=
&

Swansea University ‘C I'OIlfa

Prifysgol Abertawe Setting Research Free

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:
Microprocessors and Microsystems

Cronfa URL for this paper:
http://cronfa.swan.ac.uk/Record/cronfa50890

Paper:

Noronha, D., Torquato, M. & Fernandes, M. (2019). A parallel implementation of sequential minimal optimization on
FPGA. Microprocessors and Microsystems, 69, 138-151.

http://dx.doi.org/10.1016/j.micpro.2019.06.007

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms
of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior
permission for personal research or study, educational or non-commercial purposes only. The copyright for any work
remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium
without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the
repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa50890
http://dx.doi.org/10.1016/j.micpro.2019.06.007
http://www.swansea.ac.uk/library/researchsupport/ris-support/

A Parallel Implementation of Sequential Minimal
Optimization on FPGA

Daniel H. Noronha?®, Matheus F. Torquato®, Marcelo A. C. Fernandes®*

@ Unigversity of British Columbia, Vancouver, BC V6T 17/, Canada
bCollege of Engineering, Swansea University, Swansea, Wales, SA2 8PP, UK
¢Department of Computer Engineering and Automation, Federal University of Rio Grande
do Norte (UFRN), Natal, RN, 59078 970, Brazil

Abstract

This paper proposes a parallel FPGA implementation of the training phase of a
Support Vector Machine (SVM). The training phase of the SVM is implemented
using Sequential Minimal Optimization (SMO), which enables the resolution of
a complex convex optimization problem using simple steps. The SMO imple-
mentation is also highly parallel and uses some acceleration techniques, such
as the error cache. Moreover, the Hardware Friendly Kernel (HFK) is used in
order to reduce the kernel’s area, enabling an increase in the number of kernels
per area. After the parallel implementation in hardware, the SVM is validated
by bit-accurate simulation. Finally, analysis associated with the temporal per-
formance of the proposed structure, as well as analysis associated with FPGAs
area usage is performed.

Keywords: SVM, SMO, FPGA, Support vector machine, Sequential minimal

optimization, Hardware.

1. Introduction

In the last few years, the requirements for electronic systems have drastically

changed, mainly due to new applications that are emerging. One of the fields

*Corresponding author
Email addresses: danielhn@ece.ubc.ca (Daniel H. Noronha),
m.f.torquato@swansea.ac.uk (Matheus F. Torquato), mfernandes@dca.ufrn.br (Marcelo A.
C. Fernandes)

Preprint submitted to Microprocessors and Microsystems June 20, 2019

10

15

20

25

30

that recently gained much attention is the field of Artificial Intelligence (AI),
more specifically the Machine Learning (ML) field. This area of study increased
the need for higher processing speed and lower power consumption. It is well-
known that high throughput is usually required for many ML applications. This
is especially true in the fields of Computer Vision Zepeda & Perez (2015) and
Big Data Huang & Liu (2014). This increasing need for speed and low power
makes the implementation of those algorithms in reconfigurable hardware even
more desirable.

Moreover, with the increase of the number of embedded systems that use ML
techniques and with the advent of the Internet of Things (IoT), the low power
consumption of those systems became even more critical. In order to allow this
decrease in power consumption, it is necessary to decrease the clock of those
devices. Nevertheless, in order to avoid the reduction of the throughput of those
devices, it is necessary to allow parallelizations, especially using reconfigurable
hardware.

The importance of Field-Programmable Gate Arrays (FPGAs) as compute
accelerators has dramatically increased during the last couple of years. Many
companies such as Amazon, IBM and Microsoft included FPGAs in their data
centers aiming to accelerate their search engines. In the center of those applica-
tions are many machine learning algorithms, such as Support Vector Machines
(SVMs). For FPGAs to thrive in this new role, the efficient usage of FPGA
resources is required.

One of the most used machine learning algorithms is the Support Vector Ma-
chine (SVM). This algorithm has many different application, specially involving
classifications and regressions in the fields of natural language processing (NLP).
The SVM algorithm shows many parallelization opportunities and is therefore
very interesting for a hardware implementation.

In order to implement the hardware of the already consolidated SVM algo-
rithm, a study was performed to identify the main elements that must be present
in its implementation. This study included the new heuristic proposals for the

Sequential Minimal Optimization (SMO) and the different kernels proposed to

35

40

45

50

55

60

be implemented in hardware. Next, a proposal was made for parallel imple-
mentation of the algorithm in order to allow the use of any number of support
vectors and configurable kernel parameters.Thus, the target of this work is the
development on FPGA a parallel algorithm of the training phase of a support

vector machine using SMO.

1.1. Related work

Several works in the literature show the implementation of AI algorithms in
reprogrammable hardware. The majority of works in this area are justified by
the enormous gain in speed and energy savings, which are possible in this type
of hardware Torquato & Fernandes (2019); de Souza & Fernandes (2014); Da
Silva et al. (2019); Da Costa et al. (2019); Coutinho et al. (2019). There is a
growing interest in the use of SVMs in applications related to image processing
and embedded classification systems. In this context, the high computational
cost of SVM, especially in large data sets, requires the acceleration of this algo-
rithm. The biggest problem with software implementations is that, while these
implementations have good numerical accuracy, they are not able to meet the
requirements of low power consumption and real-time processing. This occurs
in some cases, such as in image processing for example. This fact motivated the
implementations of the SVM in reconfigurable hardware.

Several works have implemented only the SVM inference. Patil et al. (2012);
Hussain et al. (2013, 2014) implemented the inference phase using systolic arrays
to accelerate calculations and reduce the FPGA usage area. Initially, Patil et al.
(2012) proposed an implementation for the classification of facial images in order
to differentiate six basic expressions: smile, surprise, sadness, anger, disgust and
fear. The structure with a systolic array enabled the efficient use of memory
and the low complexity of the proposed architecture. This work, however, did
not focus on creating a structure with high throughput, but on using the same
structure for several different binary classifications, resulting in a multi-class
classification. To do this, the author used the partial Xilinx reconfiguration

tool to dynamically modify logic blocks while the rest of the logic continued

65

70

75

80

85

20

95

running without interruptions. Moreover, Hussain et al. (2013) proposed an
implementation with systolic arrays for the classification of DNA microarrays.
This work, later expanded by the same authors in Hussain et al. (2014), also
used partial reconfiguration as in Patil et al. (2012). The proposed architecture,
however, focused on the acceleration of the classification of a small number of
elements of enormous size, as is the case of DNA microarrays. In addition, the
kernel used in this paper was the linear kernel. This kernel, although easily
implemented in hardware, has a low capacity to classify complex problems.
Ruiz-Llata et al. (2010); Jallad & Mohammed (2014); Pan et al. (2013) im-
plemented the same phase using the hardware-friendly kernel (HFK) obtaining
significant reductions in the space used by the FPGA. This occurred since this
kernel does not need the multiplication blocks present in conventional kernels.
The HFK kernel, which was also used in this work, uses a structure very similar
to the Gaussian kernel and performs its more complex operations on a CORDIC
(COordinate Rotation DIgital Computer) containing only shifts and sums as
shown in Section 4. The main contribution of Ruiz-Llata et al. (2010) was the
introduction of an architecture for the inference phase that allowed both clas-
sification and regression reusing the same hardware components. The proposed
hardware was used to classify between 4 different classes of 32-bit 32-pixel im-
ages in 8-bit gray scale. The regression was tested with the sinc function. The
maximum clock reached by the implementation was 30 MHz, however several
cycles were required for classification due to the HFK. In Jallad & Mohammed
(2014), the developed hardware intended to be used in satellite image-based
imaging applications. The main contribution of the work was the low area used
due to the use of the HFK in combination with a control block. However, much
of the computation was performed serially through the control block, making
the classification take 90 clock cycles per pixel of the image to be analyzed. The
hardware proposed in Pan et al. (2013) had its architecture similar to that pro-
posed in Ruiz-Llata et al. (2010). However, the L1 norm of the HFK kernel was
calculated in parallel rather than serially. Thus, the number of clocks required

to compute the kernel was no longer dependent on the dimensionality of the

100

110

120

input.

A few other works have done the implementation of the training phase of
the SVM. Ta-Wen et al. (2012) implemented SVM training using the SMO.
The proposed architecture consisted of three main blocks that represented the
main functions of the SMO and were controlled by a finite state machine (FSM).
However, the large area gain that could be obtained with the HFK kernel was not
taken into account. In addition, the kernel used was the linear kernel, limiting
the classification capacity of the proposed architecture. The work presented in
Ta-Wen et al. (2012) uses a semi-parallel implementation when it regards the
implementation proposed in this paper.

Cao et al. (2010) also proposed an architecture based on the SMO. The
main contribution of this work was the flexibility given the proposed structure,
which was customizable between fully parallel and serial. The purpose of this
architecture was to be used in embedded applications where fully parallel im-
plementations exceed FPGA resources and serial implementations did not meet
the temporal requirements of the problem.

In Bustio-Martinez et al. (2010) a hybrid software and hardware architecture
was proposed to accelerate the SMO training. In the proposed implementation
the SMO algorithm was partitioned so that the serial processing portion of the
algorithm and the control signals were executed in a General Purpose Proces-
sor (GPP) while an FPGA performed tasks that could be executed in parallel
(in this case, the vector product of the linear kernel). The proposed architec-
ture with the co-processor obtained a speedup of 178.7x when compared to a
software-only implementation in a GPP.

In Filho et al. (2010) a dynamically reconfigurable architecture was proposed
for the training of the SVM using the SMO. The major contribution of this work
was the proposal of a modular architecture capable of being reprogrammed dur-
ing its execution. The kernel used was the HFK, providing reduction in area
usage when compared to similar implementations using other kernels. The pro-
posed architecture was able to achieve speedups of up to 12.5x when compared

to implementations designed purely in software. In addition, a study of the nu-

130

140

150

merical accuracy required for the training using the proposed architecture was
made, showing that 24 bits were sufficient to represent the input data (6 bits
representing the integer part and the others 18 for the fractional part).

Venkateshan et al. (2015) proposed a different SVM training algorithm,
known as the Hybrid Working Set (HWS). In the proposed architecture the
FPGA was only used as co-processor of the kernel functions. In this imple-
mentation, the kernel used was the Gaussian kernel. The implementation of
the FPGA co-processor achieved a speedup of 25x when compared to a purely
software implementation.

An SMO IP core was developed in Madadum & Becerikli (2017) using high-
level synthesizes (HLS) strategy. In this work, the SMO code was made in C+—+
and transform to VHDL using the Xilinx Vivado HLS. The SMO implementation
had as target the xc7z020clg484-1 FPGA working at 100 MHz and it has a time
per iteration of about 2.69 ms.

Finally, the work presented in Feng et al. (2018) proposed a hardware imple-
mentation of the modified SMO (MSMO) algorithm. The proposed scheme was
synthesized to Altera Cyclone IT FPGA with 50 MHz and used the fixed-point
strategy with 1 sign bit, 3 integer bits, and 12 decimal bits. This work achieved
a speedup of 69x when compared to a software-only implementation in a 3.7

GHz Dual-Core CPU (i3-4170).

1.2. Organization

In Section 2 a background about the SVM algorithm will be shown. Then,
in Section 3, the Sequential Minimal Optimization algorithm will be presented.
In this section, are going to be discussed the heuristics for the selection of the
elements to be optimized, the calculation of the optimization of these elements,
the calculation of the threshold of the SVM b, as well as methods for accelerating
the SMO. In Section 4, the details of the proposed blocks will be presented in a
generic way, allowing the implementation of the algorithm proposed regardless of
the FPGA model. The results of specific tests showing the proper functioning

of the proposed architecture, as well as the results of the synthesis showing

160

165

the features required for the proposed architecture in the target FPGA will be
presented in Section 5. Finally, in Section 6, the general conclusions about the

design implementation will be presented.

2. Support vector machine (SVM)

Support vector machines were initially developed as a binary classification
Haykin (2008). In this type of problem, there is a training set (z;, yi)ﬁ\fl, where
x; is the i-th element and y; its respective class. Classes should always assume
that y; = £1. The training for binary classification consists of solving the

quadratic problem with linear constraints as presented in

N

N N

1

Mazimize E =5 E g a0y K (25, 75) (1)
i=1 i=1 j=1

Subject to 0< ; <C fori=1,2,...,.N

N
Z Q;Y; = 07
=1

where K (&7, ;) represents the kernel function and C is a regularization param-
eter that acts as a limiting value on the Lagrange multipliers «;.
The feed-forward classification phase, which consists of the classification of

a new T vector, is given by

Nsv
y(Z) = sgn <Z yioi K (73, %) + b) ; (2)

where the a; and b parameters are given in the training phase. All Lagrange
multipliers, «;, that have values other than zero are called Support Vectors
(SV). It is also important to note that the sum of Equation (2) extends only to
the support vectors number Ngy, rather than extending to all N points in the
training set. The SVM classification inference architecture can be seen at the
top of Figure 1. In it, the SVM inference is illustrated in conjunction with the
training phase as seen in Equation 1.

In the regression, the problem is to estimate the value of a function for any

point from a training set with a number of finite points. In a similar way to the

175

180

classification, there is as input of the training phase a set (3, yi)évzl, where z;
is the i-th reference point and y; its respective output. It is important to note
that, unlike the classification, the values of y; in the regression can assume any
real value.

Therefore, including the parameter € in the equation proposed by Vapnik
Cortes & Vapnik (1995), the training phase of the regression is given by

N N
Mazximize Z(a: —)Y — 52(0@-k + ;)
i=1 i=1
N
1
iy
=1

7

N
Z(a;‘ — o) (a) —) K (5, 75) (3)

Subject to 0<af,a; <C For i=12..,N

WE

(af —ai) =0,
i=1

where, as in the classification, K (&7, ;) represents the kernel function and C
is a regularization parameter that acts as a limiting value on the Lagrange
multipliers a;. € is a positive parameter that defines the insensible zone within
which errors are ignored. Note that both C and e are constants defined before
the training, according to the characteristics of the input set.

The feed-forward regression phase, which consists in estimating the value of
a new point x, and is given by

Nsv

y(z) = Z(af — ;) K(z;,2) + b, (4)

i=1
where the of, a; and b parameters are the result of the training phase. In
addition, as in the classification, only the support vectors are used for the sum-

mation.

3. Sequential minimal optimization (SMO)

3.1. Karush-Kuhn-Tucker conditions (KKT)

The training of a SVM requires the solution of a quadratic programming

optimization (QP) problem as shown in Equation (1). SMO breaks this big

190

205

QP problem into a series of QP problems of the smallest possible size Platt
(1999). These small QP problems can be solved analytically, which avoids costly
numerical computation of the major QP problems.

A point is an optimal point from Equation (2) if and only if the KKT con-

ditions are met. The KKT conditions are given by

a=0 = yf(@i)>1
a=C = i@ <1 (5)

0<a<C = yf(#) =1,
where f is the SVM inference phase. Thus, the SMO iterates until these condi-

tions are met, guaranteeing the convergence of the algorithm.

In order to find this optimal point, the SMO selects through a heuristic a
pair of as (e and «;) to optimize, then optimizes them, recalculates the value
of b according to the new as and repeats the process until the KKT conditions

are met (within a certain tolerance).

3.2. Heuristics for as selection

Part of the SMO algorithm is dedicated to choosing the pair of as to be
optimized. In the literature, there are several different ways of choosing these
elements to be optimized. However, there is no "wrong" way to make that
choice, however the order of these choices can change the speed of SMO conver-
gence. There are two heuristics used in choosing the Lagrange multipliers, one
for the first Lagrange multiplier in an external loop («;) and other one for the
second in an inner loop («;).

In the heuristic of the first choice (external loop) an iteration is performed
throughout the entire training set. When an element that does not obey the
KKT conditions is found, this element is selected as a; to be optimized. In
order to accelerate the SMO, for each loop performed in the entire data set, it
is executed a loop only with the elements whose Lagrange multipliers have no
value 0 or C' (unlimited multipliers).

The heuristic of the second choice (internal loop), in turn, consists in choos-

ing as a; the element that makes possible the biggest step, being the error given

by
E; = f(73) — yi (6)
and the step given by
|Ei — Ej. (7)

If the o; chosen with this heuristic does not result in any convergence improve-
ment, a loop is performed on all unlimited a.s until the first one results in some
convergence improvement. Finally, if none of them results in any improvement,

a loop is executed throughout the entire training set.

3.3. oy and a5 Optimization
Once the values of a; and «; to be optimized are chosen, it is necessary to
find the margins Lo and H4 such that Lo < «; < Hi so as to make o; meet the

constraint 0 < a; < C after the optimization . If y; and y; have different values
Lo = maa(0,a; — av), (8)
Hi=min(C,C + aj — a;) 9)

and if y; and y; have the same value
Lo =max(0,0; + oj — C), (10)
Hi=min(C, o; — ;). (11)

The next step is to find the value of «; that maximizes the Equation (2).

The optimal point «a; is given by

where

If the value of «; is not between Lo and Hi, the value of «; is saturated

Hi if anev > Hi
it = g if Lo <o < Hi (14)
Lo if aj® < Lo.

10

Finally, once the value of «; has been found, one can find o; using

new new

o’ = i + yiyi(oy — o). (15)

It is important to note that o is only calculated when the value of a;; undergoes

a minimally considerable change. Thus, «; is calculated only when
loj — " > e(ay + af® +¢), (16)

where the positive parameter € defines the insensible zone within which errors
of the KKT conditions are ignored. This parameter usually has a value between

10~2 and 1073.

8.4. Calculating the b threshold

Only after optimizing «; and o is it possible to select the threshold b to
satisfy the KKT conditions. The threshold b; is given by

by = —E; — yi(o'" — o) K (73, T7)

—y;(af —a;)K (25, 25) + b (17)

and it is valid when «; is not within its limit (that is, 0 < o; < ('), because it

forces the correct SVM output when the input is ;. The threshold by given by

b = —Ej — (0l =) K (53,7))

K2

—y; (™ — a;) K (7},) + b (18)

and it is valid when «; is not within its limit because it forces the correct SVM
output when the input is £j. If both b; and b, are valid, they will have the same
value. If the new as are both at the edges (i.e., a; =0 or oy = C and a;; =0
or a; = C) then all values between b; and by satisfy the KKT conditions. In
these cases b is chosen as the intermediate value between b; and bs. Thus, b is
given by
by if0<a; <C
b= b if0<a; <C (19)
(b1 +b2)/2 otherwise.

11

220

225

230

3.5. Error cache

The error cache refers to a SMO acceleration technique that consists in the
continuous error storage of all the unlimited elements of the training set. This
technique is advantageous, since, due to the linearity of the feed-forward phase
of the classification presented in Equation (2), it is possible to keep the error

always updated by doing the calculation

Ep® = By + yi(07" — 0i) K (%7, 7%)

7

+y; (" — ay) K (0, %) — b+ b" (20)

only when some « is optimized.
The continuous calculation of the error avoids the extremely costly feed-
forward calculation phase of the classification, which would occur every time

that the error of any point in the input set needed to be calculated.

4. SMO Implementation

4.1. General structure implementation

The general structure of the proposed architecture for the SMO is present
in Figure 2. This structure was developed according to the SMO algorithm
proposed in Section 3 and it is formed by four main layers that will be explained
in detail in the following sections. The structure of Figure 2 corresponds to the
bottom of Figure 1.

In Figure 2, the notation [n.b] indicates that n bits are used in that bus, of
which b bits are used for the fractional part representation and n — b bits are
used for the integer part representation. The signals that are not labeled are
binary signals, that is, [1.0]. The logic operation of the other layers that make
up the structure in discussion will be explained in the subsections 4.2, 4.3, 4.4

and 4.5.

12

240

4.2. Hardware friendly kernel (HFK)

A kernel is a similarity function between two or more elements. Although
the polynomial and Gaussian kernels are the most common, they were not de-
veloped focusing on taking advantage of the features present in reconfigurable
architectures. A list of common kernels can be found in Table 1.

In order to solve this problem, the hardware friendly kernel (HFK) was pro-
posed in Anguita et al. (2006). This kernel generates a resemblance function
similar to the Gaussian kernel. The HFK has the advantage of being imple-
mented in hardware only with shifts and additions rather than multiplications.
This makes the area occupied by the HFK much smaller than the area occupied
by the other kernels shown in Table 1.

It is important to note that since in the sequential minimum optimization
the elements to be optimized are called £; and 27}, the kernel friendly hardware

equation can be rewritten as
K (&, a;) = 27l (21)

where ||Z; — 2j||1 is the norm L1 of the difference between the vectors z; and
Zj. 7y is a constant that depends on the dimension dim of these vectors and is
given by

y = 9~loga(dim). (22)

For example, if #; € R2, so v =271,

Figure 3 shows an overview of the hardware friendly kernel implementation.
Initially, the initial CORDIC error from block E¢; is calculated, which is given
by

Ecy = =7} =z |1 (23)

The CORDIC (COordinate Rotation DIgital Computer) algorithms are part of
a class of algorithms that replace complex operations, such as multiplications
by shifts and sums.

Then FEj is divided between its integer part I and its fractional part F' in the
FI block. The CORDIC block then receives the fractional part F' and performs

13

255

265

270

275

the operation B;2F, where B; is a value to be multiplied by the kernel which
can be useful as shown in 4.5. Finally, the value of B;2F is shifted to the right
I times, resulting in the final value of the kernel, since By K (7}, ;) = B12F =
B 2F+ = B 2F 2!,

The calculation of E7, in turn, is executed as shown in Figure 4. First, the
subtraction of each dimension of #; by its dimension in zj is performed. Then,
the magnitude value of each of these elements is calculated and a tree sum is
executed. Finally, the value is shifted to the right ¢ times, where ¢ = loga(7y) and
then its signal is inverted. Thus, the calculation of Fc¢; is performed in only one
cycle in a parallel configuration and without using multiplications. However, it
is important to note that if ¢ is not an integer value, it is necessary to replace
that block with a multiplication by ~.

The CORDIC block responsible for calculating B; x 2F is illustrated in
Figure 5.

The CORDIC block is responsible for the iterative calculation of equations

and

Eci+1 = Eci - lOgg(l + dz'?_i), (25)

where d; can assume the values of 0, +1 and —1 and it is chosen such that
|Eciy1| < |E¢;|, making the value of E; decreases over the iterations. When
Ec; — 0 then B; — B2, which happens after b iterations as proved in
Anguita et al. (2006).

Equation 24 is calculated using the sum of B; with the result of a Barrel-
Shifter, which is responsible for shifting the value of B; to the right i times. The
Ec; value is calculated by subtracting Ec; by the values of loga(1 + 27%) saved
in a ROM within each CORDIC block.

It is important to note that the value of Ec; is always negative, as shown in
the Equation 23. Thus, in order to simplify the proposed hardware, the integer
I will always be positive and the fractional part F' always negative. This allows

d; to always be 0 or +1, avoiding the storage of loga(1 —27%) values in the ROM.

14

285

290

4.8. o; and o Optimization
The calculation of a; and oy is performed as discussed in Section 3.3 An
overview of the « values optimization implementation is illustrated in Figure 6.
It is important to note that in Figure 6 only the calculation of a kernel is
required. This is because when @} equals £}, the result of the HFK kernel is 1.

Thus, Equation 13 can be rewritten as
n = 2K(zi,7;) — K(zi, 7;) — K (7}, ;) = 2K (23, 25) — 2. (26)

The block a; is composed of two simple subtractions and one division. This
block receives as input the old value of a; and y; and the E; and Ej errors.
Then, the new value of a; is calculated using the equation 12 with n being
calculated according to Equation 26.

The calculation of the lower limit Lo and the upper limit Hi are performed
in the Lo\Hi block as shown in Figure 7. The calculation of these constraints
is executed as described in Equations 8, 9, 10 and 11.

After calculating Lo and Hi the value of ¢ is limited using these values in
the Limit block as shown in Equation 14. Simultaneously, in the check status
block, it is checked whether it is advantageous to continue the optimization. For
this, three conditions are verified: if ¢ is equals to j, if Lo is equals to Hi and if
a; has not changed significantly. If any of these conditions are true, a pulse will
be emitted to the skip output instead of the done output, causing the iteration
to be discarded and new values of ¢ and j chosen for the optimization.

In addition, as seen in Figure 6, the value of «; is also calculated after

calculating ;. This value is calculated as shown by the Equation 15.

4.4. Bias optimization
After optimizing the values of o; and ¢ it is necessary to update the bias
value. An overview of this calculation is illustrated in Figure 8. This Figure

shows the selection between the values of bl and b2 as described in Equation

19.

15

305

315

325

330

The calculation of the values of b1 and b2 is illustrated in Figure 9. In this
block, the calculation of bl is performed as described in Equation 17 and the
calculation of b2 is performed as described in Equation 18. It is important to
note that most of the operations required to calculate b1 and b2 are identical in

both equations, which makes it possible to reuse these signals in hardware.

4.5. Data storage and error calculation

After optimizing the values of o; and «; and adjusting the value of the bias
it is necessary to store this data for the next iteration. However, before that,
a new error value is calculated for each of the elements of the training set. In
the proposed implementation, the calculation of all the errors is performed in
parallel, since the used HFK kernel does not need multiplication blocks and oc-
cupies a very small area when compared to the polynomial kernel and Gaussian
kernel. As discussed in Section 3.5, the cache error was created in order to avoid
the costly feed-forward phase calculation during the optimization of o; and o;.
The general architecture of the storage block is illustrated in Figure 10.

As shown in Figure 10 both the values of the input set elements and the
class to which these elements belong are stored in ROMs, since those values are
not overwritten during training. In a scenario where the same hardware will
be used to train several data, it will be necessary to replace these ROMs with
RAMs. The values of the Lagrange multipliers and the bias are stored in RAMs
as well. It is also important to note that the value of these blocks are only
updated after the errors calculation are completed.

Initially, in the block that calculates the errors, the values that are common
to the calculation of all errors of the equation 20 as shown in Figure 11 are

calculated. These values are:

e The subtraction of the new value of bias by the old value of bias

e A multiplication of the i class by a subtraction of the new value of «; by

the old value of ¢;

16

335

345

355

e A multiplication of the j class by a subtraction of the new value of o; by

the old value of a;.

It is important to note that since classes can only assume the value of +1 or —1,
the multiplications in question can be replaced by simple conditional inversions.

The error calculation is performed by N blocks as shown in Figure 12, where
N is the number of elements of the training set. Then, the outputs of the i-th
and j-th errors (E; and Ej) are selected using a N-input multiplexer.

The individual error calculation illustrated in Figure 12 consists mainly of
the computation of two kernel functions: k(i,k) and k(j, k), where k is the
error index to be calculated ranging from 1 to N. Since each block is always
responsible for calculating the same k-th error (E}), the value of the k element
is saved to a register within the error calculation block itself. Finally, after
calculating the error according to Equation 20, the value of E}, is stored in a

register.

5. Results

5.1. Methodology

This section aims to present the tests and results of the architecture de-
scribed in Section 4. In order to test the implemented hardware, the exclusive
OR (XOR) gate and the Fisher’s Iris data set were trained. In this data set,
presented in Fisher (1950), the ’setosa’ and ’versicolor’ types of plants of the
Iris genus are distinguished according to the height and width of both petal and
the sepal.

The XOR logic gate was chosen as a test case for classification because it is
a simple example, common in the literature Gu & Han (2013) and not linearly
separable. The Fisher’s Iris data set was chosen to test the classification of a
three-dimensional data set, thus serving as a test to verify that the implemented
structure is able to perform satisfactorily in more challenging cases.

The final values of the bias as well as the value of the Lagrange multipliers

for each of the elements of the input set are stored and processed, allowing

17

365

370

380

the generation of graphs and numerical data that prove the effectiveness of the
proposed architecture in the classification training.

As in Section 4, a usage analysis of the target FPGA Virtex 6 xc6vIx240t-
1ff1156 is also performed based on the report generated during the proposed

architecture synthesis.

5.2. Training results

After training the XOR function using the proposed hardware structure, the
bias and support vectors SV, the Lagrange multipliers a were found. Using
these values and calculating the classification feed-forward phase presented in
Equation 2 it was possible to find the curve that delimits the two classes.

Looking at Figure 13, it is possible to see that the four points training sets
became support vectors. In addition, it is also noted that the classification curve
generated by the implemented algorithm separates the classes maximizing the
borders.

Figure 14, shows the result of the second proposed test, where the class
‘setosa’ is represented by class +1 and the ’versicolor’ and ’virginica’ classes are
represented by class -1 . For the proposed test, the first 128 elements of this set
were used, as well as the first three dimensions of each of these elements.

The results of the second proposed test, as seen in Figure 14, show that the
endpoints and those closest to the opposite class became supporting vectors.
Visually it is noticed that the support vectors generated a classification curve
capable of dividing the two classes in order to maximize the edges between them,
thus fulfilling the objective proposed by the SVM.

In both proposed tests the KKT conditions were satisfied, allowing the al-
gorithm convergence. Thus, it was possible to perceive that the hardware pre-
sented in this work is functional and therefore a valid alternative for the training

of the SVM using SMO.

5.8. Synthesis results
The Table 2 shows the synthesis result for a Virtex FPGA 6 xc6v1x240t-
1ff1156 regarding the architecture proposed in Section 4.

18

395

400

405

As can be seen in Table 2, the proposed hardware synthesis was accomplished
using both 32 bits (with 24 bits for the fractional part) and 16 bits (with 10 bits
for the fractional part). In addition, tests were conducted with the proposed
hardware supporting up to 8, 16, 32 or 64 elements in the training set.

It is important to note that for each training cycle (or training iteration), a
maximum of

2b+w (27)

clock cycles are required, where w is the number of clock cycles required for
the optimization splitting block of a; and o; added to the overhead of the
control signals between the blocks. The value of w varies with the numerical
precision of the implementation and usually has a value between 6 and 10. 2b
is the number of clocks needed to calculate the kernel during the optimization
of o; and «; and during the error calculation. However, many times less clocks
than 2b+ w are required, since the proposed hardware is able to skip iterations
that do not contribute significantly to the training convergence, as discussed in
Section 4.Based in Equation 27, the throughput of the system, th, in iteration

per second (IPS) can be expressed as
th = (2b+w) x f. (28)

where the f. is the clock frequency in cycles number per second.

Using the polynomial kernel, the number of multipliers did not grow with the
increase of the number of elements. This behavior is expected, since the used
HFK kernel was implemented without using any multiplication. This feature
shows one of the great advantages of using HFK rather than the polynomial
kernel. It is observed that the proposed hardware is highly parallelizable since
there is no performance loss with the increase of the maximum number of ele-
ments of the training set. This behavior was expected, since the implementation
bottleneck is in the calculation of the error, which was executed entirely in a
parallel configuration.

Figure 15 shows the regression analysis (R? = 1 for both, 16.10 and 32.24

bits) of the occupation area to the number of logic cells, N1, and the number

19

410

415

of elements, N, of the SMO algorithm. Using the regression analysis can be
observed that the Nyc has a linear growth for both, 16.10 and 32.24 bits and

the regression equations can be expressed as
N1%, = 776.4N + 1102 (29)

and

N2, = 1620N + 2243 (30)

where N6, and N32, are the estimates of the logic cells number for 16.10 and
32.24 bits, respectively. R-squared, R?, is a statistical measure (also called
coefficient of determination) of how close the data are to the fitted regression
curve. The R? varies between 0 and 1, indicating, in percentage, how much the
model can explain the observed values. The higher the R?, the more explanatory
the model is, the better it fits the sample.

Based in the Equations 29 and 30 observe that there is a linear relation with
the number of bits, n, enabling the creation of a two-dimensional regression

analysis (see Figure 16) expressed as
Npc = 1198N + 1653n — 38002 (31)

where Ny is the estimates of the logic cells number on FPGA.

Figure 17 shows the scalability of the proposed hardware regard of the num-
ber of elements, N. The curves were built based in Equations 29, 30 and 32 show
the logic cells required for high element number (until 10000). Figure 17 also
shows the estimate of the elements number for some commercial FPGAs XIL-
INX Virtex-6 (2018); XILINX Virtex-7 (2018); XILINX Virtex Ultra (2018).
The resume of the values about the maximum number of logic cells and the
elements number are presented in Table 3.

Finally, Figure 17 shows the two-dimensional regression analysis regard of
the throughput in KIPS (x1000 iteration per second). Two-dimensional regres-

sion equation found with R? = 0.9993 can be expressed as

th = —0.3071N — 44.58n + 1859 (32)

20

420

430

435

440

where th is the estimates of the throughput in KIPS. It is essential to observe
that throughput is more influenced by the number of bits than the number
of elements and this is a crucial result given that the number of bits can be
customized for each application. Works in the literature have found that a wide
variety of applications can work with 16 bits of fixed-point resolution. Works
in the literature have found that a wide variety of applications can be designed

with a fixed-point resolution between 16 and 20 bits.

5.4. Real-world experiments

In order to illustrate the applicability of the hardware architecture of the
SVM training presented in this work, it was estimated the convergence time
of the algorithm for three examples from the literature. The first example
called ’Iris’ is the full version of the Matlab ’fisheriris’ data set (used as an
example in Subsection 5.2). As seen in Section 5, this data set was presented in
Fisher (1950) and it distinguishes between the ’setosa’ and ’versicolor’ types of
plants of the genus Iris according to height and width both the petal and the
sepal. The second data set, presented in Street et al. (1993) and titled Breast
Cancer Wisconsin, aims to classify binary tumors as malignant or benign using
10 parameters obtained from 569 different tumors. These parameters include
radius length, texture, perimeter, area, among others. Finally, the third data
set, called Banknote Authentication, is used to classify 1372 banknotes between
real or false as seen in Lohweg et al. (2013). For this, 4 attributes are used after
the wavelet transform of the original image: the transformed image variance,
the obliquity of the transformed image, the kinetosis of the transformed image
and the entropy of the original image.

The estimated convergence time for the cited data sets can be seen in the
Table 4. The first column contains the reference of the data set used. In
the second and third columns are presented the dimensions of the problem
(number of elements and dimensionality of each entry). In the next column
the clock obtained by extrapolating the Table 2, in the case the SVM training

was implemented in the proposed architecture on a sufficiently large hardware,

21

450

460

465

470

is presented. In the fifth column are presented the approximate numbers of
iterations necessary for the problems, according to their dimensions, to converge.
In the last column, from the number of iterations and the maximum sampling
frequency, an estimation of the convergence time of the mentioned problems is
displayed. The data presented in Table 4 were generated according to a 16-bit
architecture, 10 bits for the fractional part. Thus, 30 clocks per iteration of the
training phase are required. The examples set forth herein are also available
from the UCI Machine Learning Repository.

In a problem such as the ’Iris’ data set, approximately 500 iterations were
required for the convergence of the algorithm. Thus, given the maximum fre-
quency of 33 MHz, the final result was available after 0.45ms. In the case of
the Breast Cancer data set, with a clock of approximately 27 MHz, approxi-
mately 5200 iterations were required, which caused the convergence to occur in
approximately 5.2ms. Finally, in the 'Banknote Authentication’ data set train-
ing, a maximum frequency of 30 MHz was achieved, to run approximately 17000
iterations. In this way, the training result was available after approximately

17ms.

5.5. Comparisons with state of the art works

By extrapolating the data from Table 2 it is also possible to compare the
proposed architecture with other implementation proposals in the literature.
Table 5 resumes the comparative results, and it shows the throughput in KIPS
(x1000 iteration per second) for each work and the speedup achieved regard the
implementation proposed in this work.

In the hardware presented in Filho et al. (2010), for example, approximately
100000 clock cycles were required for each iteration of the classification of the
"Breast Cancer’ data set using 20-bit components. This is because the imple-
mentation in question serializes parallelizable parts of the code to save area.
Thus, even if this implementation was executed at 100 MHz, as described in
Filho et al. (2010), it achieved 1ms per iteration (th = 1KIPS). Considering

a 32.24 bits numerical precision and a maximum clock rate of 24.385 MHz as

22

480

485

495

505

seen in Table 2, the implementation proposed in the current work would achieve
58 clocks per iterations (2b + w, b = 24 and w = 10) or 2.38 us per iteration
(th = 420 KIPS), and with that a speedup of ~ 420x.

When compared to the architecture presented in Cao et al. (2010), the pro-
posed architecture presented a speedup of =~ 67x in the 'Breast Cancer’ data set,
assuming a maximum clock of 24.385 MHz in a numerically accurate implemen-
tation of 32.24 bits (2.38 us per iteration or th = 420 KIPS). According to the
equations presented in the paper, the approximate number of clocks per cycle
for this data set would be approximately 12000 iterations and the maximum fre-
quency of the FPGA would be 75 MHz (160 us per iteration or th = 6.25 KIPS).
The acceleration obtained in comparison to this work is due to the fact that the
number of clocks do no depend on the size of the input in the implementation
proposed here, since the kernel calculation involving the dimensions (Block F;
of HFK) is executed in a completely parallel configuration.

When compared to Bustio-Martinez et al. (2010), which used the FPGA only
as kernel functions accelerators, the speedup of the present work was ~ 48x.
In this work, the maximum clock reached was 35 MHz when classifying a data
set with dimensionality 14 and computing the linear kernel in only 3 clocks.
However, after the hardware implementation of the kernel, the implementation
bottleneck became the other part of the SMO algorithm executed in software. In
this algorithm, each iteration (software + hardware) took an average of 115 us
(th = 8.69 KIPS), while in the implementation of the present work it would take
approximately 2.38 us (th = 420 KIPS) considering a clock of 24.385 MHz in an
implementation with 32.24 bits.

The work presented in Ta-Wen et al. (2012) achieved 2.2ms per iteration
(th = 0.45KIPS) considering a clock of 50 MHz and 8.15 bits format precision.
Comparing Ta-Wen et al. (2012) with implementation proposed here (consid-
ering a clock of 24.385 MHz and 32.24 bits) there is a speedup about ~ 933x.
In Venkateshan et al. (2015) a co-processor of the kernel functions on FPGA
is proposed and in this case, the co-processor achieved 3.14ms per iteration

(th = 0.32KIPS) for the SensIT dataset, and 32 bits float-point format preci-

23

515

530

sion. Using the similar configuration, the strategy proposed here has 2.38 us per
iteration (th = 420 KIPS), and this is equivalent to a speedup of ~ 1312x. An
equivalent speedup, =~ 1135x, it was found comparing the work presented in
Madadum & Becerikli (2017). This work achieved a time per iteration of about
2.69ms (th = 0.37 KIPS) considering a clock of 100 MHz and 32 bits float-point
format precision.

Finally, the propose presented in Feng et al. (2018) achieved a time per
iteration of about 87 us (th = 11.49 KIPS) considering a clock of 50 MHz and
16.12 fixed-point bits format precision. When compared to Feng et al. (2018),
the speedup of the present work was ~ 98x. In this case, it was considered a
clock of 33.383 MHz and 16.10 bits, in other words, 30 clocks per iteration or
0.89 us per iteration (th = 1123 KIPS).

6. Conclusion

This work proposed a hardware parallel architecture of the Sequential Min-
imal Optimization (SMO) algorithm on FPGA. The SMO technique is one of
the ways to the training phase of the Support Vector Machine (SVM) networks.
A detailed analysis of the implementation was conducted, in addition to the
analysis of simulation and synthesis data.

From the simulation data, the architecture was validated and the analysis
of the synthesis data allowed to verify the behavior of the system regarding
essential parameters, such as occupation area and throughput in iteration per
second. By observing FPGA synthesis performed it was verified that with the
development of this algorithm, directly in hardware, it is possible to reach high
performance, especially regarding throughput when compared with other solu-

tions in the literature.

Funding

This study was financed in part by the Coordenacao de Aperfeicoamento de

Pessoal de Nivel Superior (CAPES) - Finance Code 001.

24

550

555

Acknowledgments

The authors wish to acknowledge the financial support of the Coordenagao
de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) for their financial

support.

References

Anguita, D. et al. (2006). Feed- forward support vector machine without mul-
tipliers. IEEE Transactions on Neural Networks, 17, 1328-1331.

Bustio-Martinez, L., Cumplido, R., Hernandez-Palancar, J., & Feregrino-Uribe,
C. (2010). Advances in pattern recognition. chapter On the Design of a
Hardware- Software Architecture for Acceleration of SVM’s Training Phase.

(pp. 281-290). Springer.

Cao, K., Shen, H., & Chen, H. (2010). A parallel and scalable digital archi-
tecture for training support vector machines. Journal of Zhejiang University

SCIENCE C, 11, 620-628.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Kluwer Academic
Publishers, .

Coutinho, M. G. F., Torquato, M. F., & Fernandes, M. A. C. (2019). Deep neu-
ral network hardware implementation based on stacked sparse autoencoder.

IEEE Access, 7, 40674-40694. doi:10.1109/ACCESS.2019.2907261.

Da Costa, A. L. X., Silva, C. A. D., Torquato, M. F., & Fernandes, M. A. C.
(2019). Parallel implementation of particle swarm optimization on fpga. IEEE
Transactions on Circuits and Systems II: Express Briefs, (pp. 1-1). doi:10.
1109/TCSII.2019.2895343.

Da Silva, L. M. D., Torquato, M. F., & Fernandes, M. A. C. (2019). Parallel
implementation of reinforcement learning g-learning technique for fpga. IEEE

Access, 7, 2782-2798. doi:10.1109/ACCESS.2018.2885950.

25

565

570

580

585

590

Feng, L., Li, Z., & Wang, Y. (2018). Vlsi design of svm-based seizure detection
system with on-chip learning capability. IEEE Transactions on Biomedical

Clircuits and Systems, 12, 171-181. doi:10.1109/TBCAS.2017.2762721.

Filho, J. G., Raffo, M., Strum, M., & Chau, W. J. (2010). A general-purpose
dynamically reconfigurable svm. 2010 VI Southern Programmable Logic Con-
ference (SPL), (pp. 107-112).

Fisher, R. (1950). The use of multiple measurements in taxonomic problems.

Contributions to Mathematical Statistics, .

Gu, Q., & Han, J. (2013). Clustered support vector machines. Proceedings
of the 16th International Conference on Artificial Intelligence and Statistics
(AISTATS), .

Haykin, S. (2008). Neural Networks and Learning Machines. Pearson Prentice
Hall.

Huang, H., & Liu, H. (2014). Big data machine learning and graph analytics:
Current state and future challenges. IEEE International Conference on Big

Data, .

Hussain, H., Benkrid, K., & Seker, H. (2014). Novel dynamic partial recon-
figuration implementations of the support vector machine classifier on fpga.

Turkish Journal of Electrical Engineering and Computer Sciences, .

Hussain, H. M., Benkrid, K., & Seker, H. (2013). Reconfiguration- based im-
plementation of svm classifier on fpga for classifying microarray data. 35th
Annual International Conference of the IEEE Engineering in Medicine and

Biology Society (EMBC), (pp. 3058-3061).

Jallad, A. H. M., & Mohammed, L. B. (2014). Hardware support vector machine
(svm) for satellite on-board applications. NASA/ESA Conference on Adaptive
Hardware and Systems (AHS), (pp. 256-261).

26

595

600

605

Lohweg, V. et al. (2013). Banknote authentication with mobile devices. Media

Watermarking, Security, and Forensics, .

Madadum, H., & Becerikli, Y. (2017). The implementation of support vector
machine (svm) using fpga for human detection. In 2017 10th International
Conference on Electrical and Electronics Engineering (ELECO) (pp. 1286—
1290).

Pan, X., Yang, H., Li, L., Liu, Z., & Hou, L. (2013). Fpga implementation
of svm decision function based on hardware-friendly kernel. International

Conference on Computational and Information Sciences - ICCIS 2013, (pp.
133-136).

Patil, R., Gupta, G., Sahula, V., & Mandal, A. (2012). Power aware hard-
ware prototyping of multiclass svin classifier through reconfiguration. 25th

International Conference on VLSI Design (VLSID), (pp. 62-67).

Platt, J. (1999). Fast training of support vector machines using sequential min-
imal optimization. Advances in Kernel Methods—Support Vector Learning,

3.

Ruiz-Llata, M., Guarnizo, G., & Yébenes-Calvino, M. (2010). Fpga implemen-
tation of a support vector machine for classification and regression. IEEE

World Congress on Computational Intelligence, .

de Souza, A. C., & Fernandes, M. A. (2014). Parallel fixed point implementation

of a radial basis function network in an fpga. Sensors, 14, 18223-18243.

Street, W. et al. (1993). Nuclear feature extraction for breast tumor diagnosis.

1998 International Symposium on Electronic Imaging: Science and Technol-
09Y, -

Ta-Wen, K., Jhing-Fa, W., Jia-Ching, W., Po-Chuan, L., & Gaung-Hui, G.
(2012). Vlsi design of an svin learning core on sequential minimal optimiza-

tion algorithm. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 20, 673-683.

27

620

635

Torquato, M. F., & Fernandes, M. A. (2019). High-performance parallel im-
plementation of genetic algorithm on fpga. Circuits, Systems, and Signal

Processing, (pp. 1-26).

Venkateshan, S., Patel, A., & Varghese, K. (2015). Hybrid working set algorithm
for svm learning with a kernel coprocessor on fpga. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 28, 2221-2232. doi:10.1109/
TVLSI.2014.2361254.

XILINX Virtex-6 (2018). Virtex-6 Family Overview. https://www.xilinx.
com/support/documentation/data_sheets/ds150.pdf. [Online; accessed

24-Dec-2018].

XILINX Virtex-7 (2018). 7 Series FPGAs Data Sheet: Overview.
https://www.xilinx.com/support/documentation/data_sheets/ds180_

7Series_0Overview.pdf. [Online; accessed 24-Dec-2018].

XILINX Virtex Ultra (2018). UltraScale Architecture and Product Data
Sheet: Overview. https://www.xilinx.com/support/documentation/

data_sheets/ds890-ultrascale-overview.pdf. [Online; accessed 24-Dec-

2018].

Zepeda, J., & Perez, P. (2015). Exemplar svms as visual feature encoders.

CVPR, .

Table 1: Common kernels.

Kernel Details*
Polynomial [(xsz) + 1] d
Gaussian o(—llzi—zl?/26%)
Hardware-friendly o—llzi—zll,
Linear T
MLP tanh (k z%z; + 0)

*d, 0 and k are user-defined parameters.

28

Input Vector {
—

a1 1"V
Support Vectors —

Oy Yoy | Bias ()]

v Nemmaaaas

Training
(Sequential Minimal Optimization - SMO)

A
Training Set
Y

Figure 1: General architecture of SVM inference and training.

b
c 0] >
done 4 skip)
it > Select i [logo(N).0 q
S T ;
I _[logp(N).0] > iy bl
x_ Linb] KGij) 1n-
X Lnb "% J[n.b]
Alpha new
Optimization 9 [n.b]
>
—>
> Update
Bias
—
—
I E, [n.b] >
RAM E; [n.b]
class, yi [2.0]
error, yi [2.0]
elements i
and bias g [nbl >
q; [n.b] >
bias [n.b] g bias"® [n.b]
—>| done ”] done
=
J

Figure 2: SMO general structure.

29

Figure 3: HFK Architecture.

el
CORDIC

Linb] F_[1.b] By2°FInb] |
: ! “on B;"K(ij) [n. —
i Linb] | Ec, [ECin] £l (B1*27F)>>1 |B1"K(ij) [n.b
! I [no] R
b
Xi,0) [n.b] [n.b]
o In.b] - Ixl
. (nb] * |[n.b]
Xi -
e b | - 2 ik o) Y R (3 S N O T =

ij1 .
. 1)

” [n.b] [’
iL _ |In.b] x| [n.b]

XL [n.b]
Figure 4: Ec; Block from HFK.
start sel > sel >sel

—

Y

B Jou

A 4

(nol[| Inbl [n-b] In.bi} >[827 |
[n.bLﬁ . |l [n-b.ti . |[n.b]

Count counter [log2(b).0]
ounter
110 L5 ome]

L] rom Jper [—

sel logo(1+27) >= >| sel >= sel
[1.b], . [1.b] R [1.b] [n.b]
z >
1.b

e, gﬂm s

Figure 5: CORDIC Block from HFK.

[n.b]

L [n.b]

L[n.b]

k(i.j)

start

[n.b]

.b]
ol > k(i)

=

done

Ei

[5 [

E lloga(N)-0]
s

[n.b]

%

done N

a™" [n.b]

Yi

[2.0]

Yi

[2.0]

9

[n.b]

%

[n.b]

[n.b]

Lo_Hi

Check
Status

—>
L
Lo[n.b]

Hi [n.b]]

[n.b]

Clip

Figure 6: o; and a; Optimization.

” [2.0]

I

o =

[n.b]

[

sel

p sel
e > max [n.b]
n.b! j
max [n.]
—>
P min n.b] >
g >
>) [n.b] ’
min
[n.b]
) [n.b])
—>
[n.b] (n.b]
+
>

Figure 7: Lo and H+i Calculation.

31

12
>
]
H

<

R

A

H

Yj

nbl| | bleb2

B ES
= |=

£
=

F

i

n.b]

b1 [n.b]

[n.b]

b2 [n.b]

Figure 8: Bias calculation.

|

_novo
i

in.b]

[n.b]

X > [n.b]

[n.b]

[n.b]

v [2";] >
ki)

yi

[2.0]

|

_novo

i

a

|

[n.b]

[n.b]

[n.b]

[n.b]

A\ 4

B e]

Figure 9: b1 and b2 Calculus.

32

oo |

sel

sel

-
bias"W [_) = done [n.b]
addr bias -
| o pies e |y
o e
',)addrb ? 3
dina R/E:M
- »{dinb (’ [n.b]
Ly we g
o ——
ainew o [n-b]
.b
anew [n.0] RAM and | [n.b] E;
Error
r—}_y ; [n.b]
NN l _ [2.0] _|Calculations
y
ROM
&« L] g
X] s
X
ROM
& r [y] L[n.b]
. a0
i1 sl
Figure 10: Overview of data storage and error calculation.
[n.b i [log2(N).0]
b Eq [n.b] N
E1[nb] >
[n.b] . .
. 1
bias"*¥ [[n.l;]]‘ [n.b]
n. - |
bi > N [log2(N).0]
e Error Calculator I =
[y B >
new [n.bl,, X B [n-b]‘ —
qf > by | .
o [n.b] - »|_inverter .
| Ll -
>
o e —
By[n.b,
N ooy | % J
o [n.b] - — | inverter
j

Figure 11: Error calculation.

33

[n.b]

bias"®"-bias

B1,i

[n.b]

L[n.b]

X

T

K(i,k)

[y p
|

Xk | LIn.b]

ROM "

start [n.b]

K(.k)

1o el

Figure 12: Individual error calculation.

Y
E

+ -1

1

o Support Vectors | |

05+
0
05
-1 L L ©
- 05 0 05 1
Figure 13: XOR Test result.
Table 2: SMO syntesis results.
Bits Elements Multipliers Logic cells Clock, f. (MHz)
16.10 8 16 (2.0%) 7397 (4.9%) 34.620
32.24 8 31 (4.0%) 15320 (10.1%) 24.684
16.10 16 16 (2.0%) 13534 (8.9%) 33.980
32.16 16 31 (4.0%) 28158 (18.6%) 24.601
16.10 32 16 (2.0%) 25784 (17.1%) 34.426
32.24 32 31 (4.0%) 53887 (35.7%) 24.385
16.10 64 16 (2.0%) 50859 (33.7%) 33.383
32.24 64 31 (4.0%) 106008 (70.3%) 24.657

34

* Class +1
* Class-1
C Support Vectors

Figure 14: Fisher’s Iris data set test result.

— —_
o nN
T

Number of logic cells (Nr¢)
@ 2

2 ® 16.10 bits |
® 3224 bits
0 i i i i i
0 10 20 30 40 50 60 70

Number of elements (V)

Figure 15: Regression analysis regard to the FPGA area occupation. R? = 1 for both, 16.10
and 32.24 bits.

Table 3: The estimate of the elements number for some commercial FPGAs.

Elements

FPGA Logic cells
16 bits 24 bits 32 bits

Virtex 6 XC6VLX760 758784 975 631 467
Virtex 7 XC7V2000T 1954560 2516 1630 1205
Virtex UltraScale 5541000 7135 4623 3418

35

3
5
=
<)
g
i)
<)
o
S
=
<%
2
=
5
Z.
o
B
2
2
G
S
—
<%
2
10 o 10 o 0 =
— — I =1
(9Tp7) s1pe0 21307 JO IoquunN Z

Figure 16: Two-dimensional regression analysis regard to the FPGA area occupation, R?

0.9108.

<
=)
/
|
\\\\\\\\\\\\\ .
e S T D e)
o
4o
e
222
5'3 EEE
SIS
o S, X S8
! Q'd
Q| > >
0 N ©
ARSIRe®]
= X | X
O~ ©
x x x
(ORI N
£, E &
> > >
L L L =)
~ © o < o -
o o [=) =) (=)
- - - - -

(PTA7) s[1e0 0130] JO IoquunN

Number of elements (N)

Figure 17: Scalability of the proposed hardware regard of the number of elements, N.

36

@ ®
=3 o
S S

Throughput (th
S
8

Number of bits (n)

Figure 18: Two-dimensional regression analysis (R? = 0.9993) regard of the throughput

KIPS (%1000 iteration per second).

40

60

Number of elements (V)

-

n

Table 4: Convergence time and sampling rate of literature applications (SVM training with

16.10 bits).

Name Elements Dimension Clock (f.) Iterations Convergence
Iris 100 4 ~ 33 MHz ~ 0.5K ~ 0.45ms
Breast

569 10 ~ 27 MHz ~ 5.2K ~ 5.2ms
Cancer
Banknote

372 4 ~ 30 MHz ~ 17K ~ 17.0ms
Auth.

37

Table 5: Comparative table with state of the art works. Throughput results.

Reference Throughput Speedup
Reference This work
Filho et al. (2010) 1KIPS 420KIPS = 420x
Cao et al. (2010) 6.25 KIPS 420 KIPS A 67x
Bustio-Martinez et al. (2010) 8.69KIPS 420 KIPS ~ 48x
Ta-Wen et al. (2012) 0.45KIPS 420KIPS ~ 933X
Venkateshan et al. (2015) 0.32KIPS 420KIPS =~ 1312x
Madadum & Becerikli (2017) 0.37KIPS 420KIPS =~ 1135x
Feng et al. (2018) 11.49KIPS 1123 KIPS ~ 98 %

38

