s very difficult and even impossible to simultaneously solve above three equations. 

Considering that Equation (15) and Equation (16) are much more complicated, we will first solve 

Equation (17). The solution of Equation (17) can be divided into two parts, i.e., the homogeneous 

part 0w  and the particular part *w , which should respectively satisfy 
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For the homogeneous part, fourteen linearly independent polynomial solutions are summarized 

in Table 1, together with their deduced rotation and strain solutions. Besides, when the plate is 

subjected to a uniformly distributed transverse load q, the particular solution can be simply set as 
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Then substitutions of Equations (20) to (22) back into Equation (2) yields  
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It can be easily proven that, the polynomial functions proposed in Table 1 and Equation (20), 

whose orders are no greater than four, can also satisfy Equation (15) and Equation (16) which are 

fifth-order differential equations. That means, these provided homogeneous and particular solutions 

are exactly the analytical solutions of the orthotropic Mindlin-Reissner plate, and can be employed 

for constructing finite elements. 

 

 

3. Finite Element Implementation 

3.1 Variational principle 

As previously discussed, a straightforward displacement-based finite element implementation 

using Trefftz solutions will produce non-conforming models. Generally, the sub-region potential 

energy principle should be employed to ensure the non-conforming elements’ convergence 

properties [45]: 

 +e e

mP P icH =  , (24) 

in which e

P  is the conventional potential energy functional 
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where f and R respectively are the prescribed body and boundary loads; 
icH   is the additional 

energy item produced by the incompatibilities along element boundary.  

Note that the sub-region potential energy principle is much more complicated than the 

conventional potential energy principle, which will make the element construction procedure more 

tedious. For simplicity, we will directly use the conventional potential energy functional instead of 

the sub-region potential energy functional in this work. However, if the simplified functional is 

improperly employed, the convergence can not be guaranteed. To overcome this problem, the 

generalized conforming theory proposed by Long et.al [45], which can effectively make 0icH →  

as the mesh refined, will be introduced. The resulting generalized conforming element belongs to 



the non-conforming model in a coarse mesh and will converge into a conforming one with the mesh 

refinement. 

 

3.2 The new 4-node quadrilateral plate element 

Figure 2 illustrates a schematic representation of the new 4-node quadrilateral plate element in 

which 1~4 are the vertex nodes. 
iA  and 

iB  ( )1 ~ 4i =  are the Gauss points (the local parametric 

coordinates are 1 3 =  ) for imposing the generalized conforming condition. The element nodal 

DOF vector can be expressed as 
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As previously discussed, this new displacement-based plate element will be constructed based on 

the analytical solutions of the orthotropic Mindlin-Reissner plate. Firstly, the deflection and rotation 

fields are assumed as 
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Accordingly, the bending curvatures and shear strains can be expressed as 
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with  
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In above equations, the components of the matrices U and E are the first twelve groups of 

homogeneous solutions proposed in Table 1. 
u  and 

ε  correspond to the particular parts and can 

be calculated by using Equations (20) to (23) for an element-wise constant load q.  

Then, in order to determine the introduced unknown coefficients ( ), 1~12i i =  as shown in 

Equation (29), the following twelve generalized conforming conditions will be imposed: 

(i) the compatibility conditions for deflections at the four nodes 

 ( ) ( ), , 1~ 4i i iw x y w i= = , (32) 

in which ( ),i iw x y  is calculated by using Equation (27) while iw  is the element nodal deflection 

DOF shown in Equation (26); 

(ii) the compatibility conditions for normal rotations at the Gauss points along each edge 

 ( ) ( )1 1 2 2 3 3 4 4, , , , , , , , ,n k k nkx y k A B A B A B A B = = , (33) 

in which ( ),n k kx y  are also calculated by substituting the Cartesian coordinates into the assumed 

rotation field shown in Equation (27), while nk  is interpolated by 

 ( ) ( )1 , 1 2nij ni njs s s   = − + = + , (34) 

where ni  and 
nj  are the nodal normal rotations along the element edge ij. 

It has been demonstrated in [45] that, for a 4-node quadrilateral plate element, above twelve 

generalized conforming conditions can effectively ensure 0icH →   as the mesh refined. That 

means, the new element’s convergence can be guaranteed.  

Next, by substituting Equation (27) into Equations (32) and (33), the relations between α  and 

the element nodal DOF vector 
e

q  are derived: 

 
e+ =λα χ Λq . (35) 

For brevity, the detailed expressions of the matrices λ  , χ   and Λ   will be summarized in 



Appendix. From Equation (35), we can obtain 

 e
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with 
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Substitution of Equation (36) back into Equation (27) and Equation (30) yields 
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in which 
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  Finally, by substituting Equation (38) and Equation (39) into Equation (25) and applying the 

principle of minimum potential energy, we can obtain 

 
e =Kq P , (42) 

where K  is the element stiffness matrix 

 T d
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and P  is the element nodal equivalent load vector  
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Note that the above element stiffness matrix and the element nodal equivalent load vector are 

obtained in the local coordinate system, which is in general different with the global coordinate 

system, as shown in Figure 3. Thus they should be transformed back into the global coordinate 

system: 

 T

global =K QKQ , (45) 
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with 



 









 
 
 =
 
 
 

Q

Q
Q

Q

Q

, (47) 
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This new element will be named by GCTP4, to record that it is a ‘Generalized Conforming 

Trefftz Plate element with 4 nodes’. As preceding discussed, it will perform as a non-conforming 

model on coarse meshes and gradually converge into the conforming one as the mesh is refined.  

 

 

4. Numerical validation 

The proposed new element GCTP4 will be applied to several numerical benchmark tests. The 

results are then analyzed and discussed. Besides, the data of some existing plate element models, 

including QHT-11 [40], Abaqus S4 and S4R [46], RDKQ-L20 [47], SQUAD4 [48] and Petrolito’s 

element [38, 39], are also provided for comparison.  

 

4.1 The patch test 

As shown in Figure 4, the small patch is divided into five elements. Two different thicknesses 

(h=0.02 and 0.2) are considered. The material properties are defined as [40]: 

 10 10, 0.5 , 0.5 , 0.2 , 0.25x y xy y xz y yz y xyE E G E G E G E = = = = = = . (49) 

To produce a constant stress state, the following displacement field will be employed: 

 2 21 , 1 2 , 1 2x yw x y x y xy x y y x = + + + + + = + + = + + . (50) 

The deflections and rotations at the boundary nodes 1~4 which are calculated by using Equation 

(50) are imposed to the patch as the boundary conditions, whilst the results at the inner nodes 5~8 

are monitored and summarized in Table 2. In the thin plate case with h=0.02, this element can deliver 

exact results. In the thick plate case with h=0.2, there are tiny errors which are mainly caused by the 

interelement incompatibilities in a coarse distorted mesh. With the refinement of the mesh, these 



errors can be effectively eliminated. 

 

4.2 The square plate subjected to uniformly distributed load 

Figure 5 depicts a square plate subjected to a uniformly distributed transverse load q. Due to 

symmetry, only a quarter of the plate is modeled. The material parameters given by Equation (49) 

are employed and the non-dimensional deflection and bending moment are calculated: 

 ( ) ( )3 4 2100 , 10yw w E h qL M M qL=  =  . (51) 

(a) Convergence 

The convergence of the proposed new element will be investigated using the typical mesh shown 

in Figure 5. Two cases with different boundary conditions, i.e., the clamped case and simply 

supported case, are considered. Figures 6 to 9 give the relative errors of the central deflections and 

moments for two different thickness-span ratios (h/L=0.01, 0.1), in which the reference values are 

provided in [40]. One can see that the new element GCTP4 convergences very rapidly. An 

interesting feature is that this new displacement-based element can also provide quite good 

performance when predicting stress resultants. 

  

(b) Sensitivity to mesh distortion  

To assess the element’s sensitivity to mesh distortion, the clamped square plate is analyzed again. 

As shown in Figure 10, two different distorted meshes containing only 22 elements are employed. 

In the first one, the central node is moved along the main diagonal of the plate to the corner node. 

In the second one, the central node is vertically moved to the symmetry edge. Figure 11 illustrates 

the variation of the normalized central deflection versus the distortion parameter. It can be observed 

that the maximum deviation is no larger than 5%, revealing that the element has good resistances to 

mesh distortion.  

  

4.3 The two-span plate 

  As shown in Figure 12, this test involves a two-span plate which is simply supported along the y-

direction at its left, right and middle edges. The left-span of the plate is subjected to a distributed 

transverse load q, while the right-span is without loading. Two cases with different thickness-span 



ratios h/L=0.01 and 0.1 are considered. The material parameters used here are the same with the 

previous test. 

  First, the convergence will be investigated. The computations are repeatedly carried out by using 

the mesh 2NN with N=2, 4, 8, 16. In Figures 13 and 14, the relative errors of the deflection and 

bending moment calculated at the point A are proposed. Second, the coarse mesh 42 is employed 

to generate distorted meshes, as shown in Figure 15, to further study the influences on element 

performance of mesh distortion. Figure 16 gives the variation of the deflection versus the distortion 

parameter. The results of this test reveal once again that this new element GCTP4 has good 

numerical accuracy and low susceptibility to mesh distortion. 

 

4.4 The rectangular plate with different sizes 

  In this test, the rectangular plates with different length a, width b and thickness h are analyzed to 

evaluate the rationalities of the present element formulation. The material parameters proposed in 

[49] are adopted here: 

 20.83, 10.94, 6.10, 3.71, 6.19, 0.44x y xy xz yz xyE E G G G = = = = = = , (52) 

and the non-dimensional deflection are checked: 

 11w wQ hq= , ( )11 1x xy yxQ E  = − . (53) 

In Table 3 the numerical results calculated by using a refined mesh 3232 are summarized. Besides, 

the reference values which are obtained using the series expansion method based on different plate 

theories, including the high order shear deformation plate theory [49], the classical thin plate theory 

[50], the first order shear deformation plate theory [50], the two-variable refined plate theory [50] 

and the 3D elastic theory [51], are also listed. It seems that the results of the high order shear 

deformation theory [49] are more close to the new plate element. 

 

4.5 The circular plate subjected to uniformly distributed load 

  In this test, the clamped circular plate is subjected to a uniformly distributed load. As shown in 

Figure 17, only a quarter of the plate is analyzed due to symmetry. The material parameters are 

described as [40]  

 5.6, 1.2, 0.6, 0.26x y xy xz yz xyE E G G G = = = = = = . (54) 



Then the non-dimensional central deflection is calculated: 

 4w wD qR= , ( )3 2x yD D D H= + + . (55) 

In Table 4, the results for three different thickness-radius ratio cases (h/R=0.001, 0.01 and 0.1) are 

summarized. It can be seen that this new element has good numerical accuracy and is free of shear 

locking.  

 

 

5. Conclusions 

This work proposes a simple but robust 4-node 12-DOF quadrilateral displacement-based Trefftz 

plate element for efficiently analysis of orthotropic plate structures. This is achieved via two main 

steps. First, the Trefftz functions of the orthotropic Mindlin-Reissner plate are derived and employed 

for formulating the element’s deflection and rotation fields. Second, to guarantee the convergence 

property and future enrich the element behaviors, the generalized conforming conditions are 

employed to satisfy the requirements for interelement compatibility in weak sense. The resulting 

displacement-based Trefftz plate element, named as GCTP4, has the following characteristics: 

(i) Since the element is developed based on the generalized conforming theory, it will behave as 

a non-conforming model on coarse meshes and gradually converge into a conforming model 

with the mesh refinement. 

(ii) Numerical tests reveal that the new element can produce high precision results for both the 

displacement and stress resultant in analysis of thick and thin plates. Moreover, it is free of 

shear locking and has good robustness to mesh distortion.  

(iii) Compared with its hybrid/mixed counterparts, the displacement-based Trefftz plate element 

can be extended to the geometric nonlinear cases more directly. Related topics will be discussed 

in our future papers.  

 

 

Appendix 

In this section, the components of the matrices λ  , χ   and Λ   shown in Equation (35) are 

presented in details. Firstly, the matrix λ  can be obtained by  
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where 
ijl  and 

ijm  denote the direction cosines of the outer normal of the element edge ij.  

  Secondly, the matrix χ  is obtained by 
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  Finally, the matrix Λ  is given by 

 
w



 
=  

 

Λ
Λ

Λ
, (A10) 

in which 

  

1 3

1 3

1 3

1 3

1 3

, 1 0 0w











 
 
 = =
 
 
 

I

I
Λ I

I

I

, (A11) 

 

11 12

22 23

33 34

41 44

 

 


 

 

 
 
 =
 
 
  

Λ Λ

Λ Λ
Λ

Λ Λ

Λ Λ

, (A12) 

with 

 

( ) ( )

( ) ( )

1 12 1 12 1 12 1 12

12 12 12 12

11 12

1 12 1 12 1 12 1 12

12 12 12 12

1 1 1 1
0 1 1 0

,
1 1 1 1

0 1 1 0

A A A A

B B B B

s y s x s y s x
l l l l

s y s x s y s x
l l l l

 

   
− − − −   

   = =
   

− − − −   
   

Λ Λ , (A13a) 

 

( ) ( )

( ) ( )

2 23 2 23 2 23 2 23

23 23 23 23

22 23

2 23 2 23 2 23 2 23

23 23 23 23

1 1 1 1
0 1 1 0

,
1 1 1 1

0 1 1 0

A A A A

B B B B

s y s x s y s x
l l l l

s y s x s y s x
l l l l

 

   
− − − −   

   = =
   

− − − −   
   

Λ Λ , (A13b) 

 

( ) ( )

( ) ( )

3 34 3 34 3 34 3 34

34 34 34 34

33 34

3 34 3 34 3 34 3 34

34 34 34 34

1 1 1 1
0 1 1 0

,
1 1 1 1

0 1 1 0

A A A A

B B B B

s y s x s y s x
l l l l

s y s x s y s x
l l l l

 

   
− − − −   

   = =
   

− − − −   
   

Λ Λ , (A13c) 

 

( ) ( )

( ) ( )

4 41 4 41 4 41 4 41

41 41 41 41

44 41

4 41 4 41 4 41 4 41

41 41 41 41

1 1 1 1
0 1 1 0

,
1 1 1 1

0 1 1 0

A A A A

A A B B

s y s x s y s x
l l l l

s y s x s y s x
l l l l

 

   
− − − −   

   = =
   

− − − −   
   

Λ Λ . (A13d) 

 

 

 

 

 



Acknowledgements 

This work is financially supported by the National Natural Science Foundation of China (Grant 

numbers 11702133, 11602219), the Natural Science Foundation of Jiangsu Province (Grant number 

BK20170772), the Natural Science Foundation of Zhejiang Province (Grant number 

LQ16A020004), and the China Scholarships Council fellowship (201806835031).  

 

 

 

Reference  

[1] Hrabok MM, Hrudey TM|. A review and catalogue of plate bending finite elements. Computers & 

Structures 1984; 19(3): 479-795. 

[2] Reddy JN. A simple higher-order theory for laminated composite plates. Journal of Applied 

Mechanics 1984; 51(4): 745-752. 

[3] Ahmed A, Kapuria S. A four-node facet shell element for laminated shells based on the third order 

zigzag theory. Composite Structures 2016; 158: 112-127. 

[4] Eijo A, Onate E, Oller S. A four-noded quadrilateral element for composite laminated plates/shells 

using the refined zigzag theory. International Journal for Numerical Methods in Engineering 2013; 

95(8): 631-660. 

[5] Iurlaro L, Gherlone M, Di Sciuva M, Tessler A. Refined zigzag theory for laminated composite and 

sandwich plates derived from Reissner’s mixed variational theorem. Composite Structures 2015; 

133: 809-817. 

[6] Li Q, Liu Y, Zhang Z, Zhong W. A new reduced integration solid-shell element based on EAS and 

ANS with hourglass stabilization. International Journal for Numerical Methods in Engineering 2015; 

104(8): 805-826. 

[7] Vu-Quoc L, Tan XG. Efficient hybrid-EAS solid element for accurate stress prediction in thick 

laminated beams, plates, and shells. Computer Methods in Applied Mechanics and Engineering 

2013; 253: 337-355. 

[8] Li ZX, Vu-Quoc L. An efficient co-rotational formulation for curved triangular shell element. 

International Journal for Numerical Methods in Engineering 2007; 72(9): 1029-1062. 

[9] Vu-Quoc L, Tan XG. Optimal solid shells for non-linear analyses of multilayer composites. I. Statics. 

Computer Methods in Applied Mechanics and Engineering 2003; 192(9): 975-1016. 

[10] Choi JH, Lee BC. Rotation-free triangular shell element using node-based smoothed finite element 

method. International Journal for Numerical Methods in Engineering 2018; 116(6): 359-379. 

[11] Wan D, Hu D, Natarajan S, Bordas SPA, Long T. A linear smoothed quadratic finite element for the 

analysis of laminated composite Reissner-Mindlin plates. Composite Structures 2017; 180: 395-

411. 

[12] Zeng W, Liu GR. Smoothed finite element methods (S-FEM): An overview and recent 

developments. Archives of Computational Methods in Engineering 2016: 1-39. 

[13] Nguyen-Thoi T, Phung-Van P, Luong-Van H, Nguyen-Van H, Nguyen-Xuan H. A cell-based 

smoothed three-node Mindlin plate element (CS-MIN3) for static and free vibration analyses of 



plates. Computational Mechanics 2013; 51(1): 65-81. 

[14] Nguyen-Xuan H, Rabczuk T, Nguyen-Thanh N, Nguyen-Thoi T, Bordas S. A node-based smoothed 

finite element method with stabilized discrete shear gap technique for analysis of Reissner-Mindlin 

plates. Computational mechanics 2010; 46(5): 679-701. 

[15] Luong-Van H, Nguyen-Thoi T, Liu GR, Phung-Van P. A cell-based smoothed finite element method 

using Mindlin plate element (CS-FEM-MIN3) for dynamic response of composite plates on 

viscoelastic foundation. Engineering Analysis with Boundary Elements 2014; 42: 8-19. 

[16] Wang Y, Shi GY, Wang XD. Displacement and stress analysis of laminated composite plates using 

an eight-node quasi-conforming solid-shell element. Curved & Layered Structures 2017; 4(1): 8-

20. 

[17] Wang CS, Wang X, Zhang XK, Hu P. Assumed stress quasi-conforming technique for static and 

free vibration analysis of Reissner-Mindlin plates. International Journal for Numerical Methods in 

Engineering 2017; 112(4): 303-337. 

[18] Hu P, Xia Y, Tang LM. A four-node Reissner-Mindlin shell with assumed displacement quasi-

conforming method. CMES-Computer Modeling in Engineering & Sciences 2011; 73(2):103-135. 

[19] Bathe KJ, Brezzi F, Cho SW. The MITC7 and MITC9 plate bending elements. Computers & 

Structures 1989; 32(3-4): 797-814. 

[20] Ko Y, Lee Y, Lee PS, Bathe KJ. Performance of the MITC3+ and MITC4+ shell elements in widely-

used benchmark problems. Computers & Structures 2017; 193: 187-206. 

[21] Katili I, Maknun IJ, Batoz JL, Katili AM. Asymptotic equivalence of DKMT and MITC3 elements 

for thick composite plates. Composite Structures 2018; 206: 363-379. 

[22] Wu Z, Ma R, Chen WJ. A refined three-node triangular element based on the HW variational 

theorem for multilayered composite plates. Composite Structures 2017; 161: 132-144. 

[23] Chen WJ, Cheung YK. Refined discrete quadrilateral degenerated shell element by using 

Timoshenko's beam function. International Journal for Numerical Methods in Engineering 2005; 

63(8): 1203-1227. 

[24] Ribaric D, Jelenic G. Higher-order linked interpolation in quadrilateral thick plate finite elements. 

Finite Elements in Analysis and Design 2012; 51: 67-80. 

[25] Ribaric D, Jelenic G. Distortion-immune nine-node displacement-based quadrilateral thick plate 

finite elements that satisfy constant-bending patch test. International Journal for Numerical 

Methods in Engineering 2014; 98(7): 492-517. 

[26] Cen S, Shang Y. Developments of Mindlin-Reissner Plate Elements. Mathematical Problems in 

Engineering 2015; 501: 456740. 

[27] Jirousek J, Leon N. A powerful finite element for plate bending. Computer Methods in Applied 

Mechanics and Engineering 1977; 12(1): 77-96. 

[28] Jirousek J. Improvement of computational-efficiency of the 9-DOF triangular hybrid-Trefftz plate 

bending element. International Journal for Numerical Methods in Engineering 1986; 23(11): 2167-

2168. 

[29] Petrolito J. Hybrid-Trefftz quadrilateral elements for thick plate analysis. Computer Methods in 

Applied Mechanics and Engineering 1990; 78(3): 331-351. 

[30] Kita E, Kamiya N. Trefftz method: an overview. Advances in Engineering Software 1995; 24(1-3): 

3-12. 

[31] Moldovan ID, Cismaşiu I. FreeHyTE: a hybrid-Trefftz finite element platform. Advances in 



Engineering Software 2018; 121: 98-119. 

[32] Martins PHC, Bussamra FLS, Lucena Neto E. Three dimensional hybrid-Trefftz stress finite 

elements for plates and shells. International Journal for Numerical Methods in Engineering 2018; 

113(11): 1676-1696. 

[33] Moldovan ID. A new approach to non-homogeneous hyperbolic boundary value problems using 

hybrid-Trefftz stress finite elements. Engineering Analysis with Boundary Elements 2016; 69: 57-

71. 

[34] Moldovan ID. A new particular solution strategy for hyperbolic boundary value problems using 

hybrid-Trefftz displacement elements. International Journal for Numerical Methods in Engineering 

2015; 102(6): 1293-1315. 

[35] Petrolito J. Triangular thick plate elements based on a hybrid-Trefftz approach. Computers & 

structures 1996; 60(6): 883-894. 

[36] Cen S, Shang Y, Li CF, Li HG. Hybrid displacement function element method: a simple hybrid-

Trefftz stress element method for analysis of Mindlin-Reissner plate. International Journal for 

Numerical Methods in Engineering 2014; 98(3): 203-234. 

[37] Choo YS, Choi N, Lee BC. Quadrilateral and triangular plane elements with rotational degrees of 

freedom based on the hybrid Trefftz method. Finite elements in analysis and design 2006; 42(11): 

1002-1008. 

[38] Petrolito J. Vibration and stability analysis of thick orthotropic plates using hybrid-Trefftz elements. 

Applied Mathematical Modelling 2014; 38(24): 5858-5869. 

[39] Petrolito J. Analysis of orthotropic thick plates using hybrid-Trefftz elements. Proceedings of 

Australian Conference of the Mechanics of Structures and Materials 2010. 

[40] Karkon M, Rezaiee-Pajand M. Hybrid-Trefftz formulation for analysis of thick orthotropic plates. 

Aerospace Science and Technology 2016; 50: 234-244. 

[41] Ray M. A novel hybrid-Trefftz finite element for symmetric laminated composite plates. 

International Journal of Mechanics and Materials in Design 2018; https://doi.org/10.1007/s10999-

018-9422-9. 

[42] Li Z, Cen S, Wu CJ, Shang Y, Li CF. High-performance geometric nonlinear analysis with the 

unsymmetric 4-node, 8-DOF plane element US-ATFQ4. International Journal for Numerical 

Methods in Engineering 2018; 114(9): 931-954. 

[43] Long Y, Xu Y. Generalized conforming triangular membrane element with vertex rigid rotational 

freedoms. Finite Elements in Analysis and Design 1994; 17(4): 259-271. 

[44] Shang Y, Cen S, Li CF, Fu XR. Two generalized conforming quadrilateral Mindlin-Reissner plate 

elements based on the displacement function. Finite Elements in Analysis and Design 2015; 99: 24-

38. 

[45] Long YQ, Cen S, Long ZF. Advanced finite element method in structural engineering: Springer, 

Berlin, 2009.  

[46] Abaqus 6.9, HTML Documentation, Dassault Systèmes Simulia Corp, Providence, RI, USA, 2009. 

[47] Zhang YX, Kim KS. Two simple and efficient displacement-based quadrilateral elements for the 

analysis of composite laminated plates. International Journal for Numerical Methods in Engineering 

2004; 61(11): 1771-1796. 

[48] Wilt TE, Saleeb AF, Chang TY. A mixed element for laminated plates and shells. Computers & 

Structures 1990; 37(4): 597-611. 



[49] Reddy JN. A refined nonlinear theory of plates with transverse shear deformation. International 

Journal of Solids and Structures 1984; 20(9): 881-896. 

[50] Shimpi RP, Patel HG. A two variable refined plate theory for orthotropic plate analysis. International 

Journal of Solids and Structures 2006; 43(22): 6783-6799. 

[51] Srinivas S, Rao A. Bending, vibration and buckling of simply supported thick orthotropic 

rectangular plates and laminates. International Journal of Solids and Structures 1970; 6(11): 1463-

1481. 

 

  



 

Table 1. The homogeneous solutions of Equation (18) and the deduced rotations and strains  
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Table 2. The results of the patch test  

Node 
    h=0.02     h=0.2  

   Exact GCPT4 Relative Error   Exact GCPT4 Relative Error 

 w    125 125.00 0%   125 125.06 0.048% 

5 
x    21 21.00 0%   21 21.00 0.000% 

 y    17 17.00 0%   17 17.00 0.000% 

 w    1291 1291.00 0%   1291 1291.08 0.006% 

6 x    71 71.00 0%   71 71.00 0.000% 

 y    45 45.00 0%   45 45.01 0.022% 

 w    1715 1715.00 0%   1715 1715.08 0.005% 

7 x    79 79.00 0%   79 78.99 -0.013% 

 y    61 61.00 0%   61 60.99 -0.016% 

 w    707 707.00 0%   707 707.10 0.014% 

8 x    47 47.00 0%   47 46.99 -0.021% 

 y    45 45.00 0%   45 45.01 0.022% 

  



 

Table 3. The dimensionless central deflection of the simply supported rectangular plate with 

different sizes 

b/a h/a CPT [50] RPT [50] FSDT [50]  HSDT [49] 3D [51] GCTP4 

 
0.05 21201 21513.5 21542 21542 21542 21542.9 

 

2.0 0.1 1325.1 1402.24 1408.4 1408.5 1408.5 1409.7 
 

 0.14 344.93 384.20 387.27 387.5 387.23 387.55 
 

 0.05 10246 10413.4 10442 10450 10443 10444.4 
 

1.0 0.1 640.39 681.73 688.37 689.5 688.57 689.32 
 

 0.14 166.7 187.75 191.02 191.6 191.07 191.57 
 

 0.05 1988.1 2042.74 2047.9 2051.0 2048.7 2050.61 
 

0.5 0.1 124.26 137.82 138.93 139.8 139.08 139.77 
 

 0.14 32.345 39.26 39.753 40.21 39.79 40.21 
 

 

  



 

Table 4. The dimensionless central deflection of the clamped circular plate 

Elements 12 48 192 Reference 

h/R=0.001     

RDKQ-L20 [47] 0.1269 0.1259 — 0.1250 

SQUAD4 [48] 0.1163 0.1231 0.1246  

QHT-11 [40] 0.1186 0.1234 —  

GCTP4 0.1194 0.1235 0.1246  

h/R=0.01     

RDKQ-L20 [47] 0.1245 0.1251 —  

SQUAD4 [48] 0.1193 0.1242 0.1249  

QHT-11 [40] 0.1187 0.1235 —  

GCTP4 0.1195 0.1236 0.1247  

h/R=0.1     

RDKQ-L20 [47] 0.1244 0.1251 —  

SQUAD4 [48] 0.1355 0.1378 0.1384  

QHT-11 [40] 0.1313 0.1362 —  

GCTP4 0.1327 0.1363 0.1379  
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Figure 1. The definitions for a Mindlin-Reissner plate 
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Figure 2. The new 4-node quadrilateral plate element  
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Figure 3. The relationship between the global coordinate system (X, Y) 

and the local coordinate system (x, y) 
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Figure 4. The mesh for the patch test  
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Figure 5. The square plate subjected to a uniformly distributed load 
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Figure 6. The relative errors of the central deflection and bending moment of the 

clamped square plate with h/L=0.01 
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Figure 7. The relative errors of the central deflection and bending moment of the 

clamped square plate with h/L=0.1 
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Figure 8. The relative errors of the central deflection and bending moment of the 

simply supported square plate with h/L=0.01 
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Figure 9. The relative errors of the central deflection and bending moment of 

the simply supported square plate with h/L=0.1 
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(a)  Distorted mesh A (b)  Distorted mesh B 
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Figure 10. Distorted meshes containing 22 elements for the clamped square plate 
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Figure 11. The normalized central deflection of the clamped plate versus the distortion parameter 
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Figure 12. The two-span rectangular plate  
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Figure 13. The relative errors of the deflection and bending moment of the 

two-span rectangular plate with h/L=0.01 
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Figure 14. The relative errors of the deflection and bending moment of the 

two-span rectangular plate with h/L=0.1 
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(a)  Distorted mesh A 
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(b)  Distorted mesh B 

Figure 15. Two distorted meshes containing 42 elements for the two-span plate 
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Figure 16. The normalized deflection of the two-span plate versus the distortion parameter 
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Figure 17. The typical meshes for the circular plate 


