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26 Abstract 

27 Emotional contagion has recently been described in fish but whether it is affected by 

28 familiarity is not known. We tested whether the sight of a distressed conspecific elicited fear 

29 in zebrafish, and whether this was modulated by familiarity. Groups of six zebrafish were 

30 housed together in the same tanks for 7 days to create familiar conditions. The behaviour of 

31 individual fish was then recorded in paired tanks within sight of either a familiar or an 

32 unfamiliar individual, before and after distilled water or an alarm substance was added to the 

33 demonstrator, but not to the observer. As expected, addition of distilled water did not elicit 

34 any behavioural change in either the demonstrator or the observer. However, addition of an 

35 alarm cue triggered anti-predatory behaviours in the demonstrator, which caused the 

36 expression of equivalent anti-predatory behaviours in the observer, suggesting the existence 

37 of fear contagion. Furthermore, the extent of fear contagion and behavioural matching was 

38 affected by familiarity, and observers matched the behaviour of the demonstrators more 

39 closely when they watched a distressed familiar neighbour than when they watched an 

40 unfamiliar fish. Our results have implications for fish welfare because they show that fish can 

41 become stressed by simply watching others become stressed. They also have implications for 

42 experimental design because fish housed in separate tanks cannot be assumed to be 

43 statistically independent if they can eavesdrop on their neighbours. 
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51 INTRODUCTION 

52 Emotional contagion can be defined as the instantaneous matching of emotional state between 

53 an observer and a demonstrator (Nakahashi & Ohtsuki, 2018). This phenomenon has been 

54 explained through the perception-action mechanism, which postulates that the perception of a 

55 demonstrator’s state triggers a neural, unconscious and automatic representation of the same 

56 state in the observer, causing an equivalent expression of behaviours (Preston & de Waal, 

57 2002). Emotional contagion is considered a component and evolutionary precursor of 

58 empathy (Preston & de Waal, 2002), and has been demonstrated in humans, birds and 

59 mammals (Gonzalez-Liencres, Juckel, Tas, Friebe, & Brüne, 2014; Reimert, Bolhuis, Kemp, 

60 & Rodenburg, 2014), and recently, also in fish (Oliveira, Idalencio, Kalichak, dos Santos 

61 Rosa,  Koakoski, de Abreu  et al., 2017). 

62 To evaluate emotional contagion studies have typically focussed on negative 

63 emotional states such as stress, pain and fear (Carnevali, Montano, Statello, Coudé, 

64 Vacondio, Rivara, et al., 2017). A common measure of fear in rodents is freezing behaviour, 

65 which can be triggered by a mild electric shock (Lezak, Missig, & Carlezon  Jr, 2017; 

66 Pisansky, Hanson, Gottesman, & Gewirtz, 2017). Fear elicited in this way propagates from 

67 frightened demonstrators to naïve observers, resulting in increased frequency of freezing 

68 (Jeon, Kim, Chetana, Jo, Ruley, Lin, et al., 2010; Knapp, Overstreet, & Breese, 2007; 

69 Knapska, Walasek, Nikolaev, Neuhäusser-Wespy, Lipp, Kaczmarek, et al., 2006) and 

70 activation of the amygdala in the observer (Knapska et al., 2006). Moreover, it seems that 

71 how an emotion is shared between individuals is modulated by contextual aspects such as 

72 kinship, familiarity and social closeness (Liévin-Bazin, Pineaux, Clerc, Gahr, von Bayern, & 

73 Bovet, 2018; Preston & de Waal, 2002). For instance, when mice are paired with distressed 

74 demonstrators they tend to freeze if they had been reared together, but become more active if 

75 they come from different cages (Gonzalez-Liencres et al., 2014). In addition, pain perception 
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76 in mice is more intense when observers are familiar with demonstrators than when they are 
 

77 strangers (Langford, Crager, Shehzad, & Smith, 2006). Observers typically respond 
 

78 differently to signals sent by familiar and unfamiliar conspecifics (Gonzalez-Liencres et al., 
 

79 2014; Jeon et al., 2010), a strategy thought to be adaptive as it can help avoid sensory 
 

80 overload (Hutchinson, 2005) and focuses attention on signals emitted by those neighbours 
 

81 that matter the most, including ‘nasty neighbours’ and ‘dear enemies’ (Müller & Manser, 
 

82 2007). 
 

83 A recent study has provided evidence for fear contagion in zebrafish (Oliveira et al., 
 

84 2017), which suggests that this phenomenon may be conserved among social vertebrates. 
 

85 However, to what extent fear contagion in fishes can be affected by the degree of   familiarity 
 

86 between demonstrators and observers is not known.  Familiarity can broadly be defined as the 
 

87 ability to discriminate between individuals based on previous interactions, and is    influenced 
 

88 by the time of interaction and the size of the group among fishes (Griffiths, 2003). 
 

89 Here we used dyadic behavioural tests to assess if fear contagion was affected by 
 

90 familiarity in zebrafish. To this end, demonstrators were exposed to either distilled water or 
 

91 an alarm substance, known to cause a fear response on this species (Speedie & Gerlai, 2008). 
 

92 If there was fear contagion, an observer watching a frightened demonstrator might be 
 

93 expected to match its behaviour and present an equivalent fear response (Meyza, Bartal, 
 

94 Monfils, Panksepp, & Knapska, 2017), which in the case of zebrafish is characterised by an 
 

95 increase in swimming velocity, length of freezing bouts, and frequency of diving (Kalueff, 
 

96 Gebhardt, Stewart, Cachat, Brimmer, Chawla, et al., 2013).  This is in contrast to a simple 
 

97 startle response, which in adult zebrafish typically consists of short bursts of locomotor 
 

98 activity, zigzagging and swimming away from the source of the startle (Chanin, Fryar, Varga, 
 

99 Raymond, Kyzar, Enriquez, et al., 2012). 
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100 Zebrafish are highly social (Gerlai, 2010), can discriminate familiar from unfamiliar 
 

101 fish after only 20 min of interaction (Hinz, Kobbenbring, Kress, Sigman, Müller, & Gerlach, 
 

102 2013; Madeira & Oliveira, 2017), and form cohesive groups under threat (Speedie & Gerlai, 
 

103 2008). Therefore, we also hypothesized that observers would show a heightened fear response 
 

104 to the sight of distressed demonstrators when they had been reared together (i.e. were 
 

105 familiar), than when they had been reared apart (i.e. were unfamiliar). 
 

106  
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107 METHODS 
 

108 Experimental fish and husbandry conditions 
 

109 Two-month old, laboratory-reared zebrafish (Danio rerio) of homogeneous size were sourced 
 

110 from a local supplier and kept in four 50 L tanks (density = 2 fish/L) connected to a 
 

111 recirculation system for four months before testing. Water quality was maintained by 
 

112 mechanical, biological and chemical filtration, in addition to UV disinfection. Water 
 

113 temperature was kept at 28 ± 1°C, pH at 7.2 and ammonia and nitrite at recommended 
 

114 optimal levels for the species. Photoperiod was set at 12D:12L with the help of fluorescent 
 

115 lights (150 lumens) with the start of the light phase set at 7:00 hrs. Fish were fed commercial 
 

116 pellets twice a day (Nutricom Pet, 38% protein, 4% lipids) and Artemia salina once daily. 
 

117  
 

118 Development of familiar and unfamiliar groups 
 

119 Seven days prior to testing, a sample of 156 adults of both sexes was collected haphazardly 
 

120 from the four stock tanks, mixed, and allocated at random in groups of six to 26 x 20 L glass 
 

121 aquaria  (40L x 20W x 25 H cm). Aquaria were filled with system water, were fitted with a 
 

122 sponge filter to maintain water quality, and had their bottom and sides covered with white 
 

123 plastic sheets to prevent visual contact with others groups.   Food was offered twice a day, as 
 

124 above. 
 

125  
 

126 Acclimation period 
 

127 After seven days of being reared in groups of six, two individuals from either the same or 
 

128 different aquaria (i.e. familiar or unfamiliar conditions) were transferred to two 2L test 
 

129 aquaria (20L x 10W x 20H cm) placed side by side and left to acclimatize for 18 hours prior 
 

130 to testing, one fish serving as a ‘demonstrator’ and the other as an ‘observer’. To ensure that 
 

131 unfamiliar fish would not become ‘familiar’ during the acclimation period, a removable 
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132 divider was placed between the two test aquaria, so that demonstrator and observer had no 
 

133 visual contact until the divider was lifted just prior to testing. Similarly, and in order to avoid 
 

134 a potential disruption of familiar dyads, these were acclimated without dividers, in full sight 
 

135 of each other.  To test if this could have affected their subsequent behaviour, we tested 8 
 

136 additional familiar dyads acclimatized with dividers, and compared their behaviour to 
 

137 familiar dyads acclimatized without dividers. 
 

138  
 

139 Testing of fear contagion 
 

140 Following the 18h acclimation period, the divider preventing visual contact was removed and 
 

141 the demonstrator and observer were simultaneously recorded (Sony DCR-SX45 Digital VCR) 
 

142 for 5 min (basal behaviour). A syringe connected to a small silicon tube was then used to 
 

143 remotely deliver 2 ml of either distilled water or an alarm substance to the demonstrator 
 

144 (delivery being allocated at random), and their behaviours were recorded at 10 minute 
 

145 intervals over an hour.  To obtain the alarm substance, one zebrafish from the stock tanks was 
 

146 euthanized by an overdose of clove oil (2 ml/L water), and approximately 1 cm² of skin from 
 

147 each flank was removed, macerated in 10 ml of distilled water and filtered. Fresh alarm 
 

148 substance was prepared every morning before testing. 
 

149 We tested 48 dyads exposed to alarm substance (24 unfamiliar and 24 familiar) and 
 

150 20 dyads exposed to distilled water (10 unfamiliar and 10 familiar). In addition, 20 
 

151 demonstrators (10 exposed to alarm substance and 10 exposed to distilled water) were tested 
 

152 without observers to ascertain which behaviours were modified by the addition of the alarm 
 

153 substance, and to what extent the presence of an observer influenced the demonstrator’s 
 

154 behaviour.  We chose to test more fish exposed to alarm substance than to distilled water 
 

155 because the behaviour of controls was well established and less variable, and this helped us to 
 

156 evaluate fear contagion more fully and reduce the number of fish used in the experiments 
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157 (Kramer & Font, 2017). Fish were only used once in the experiments, either as observers or 
 

158 demonstrators. Twelve (unrelated) fish were used for the preparation of the alarm substance 
 

159 (10 ml was obtained from each fish). 
 

160 We used ZebTrack (Pinheiro-da-Silva, Silva, Nogueira, & Luchiari, 2017) to extract 
 

161 from the video recordings six behavioural metrics that have previously been shown to 
 

162 accurately describe the fear response in zebrafish (Kalueff et al., 2013), namely : (1) mean 
 

163 swimming speed, (2) maximum swimming speed, (3) total distance travelled, (4) time spent 
 

164 freezing, (5) swimming depth (i.e. distance from the tank bottom), and (6) mean distance to 
 

165 the conspecific’s tank. In response to a threat, zebrafish tend to increase their swimming 
 

166 speed, spend more time in freezing bouts, dive to the bottom of the tank, and swim closer to a 
 

167 conspecific’s tank, denoting a greater urge to shoal (Kalueff et al., 2013). 
 

168  
 

169 Statistical Analyses 
 

170 Statistical analysis was conducted in R v. 3.4.3 (R Core Team 2013). Our experiment 
 

171 conformed to a fully factorial 2 x 2 x 2 BACI design (before-after-control-impact) and we 
 

172 modelled the behaviour of the observer (dependent variable) as a linear mixed effect model 
 

173 using the lme4 (Bates, Mächler, Bolker, & Walker, 2014) and lmerTest (Kuznetsova, 
 

174 Brockhoff, & Christensen, 2017) R packages.  We used as fixed effects (predictors) the 
 

175 behaviour of the demonstrator, the time (before or after the stressor was added), the 
 

176 familiarity (familiar vs unfamiliar dyad) and the stressor type (alarm substance vs distilled 
 

177 water), and considered the dyad identity as a random effect to control for variation among test 
 

178 arenas and account for potential non-independence of observations. For each behavioural 
 

179 metric, we started with a maximal model with all main effects and interactions and used the 
 

180 step and dredge functions in the MuMIn package (Bartoń, 2013) to arrive at a minimal 
 

181 adequate model via Maximum Likelihood on the basis of single deletion tests and relative 
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182 changes in AICc values. The most plausible model (within 2 AICc) was refitted by REML 
 

183 and the model adequacy and assumptions were checked by examining plots of fitted vs 
 

184 residuals, fitted vs observed values, as well as plots of random effects and standardized fixed 
 

185 effects using the sjPlot package (Lüdecke, 2016). We report standardized fixed effect 
 

186 estimates. One dyad had missing values so there were 134 observations corresponding to 67 
 

187 dyads. 
 

188 To better assess the extent to which observers were able to match the behaviour of 
 

189 demonstrators, we also carried out a principal component analysis (PCA) using the prcomp 
 

190 function in R, and modelled the scores along the first two first principal components (which 
 

191 together explained 94% of variation) as a function of fish type (observer or demonstrator) and 
 

192 degree of familiarity. 
 

193  
 

194 Ethical Note 
 

195 All experimental procedures were authorized by Animal Ethics Committee permit CEUA 
 

196 042/2015 granted by Universidade Federal do Rio Grande do Norte, and permit IP-1516-8 
 

197 granted by the Animal Welfare and Ethical Review Body of Swansea University. 
 

198  
 

199  
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200 RESULTS 
 

201 Inspection of temporal data indicated that the response of single fish to alarm cues was rapid 
 

202 and did not persist for more than 10 minutes after the administration of the alarm substance, 
 

203 probably due to habituation (Appendix, Fig. A1). We, therefore, concentrated the analysis on 
 

204 the first 10 minutes after addition of the stimuli.  In addition, the response of familiar fish to 
 

205 alarm substance was not affected by whether they were visually isolated or not during the 18 
 

206 hrs of acclimation (Appendix, Table A1). 
 

207  
 

208 Swimming speed 
 

209 Demonstrators in the dyadic tests increased their average swimming speed when an alarm 
 

210 substance was added, but not when distilled water was added (Fig. 1a,c). Observers 
 

211 responded by increasing their speed when the demonstrator was familiar (Fig. 1b), but by 
 

212 decreasing it when the demonstrator was unfamiliar (Fig. 1d; estimate demonstrator = 0.40, P 
 

213 = 0.002; estimate time = 0.93, P <0.001; estimate familiarity x time = 1.18, P <0.001; 
 

214 estimate time x stressor = 0.53, P =0.002; estimate familiarity x time x stressor = -0.60, P 
 

215 <0.001). Fear contagion, hence, was affected by familiarity. 
 

216  
 

217 Freezing behaviour 
 

218 Demonstrators spent more time freezing when an alarm substance was added, but not when 
 

219 distilled water was added (Fig. 2a,c). The time observers spent freezing increased when an 
 

220 alarm substance was added to the demonstrator (Fig. 2b,d; estimate = 0.85, P < 0.001), and 
 

221 also with time (estimate = 0.90, P < 0.001), but observers froze on average for significantly 
 

222 less time than demonstrators (estimate = -0.19, P = 0.024). There was a significant interaction 
 

223 between time and stressor (estimate = 0.63, P < 0.001) as observers only increased the time 
 

224 spent freezing over basal values when the alarm substance was added, not when distilled 
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225 water was added. Familiarity, hence, did not influence the freezing response, which was very 
 

226 strong under both conditions. 
 

227  
 

228 Distance from the tank bottom (swimming depth) 
 

229 Changes in swimming depth in response to distilled water and alarm substance are shown in 
 

230 Figure 3. Following the addition of the alarm substance, demonstrators moved closer to the 
 

231 bottom of the tank, a behaviour not seen when distilled water was added (Fig. 3a,c). Familiar 
 

232 observers mimicked this behaviour (Fig. 3b), tracking what the demonstrator did (estimate = 
 

233 0.19, P = 0.033), a response not seen for unfamiliar observers (Fig. 3d). Swimming depth 
 

234 increased over basal values (estimate = 0.23, P = 0.011), as well as with the addition of the 
 

235 alarm cue (estimate = 0.31, P = 0.018). There were significant interactions between 
 

236 demonstrator’s depth and familiarity (estimate = 0.25, P = 0.03), demonstrator’s depth and 
 

237 time (estimate = 0.25, P = 0.002), familiarity and time (estimate = 0.44, P <0.001), 
 

238 familiarity and stressor (estimate = 0.54, P < 0.001), and familiarity x time x stressor 
 

239 (estimate = 0.28, P = 0.003).   There was, hence, evidence of fear contagion which was also 
 

240 affected by familiarity. 

 
241  

 

242 Distance to the conspecific’s tank (proximity to the demonstrator) 
 

243 Following the addition of the alarm substance to the demonstrators (Fig. 4a,c), observers 
 

244 swam closer to the demonstrators (Fig. 4b,d; estimate = 0.60, P < 0.001), something that did 
 

245 not happen when distilled water was added. Distance to the demonstrators decreased over 
 

246 basal values (estimate = 0.43, P = 0.005), but increased with familiarity (estimate = 0.16, P = 
 

247 0.031) and was also affected by the interactions between demonstrator and time (estimate = 
 

248 0.36, P = 0.03), and between time and stressor (estimate = -0.49, P < 0.001). There was thus 
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249 evidence of fear contagion with respect to proximity to the other fish’s tank, and this was also 
 

250 influenced by familiarity. 
 

251 PCA Analysis 
 

252 PCA analysis showed that the behaviour of demonstrators and observers was similar and 
 

253 showed little variation among individuals when the fish were not stressed (i.e. when distilled 
 

254 water was added or before an alarm cue was added, Fig. 5a-c, Fig. 5e-g). The first component 
 

255 (PC1) accounted for 62.8 – 94.0% of the variation and described freezing behaviour (loading 
 

256 = -0.99), while PC2 accounted for 2.6-17.2% of the variation and described mostly variation 
 

257 in swimming speed (loading = 0.93), proximity to the conspecific (loading = 0.28), and 
 

258 distance to the bottom of the tank (loading = -0.24). No statistical difference between 
 

259 observer and demonstrators was found along PC1 (F3,90  = 0.847, P = 0.472), but there was a 
 

260 marked difference along PC2 (F3,90  = 68.52, P <0.001; Fig. 5d,h), which depended on the 
 

261 type of fish (estimate for observer = 1.21, SE = 0.64, P = 0.009), the extent of familiarity 
 

262 (estimate for unfamiliar = -7.72, SE = 0.91, P < 0.001), and their interaction (estimate for 
 

263 observer x unfamiliar = 15.44, SE = 1.29, P < 0.001).  Thus, observers were better able to 
 

264 match the fear response of demonstrators when they were familiar (Fig. 5d) than when they 
 

265 were unfamiliar (Fig. 5h). 
 

266  
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267 DISCUSSION 
 

268 Our study provides novel evidence in support for the existence of fear contagion in fish, and 
 

269 suggests that this is influenced by familiarity, as shown for mammals (Gonzalez-Liencres et 
 

270 al., 2014; Jeon et al., 2010). They add support to the idea that fish are not only capable of 
 

271 identifying and reacting to the behaviour of conspecifics (Jesuthasan & Mathuru, 2008; Rey, 
 

272 Huntingford, Boltana, Vargas, Knowles, & Mackenzie,  2015), but that they are sufficiently 
 

273 flexible to modify their response depending on the identity of their neighbours. 
 

274 The alarm response of zebrafish has been characterised by an increase in swimming 
 

275 speed interspersed with freezing bouts and diving to the bottom (Kalueff et al., 2013). To 
 

276 trigger a fear response we added an alarm substance to the water, schreckstoff, (von Frisch, 
 

277 1938), a well-established stressor for zebrafish (Jesuthasan & Mathuru, 2008). As expected, 
 

278 the addition of the alarm substance triggered a flight response in zebrafish, which swam 
 

279 faster, moved to deeper waters, and included longer bouts of freezing behaviour, something 
 

280 not observed when distilled water was added. Such anti-predatory behaviours were matched 
 

281 to a large extent by the observers, even though they had no direct exposure to the stressor. 
 

282 Thus, the mere sight of a distressed conspecific was enough to trigger in the observer a fear 
 

283 response similar to that experienced and displayed by the demonstrator. 
 

284 Emotional  contagion  appears  common  in  social  mammals,  where  it  has       been 
 

285 demonstrated for pain, fear and distress (Carnevali et al., 2017; Gonzalez-Liencres et al., 
 

286 2014; Jeon et al., 2010; Langford et al., 2006), emotions that are relevant for survival and that 
 

287 are thought to enhance inclusive fitness.      For example, in group-living animals, the sharing 
 

288 among conspecifics of an emotional state, such as fear, can generate a coordinated group 
 

289 response  that  can  increase  the  probability  of  escaping  from  predators  (Briefer,      2018; 
 

290 Nakahashi & Ohtsuki, 2018).  Although less well studied, emotional contagion has also  been 
 

291 reported  for  non-mammalian  species,  including  birds  (Briefer,  2018;  Liévin-Bazin  et al., 
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292 2018), and the zebrafish, where two recent studies have provided evidence of emotional fever 
 

293 (Rey et al., 2015), and fear contagion (Oliveira et al., 2017), two responses once thought to be 
 

294 restricted to mammals. 
 

295 Our study shows that fear contagion is modulated by familiarity in zebrafish, since 
 

296 three of the four responses examined varied depending on whether the observers were 
 

297 watching individuals they were familiar with. Compared to unfamiliar demonstrators, 
 

298 observers responded to the sight of familiar demonstrators by matching their swimming 
 

299 speeds more closely, and by moving closer to the bottom. These results suggest that 
 

300 familiarity in zebrafish may serve to strengthen the extent of emotional contagion, as 
 

301 observed in birds and mammals. For example, mice spend more time freezing when they are 
 

302 watching a familiar cage-mate in distress than when they are watching an unfamiliar one 
 

303 (Gonzalez-Liencres et al., 2014). Similarly, the reaction of cockatiels to a conspecific’s 
 

304 distress call depends on their degree of affiliation, and a stronger response is elicited when the 
 

305 call is emitted by a partner than by other individuals (Liévin-Bazin et al., 2018). Observers in 
 

306 our study also moved closer to the demonstrators when they were in distress, but - perhaps 
 

307 unexpectedly, this was more pronounced when they were paired with unfamiliar 
 

308 demonstrators. 
 

309 Among fishes, several studies have shown that familiarity increases shoal cohesion 
 

310 (Chivers, Brown, & Smith, 1995; Lachlan, Crooks, & Laland, 1998) and facilitates social 
 

311 learning (Swaney, Kendal, Capon, Brown, & Laland, 2001), and our study shows that 
 

312 familiarity also affects fear contagion, which may explain why association with familiar fish 
 

313 is generally adaptive (Griffiths, 2003). For example, familiar brown trout respond 14% faster 
 

314 than unfamiliar fish to a predator attack (Griffiths, Brockmark, Höjesjö, & Johnsson, 2004), 
 

315 most likely because they can interpret signals from familiar fish more accurately. Familiarity 
 

316 in our study was established rapidly, after only seven days of cohabitation, which is 
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317 consistent with previous results in zebrafish (Madeira & Oliveira, 2017) and other species 
 

318 (Griffiths, 2003),  where individuals were able to recognize familiar neighbours after short 
 

319 periods of interaction. Although it is possible that some individuals in our study may have 
 

320 become familiar in the stock tanks (i.e., before the 7 day cohabitation experiment), this is 
 

321 unlikely as the group size was too large (100 fish/tank) for individual recognition (Griffiths & 
 

322 Magurran, 1997), fish were mixed and allocated at random to 26 groups, and this would not 
 

323 explain why familiar and unfamiliar fish behaved so differently. 
 

324 The advantages of familiarity may be accrued through visual recognition, but also 
 

325 through chemical cues (Griffiths, 2003), as fish can recognize the metabolites of conspecifics 
 

326 released in the water (Ward, Webster, Magurran, Currie, & Krause, 2009). Zebrafish can use 
 

327 both chemical and visual cues for individual recognition (Hinz et al., 2013), but our study 
 

328 indicates that visual signals alone are enough to trigger fear contagion, as familiar fish 
 

329 behaved differently from unfamiliar fish when no chemical signals were exchanged between 
 

330 observers and demonstrators. The strong shoaling behaviour of zebrafish may help explain 
 

331 the evolution of fear contagion on this species. Unlike social learning, which is thought to 
 

332 have evolved to facilitate the long-term transmission and storage of information (Brown & 
 

333 Laland, 2003), fear contagion may have evolved to deal with rapid, short-term signals and 
 

334 swift responses, such as the anti-predatory response (Nakahashi & Ohtsuki, 2015). 
 

335 It has been proposed that behavioural contagion should be heightened when the 
 

336 demonstrator displays abnormal or extreme behaviours (Nakahashi & Ohtsuki, 2015). 
 

337 Freezing is an extreme behaviour that can be induced by alarm substances and is commonly 
 

338 seen in many fish species in response to predators (Miklosi, Csanyi, & Gerlai, 1997; Roberts, 
 

339 Taylor, & Garcia de Leaniz, 2011; Roberts & Garcia de Leaniz, 2011; Speedie & Gerlai, 
 

340 2018). In this sense, the increased duration in freezing bouts following exposure to the alarm 
 

341 substance was highly contagious in our study, but it was not affected by familiarity. We 



16  

342 suggest that for zebrafish, freezing behaviour constitutes a more robust signal of danger than 
 

343 bottom dwelling or an increase in swimming speed.  Hence, it may be adaptive for an 
 

344 individual to freeze when another one is freezing, regardless of the sender’s identity. On the 
 

345 other hand, changes in swimming speed or in the position in the water column form part of 
 

346 the normal behaviour of zebrafish (Kalueff et al., 2013) and may represent less extreme, and 
 

347 hence less reliable, signals. 
 

348 Our results show that zebrafish can not only distinguish between familiar and 
 

349 unfamiliar conspecifics by visual cues alone, but that they can also eavesdrop on their 
 

350 neighbours living in separate tanks and adjust their behaviour accordingly. This may have 
 

351 implications for fish welfare if, for example, fish can become stressed simply by watching 
 

352 their neighbours become stressed. In the wild, eavesdropping may be adaptive as it allows 
 

353 zebrafish to acquire information on predatory threat from shoal neighbours (Abril-De-Abreu, 
 

354 Cruz, & Oliveira, 2015; Oliveira et al., 2017), but the implications for fish welfare in 
 

355 captivity deserve further attention.  In livestock, contagion of negative emotions such as fear 
 

356 and anxiety can impair the behaviour and health of the group (Reimert, Bolhuis, Kemp, & 
 

357 Rodenburg, 2013), and our study suggests that the same could happen in zebrafish. 
 

358 Our results also have implications for experimental design because fish housed in 
 

359 separate tanks may not be assumed to be statistically independent (Colegrave & Ruxton, 
 

360 2017) if their behaviour is affected by that of others. Visual isolation of tanks, therefore, must 
 

361 be ensured to prevent eavesdropping. Ultimately, our study indicates that fish - just like 
 

362 mammals, are capable of recognizing and sharing emotions and place them into the right 
 

363 context. Future studies might benefit from investigating if emotional contagion also occurs in 
 

364 relation to positive stimuli (such as access to food, mates, or enriched habitats) as this could 
 

365 perhaps be used to improve welfare. 
 

366  
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503 

504 



 

 

505 Appendix 
 

506 Table A1. Behaviour of familiar zebrafish held with and without a divider during the acclimatization period. Values represent means ±SD. 
 
 

Demonstrator Observer 
Basal After 10 min Basal After 10 min 

Behaviour without 
divider 

with 
divider p without 

divider 
with 

divider p without 
divider 

with 
divider p without 

divider 
with 

divider p 
 

 
 Average speed (cm/s) 2.6 ± 0.9 3.3 ± 2.3 0.07 4.7 ± 3.0 4.1 ± 1.6 0.82 3.0 ± 1.3 3.1 ± 1.9 0.26 6.2 ± 1.7 3.8 ± 5.1 0.34 

Maximum speed (cm/s) 42.1 ± 14.8 53.7 ± 12.5 0.05 39.2 ± 27.9 44.0 ± 16.4 0.66 41.6 ± 14.9 46.5 ± 13.3 0.44 28.1 ± 18.5 32.8 ± 15.8 0.53 

Total dist. travelled (cm) 199.3 ± 110.3 294.1 ± 100.9 0.07 192.7 ± 107.5 250.1 ± 75.8 0.23 199.5 ± 134.1 263.2 ± 105.7 0.26 161.9 ± 116.2 190.4 ± 56.7 0.54 

Freezing (s) 27.9 ± 16.8 15.5 ± 9.9 0.08 192.4 ± 136.9 180.5 ± 38.9 0.82 28.2 ± 13.9 16.9 ± 9.1 0.05 153.6 ± 81.5 154.7 ± 22.7 0.97 

Distance from bottom (cm) 5.1 ± 2.9 3.9 ± 2.8 0.34 2.0 ± 1.8 1.4 ± 0.4 0.38 5.5 ± 3.1 3.1 ± 1.7 0.06 1.4 ± 1.0 1.9 ± 0.6 0.19 

Distance to other tank (cm) 7.2 ± 2.6 5.5 ± 0.9 0.11 6.3 ± 2.5 6.6 ± 2.9 0.79 6.8 ± 2.3 6.3 ± 1.8 0.64 2.8 ± 1.7 3.0 ± 2.3 0.83 

507              
 

508 p-values correspond to student t-tests between groups held with or without a divider before (basal) and 10 min after the alarm substance was 
509 added 

510 

511 

512 

513 
 

514 
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515 Figure captions 
 

516 Figure A1. Temporal variation in the response of single zebrafish (i.e. demonstrators without 
 

517 observers) to the addition of either distilled water (blank) or an alarm cue. Shown are means 
 

518 (± 95 CI) for swimming speed (a), distance to the tank bottom (b), duration of freezing bouts 
 

519 (c), maximum swimming speed (d), distance to the other tank (e), and total distance travelled 
 

520 (f). 
 

521 
 

522 Figure 1. Changes in the swimming speed (mean ± 95CI) of observers (b, d) before and after 
 

523 distilled water or an alarm cue were delivered to the demonstrators (a, c), but not to the 
 

524 observers, in dyadic tests involving familiar (a, b) and unfamiliar pairs (c, d). 
 

525 
 

526 Figure 2. Changes in the freezing behaviour (mean ± 95CI) of observers (b, d) before and 
 

527 after distilled water or an alarm cue were delivered to the demonstrators (a, c), but not to the 
 

528 observers, in dyadic tests involving familiar (a, b) and unfamiliar pairs (c, d). 
 

529 
 

530 Figure 3. Changes in the swimming depth (mean ± 95CI) of observers (b, d) before and after 
 

531 distilled water or an alarm cue were delivered to the demonstrators (a, c), but not to the 
 

532 observers, in dyadic tests involving familiar (a, b) and unfamiliar pairs (c, d). 
 

533 
 

534 Figure 4. Changes in the distance to the conspecific’s tank (mean ± 95CI) of observers (b, d) 
 

535 before and after distilled water or an alarm cue were delivered to the demonstrators (a, c), but 
 

536 not to the observers, in dyadic tests involving familiar (a, b) and unfamiliar pairs (c, d). 
 

537 
 

538 Figure 5. Variation along the first two principal components (means ± 95CI) describing the 
 

539 behaviour of familiar (a-d) and unfamiliar (e-h) dyads of zebrafish before and after distilled 
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540 water (a-b, e-f) or an alarm cue (c-d, g-h) were delivered to the demonstrators (red), but not to 
 

541 the observers (green). 
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*Animal welfare note 
 
 
 
 
 

Animal Welfare Note 
 

All experimental procedures were authorized by the Animal Ethics Committee of 

Universidade Federal do Rio Grande do Norte (permit CEUA 042/2015) and Swansea 

University’s Animal Welfare and Ethical Review Body (permit IP-1516-8). 


