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1 Introduction and general idea

Quantum field theories are usually thought of in the context of renormalisation group

flows from short distances in the UV to long distances in the IR. The endpoints of these

flows called fixed points are scale invariant. In d-dimensional relativistic field theories,

it is common to assume that the fixed-point theory is a conformal field theory (CFT),

whose spacetime symmetry SO(1, d − 1) is enhanced to the conformal algebra SO(2, d).

Aside from free CFTs, there is compelling evidence for a vast landscape of interacting

CFTs in diverse dimensions, with many of these theories being non-Lagrangian (CFTs

that do not have a known representation in terms of fields and a Lagrangian). In such

cases, one typical route to learn about the dynamics of these CFTs is to use algebraic

methods. These are ‘kinematic’ in nature and hence limited for the goal of calculating

detailed dynamical information. In this sense, the best way to learn about these field
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theories is to use Maldacena’s Conjecture [1] and find the holographic dual background to

calculate field theory correlators with it.

Geometrical Engineering, that is the interplay between the geometry of the string the-

ory’s extra dimensions, and the resulting low energy field theories on branes probing this

geometry, is by now a well-established research tool. In the case of geometries with sin-

gularities, such methods have led to the construction and study of conformal field theories

in diverse dimensions. Of particular significance for this paper, are the conformal field

theories in six dimensions, which resist a Lagrangian description. The key ingredients of

these theories are tensionless strings coupled to dynamical tensor modes. Examples of such

theories include the ADE N = (2, 0) theories [2], realised on a stack of M5-branes. Less

is known about the N = (1, 0) theories. These CFTs do not have a weakly coupled UV

Lagrangian. However, one can always go to the tensor branch of these theories, which

corresponds to giving vacuum expectation values (VEVs) to scalars in tensor multiplets.

In such cases, one can find an effective Lagrangian description for N = (1, 0) theories in

terms of a weakly coupled quiver gauge theory, where the scalars in the tensor multiplets

controlling the coupling constants of the corresponding gauge groups, are promoted to a

set of dynamical fields. Moving to the origin of the tensor branch typically leads to a

strongly coupled 6d SCFT with N = (1, 0) supersymmetry. Some of these systems have a

realisation in string theory [3, 4]. The description of these CFTs is well advanced, see for

example [5]–[25], for a sample of papers that deal with the system from the field-theoretical,

brane picture, or holographic perspectives.

The general idea of this paper is to develop important new formal tools in the mapping

between six-dimensional CFTs with N = (1, 0) SUSY and their holographic description. In

particular, we will discuss aspects of the CFTs that are not suitable to be understood with

either Geometrical Engineering or algebraic methods, hence rely heavily on the holographic

description.

In more detail, the contents of this work are the following: in section 2, we summarise

the known field theoretical and holographic description, we describe the mapping between

these descriptions and provide new holographic expressions for some of the characteristic

quantities that follow from a Hanany-Witten description [26] of the CFTs. For example,

we give new expressions that calculate the number of branes, linking numbers and entan-

glement entropy of a given quiver in terms of the holographic description. For the benefit

of the readers new to the topic, we present detailed examples of the mapping between the

quiver CFT and the holographically dual background. In section 3, we fully rely on the

holographic description and discuss the possibility of finding a particularly special back-

ground in Massive IIA on which the string theory is classically integrable. The treatment

uses semiclassical string solitons and studies its dynamical evolution. A particular back-

ground is then singled out as special, on which the non-integrable characteristics of the

soliton are absent. In section 4, we present the Lax pair from which the equations of motion

of a bosonic string on such particular background are derived. We connect this Lax pair

with the so-called λ-deformation of a Wess-Zumino-Witten (WZW) model. In section 5,

we study some of the field theoretical observables associated with this special background.

These observables can only be accessed through the holographic description and provide
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a definition of the particular integrable N = (1, 0) six-dimensional CFT. In fact, an alter-

native to giving the precise colour and flavour groups at the origin of the tensor branch is

to display the observables of the conformal field theory. We summarise our findings and

conclude in section 6, where we also lay-out some ideas to work in the future. Our work is

complemented by very extensive and dense appendices for the benefit of the readers willing

to work on these topics.

2 Six dimensional SCFTs and their holographic description

Let us start with a summary of six-dimensional N = (1, 0) conformal field theories and

their holographic description.

It is useful to remind the reader of the main issue afflicting higher dimensional (d > 4)

field theories. Consider a simple interacting field theory in six dimensions with action,

S =

∫
d6x

[
−1

2
(∂µφ)2 − V (φ)

]
.

Here φ represents a real scalar field with classical dimension [φ] = m2. The potential can

be a mass term V = m2

2 φ
2 or more interestingly a classically marginal interaction term, like

V = gφ3, but this would lead to a system without ground state (for φ < 0). On the other

hand, a potential like V = λφ4 has a well-defined vacuum, but the interaction is irrelevant,

hence the theory is not well defined without a UV completion. The Wilsonian logic,

according to which we start from a conformal (not necessarily weakly coupled) field theory

and deform it by inserting relevant operators into the Lagrangian, flowing to interesting

field theories at low energies, does not seem to apply here.

Nevertheless, different string theoretic constructions have suggested that supersym-

metric field theories of scalars coupled to gauge fields have an interacting UV fixed point.

In fact, for a Lagrangian like

L ∼ −1

2
(∂µφ)2 − c φF 2

µν + fermions, (2.1)

when 〈φ〉 → 0 we are dealing with the strong coupling limit of a gauge field theory (since

the scalar φ takes the role of the inverse coupling of the gauge theory). The presence of

fermions in the supersymmetric theory implies the possible existence of gauge anomalies

that need to be cancelled. This cancellation is possible if the scalar φ belongs to a tensor

multiplet [5, 6] (see below for a description of the relevant multiplets) and a certain tuning

between the amount of adjoint and fundamental matter must be imposed.

This picture was realised in brane constructions. The relevant Hanany-Witten set-

ups [26] were presented in [7]. The associated field theories preserve eight Poincare super-

charges, have SO(1, 5) Lorentz and SU(2) R-symmetries. In more detail, the field theories

with N = (1, 0) SUSY are constructed in terms of the following multiplets:

• Tensor multiplets with field content (Bµν , λ1, λ2, φ). A two form with self-dual cur-

vature H3 = dB2, two fermions and a real scalar.
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t x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 • • • • • • · · · ·
D6 • • • • • • • · · ·
D8 • • • • • • · • • •

Table 1. The generic brane set-ups. All the branes are extended on the Minkowski R1,5 directions.

The D6-branes also extend over x6 where they have finite size extension between NS5-branes. The

D8-branes also extend along the x7, x8 and x9 directions, preserving the SO(3)R symmetry.

• Vector multiplets with field content (Aµ, λ̂1, λ̂2), a six-dimensional vector and two

fermions.

• Hypermultiplets with field content (ϕ1, ϕ2, ψ1, ψ2), two scalars and two fermions.

• Linear multiplets with field content (~π, c, ξ̃) an SU(2) triplet and a singlet, together

with a fermion.

The field theories have a ‘tensor branch’ when the scalar φ gets a non-zero VEV. In this

case, the SU(2)R symmetry is preserved. On the other hand, when the scalars inside

the hyper or the linear multiplet get VEVs, we explore the Higgs branch breaking the

R-symmetry. In what follows we will be concerned with the tensor branch only.

To reproduce the Lorentz and R-symmetry mentioned above, the authors of [7] dis-

tributed D6, NS5, and D8 branes according to table 1.

There are some key differences with Hanany-Witten set-ups in lower dimensions,

• The dimension of the field theory on the NS5-branes is the same as that on the

bounded D6-branes. The non-decoupling of the five-branes dynamics adds the dy-

namical tensor multiplets to the field theories. These are absent in lower dimensional

set-ups.

• The bending of the NS5-branes due to other p-branes ending on them leads to a

Laplace equation in 6− p dimensions. In this case, where p = 6, there is no-bending.

The field content is always such that anomalies are cancelled, namely

ND6,R +ND6,L +ND8 = 2ND6,c, (2.2)

being ND6,R/L the number of sixbranes to the right/left of a given stack with ND6,c

branes.

• We can consider D2-branes on (t, x1, x6) that end on the NS5-branes. These branes

represent one dimensional magnetically charged defects identified with the instantonic

strings charged under the self-dual H3.

• When the system is in the tensor branch (the difference between the scalars in differ-

ent tensor multiplets 〈φi− φi−1〉 is non-zero) the instantonic strings are massive and

the field theory can be described by an anomaly-free quiver. When 〈φi − φi−1〉 → 0,
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the theory is proposed [5] to flow to a strongly coupled six dimensional CFT with

(1, 0) SUSY. These are the theories that we study in this paper.

2.1 Holographic description

Let us now discuss the holographic description of the CFTs that appear when we move to

the origin of the tensor branch. This description was developed in a set of papers, most

notably [18]–[25]. We adopt the notation of [25].

The six dimensional SCFTs have SO(2, 6) × SU(2)R bosonic symmetries, see for ex-

ample [27, 28]. They are realised as the isometries of a Massive Type IIA background of

the form,

ds2 = f1(z)ds2
AdS7

+ f2(z)dz2 + f3(z) dΩ2
2(χ, ξ),

B2 = f4(z)VolΩ2 , F2 = f5(z)VolΩ2 , eφ = f6(z), F0 = F0(z). (2.3)

We have defined dΩ2
2(χ, ξ) = dχ2 + sin2 χ dξ2 and VolΩ2 = sinχ dχ ∧ dξ.

If we impose that N = (1, 0) SUSY is preserved by the background, we need the

functions fi(z) to satisfy some first order and nonlinear differential equations. These BPS

equations are solved if the functions fi(z) in eq. (2.3) are all defined in terms of a function

α(z) and its derivatives — see [19]–[25] for the details,

f1(z) = 8
√

2π

√
− α

α′′
, f2(z) =

√
2π

√
−α
′′

α
, f3(z) =

√
2π

√
−α
′′

α

(
α2

α′2 − 2αα′′

)
,

f4(z) = π

(
−z +

αα′

α′2 − 2αα′′

)
, f5(z) =

(
α′′

162π2
+

πF0αα
′

α′2 − 2αα′′

)
, (2.4)

f6(z) = 2
5
4π

5
2 34 (−α/α′′)

3
4√

α′2 − 2αα′′
.

Where α(z) has to satisfy the differential equation

α′′′ = −162π3F0. (2.5)

The function α(z) must be piece-wise continuous, this implies that F0 can be piece-wise

constant and discontinuous. The internal spaceM3 = (z,Ω2) is a two-sphere ‘fibered’ over

the z-interval. The warp factor f3(z) must vanish at the beginning and at the end of the

z-interval (z = 0 and z = zf by convention), in such a way that the two-sphere shrinks

smoothly at those points.

For a piece-wise constant and possibly discontinuous F0(z), the general solution to

eq. (2.5) in each interval of constant F0 is,

α(z) = a0 + a1z +
a2

2
z2 − 162π3F0

6
z3.

As we observed above, the function α(z) is in general piece-wise continuous and generically

a polynomial solution like the one above should be proposed for each interval [zi, zi+1].

Imposing that the two-sphere shrinks smoothly at z = 0 and z = zf implies that α(0) =

α(zf ) = 0. We shall discuss a generic solution below. Before that, let us find general

expressions for the brane-charges associated with the backgrounds in eq. (2.3).

– 5 –
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2.1.1 Page charges

We define the conserved Page charges,

QDp =
1

(2π)7−pgs(α′)
(7−p)

2

∫
F8−p −B2 ∧ F6−p, QNS5 =

1

4π2g2
sα
′

∫
H3. (2.6)

In what follows we set gs = α′ = 1. Calculating explicitly for the NS5-brane charge. Using

that α(0) = α(zf ) = 0 we find,

QNS5 =
1

4π2

∫
z,Ω2

∂zf4 =
1

π

∫ z=zf

z=0
∂zf4 =

f4(zf )− f4(0)

π
= −zf . (2.7)

Up to an orientation-related sign, the size of the z-interval equals the number of fivebranes.

Hence we need to choose zf to be a positive integer. We shall take QNS5 = zf = N5 in

what follows.

Calculating the charge of D6-branes, we find

QD6 =
1

2π

∫
(χ,ξ)

F2 − F0B2 =

[
α′′ + 162π3F0z

81π2

]
=
α′′ − zα′′′

81π2
. (2.8)

The charge in eq. (2.8) computes the charge of D6-branes but also includes the charge

of D6-brane induced on the D8-branes. To avoid this ‘overcounting’, note that we can

perform a large gauge transformation in any interval [k, k + 1] such that,

B̂2 → B2 + kπ dΩ2. (2.9)

We then find that in the interval [k, k + 1] the Page charge reads,

QD6 =
1

2π

∫
S2

F2 − F0B̂2 =
1

2π
× α′′ − α′′′(z − k)

162π2
× 4π. (2.10)

Using that on the [k, k+1] interval the function α′′(z) = −81π2 [Nk + (Nk+1 −Nk)(z − k)],

we find that

ND6 =
1

2π
× α′′ − α′′′(z − k)

162π2
× 4π = −Nk. (2.11)

The sign can be attributed to a choice of orientation for the two-sphere. The expression

above indicates that in the [k, k + 1] interval, there are Nk D6-branes. Notice that the ex-

pression in eq. (2.8) also counts the charge of D6’s induced on the D8’s. We are subtracting

these, by performing the large gauge transformation above.

We thus find that the number of only the D6-branes in the associated Hanany-Witten

set-up is given by,

ND6 = − 1

81π2

∫ zf

0
α′′(z)dz. (2.12)

This can be verified by explicitly performing this integral for a generic function α′′(z),

observing that it counts the sum of the ranks of the gauge groups (see eq. (2.25) for an

example of a function α(z) for a generic quiver with four nodes and four flavour groups).

On each interval [k, k + 1] this gives,

− 1

81π2

∫ k+1

k
α′′dz = −

∫ k+1

k
[Nk + (Nk+1 −Nk)(z − k)] dz =

Nk +Nk+1

2
. (2.13)
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Summing over all the intervals (using that N0 = NP+1 = 0), gives the total quantity,

ND6 =
P∑
k=0

Nk +Nk+1

2
= N1 +N2 + . . . .+NP . (2.14)

We also present an expression that calculates the number of D8-branes in any given

Hanany-Witten set-up. Our proposed new expression reads,

ND8 =
1

81π2

[
α′′′(0)− α′′′(zf )

]
. (2.15)

In other words, the jumps in α′′′(z) across any interval counts D8-branes according to

eq. (2.5). Adding these jumps leads to eq. (2.15).

These expressions are analogous to those derived in [29], for the case of Hanany-Witten

set-ups associated with four dimensional N = 2 SCFTs. In section 2.2 we test the new

expressions in eqs. (2.12), (2.15) on some examples.

2.1.2 Linking numbers

One interesting quantity characterising the Hanany-Witten set-ups are the linking numbers.

For the case at hand, with D6, D8 and NS5-branes these topological invariants (unchanged

under Hanany-Witten moves) are defined for the j-th D8-brane (Lj is the linking number)

and the i-th Neveu-Schwarz fivebrane (Ki being the corresponding linking number) by

counting the number of the other branes to the left and right. More precisely, we have

Lj = N right
D6 −N left

D6 +N left
NS ,

Ki = N right
D6 −N left

D6 −N
right
D8 . (2.16)

They must satisfy a consistency relation

N8∑
j=1

Lj +
N5∑
i=1

Ki = 0. (2.17)

In the Hanany-Witten set-ups that are relevant for the CFTs we study in this paper, all

the linking numbers for the different Neveu-Schwarz fivebranes are equal. We have found

that they can be holographically calculated by very simple expressions. Our proposal is

that for these CFTs we calculate the linking numbers as,

K1 = K2 = . . . . = KN5 =
1

81π2
α′′′(zf )→

N5∑
i=1

Ki =
1

81π2
α′′′(zf )zf . (2.18)

Li = zi →
N8∑
j=1

Lj = − 1

81π2
α′′′(zf )zf . (2.19)

These expressions satisfy eq. (2.17) and are analogous to those presented in the case of

four dimensional CFTs with eight supercharges [29]. In section 2.2 we test these ex-

pressions in a couple of examples. The reader is invited to apply the expressions of

eqs. (2.12), (2.15), (2.18), (2.19) to the examples of the paper [30].
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2.1.3 Entanglement entropy

We briefly discuss this interesting observable characterising CFTs. Our treatment is an

extension of that presented in [31, 32] for backgrounds of the form in eq. (2.3). The

entanglement entropy SEE for a rectangular region is calculated by solving a minimisation

problem for an eight manifold hanging from infinity in the AdS-radial direction. The two

regions of the space are separated by a distance LEE (calculated in terms of the background

functions as shown below). A regularisation is needed analogously to what happens when

computing Wilson loops, see [31, 32] for the details. In particular for the backgrounds of

the form in eq. (2.3). The eight surface is parametrised by the coordinates

Σ8 = [x1, x2, x3, x4, x5, z, χ, ξ], R = R(x1).

Using Poincaré coordinates for the AdS7 space, the induced metric of the eight-surface is

ds2
8,ind = f1

[
R2d~x2

4 + dx2
1

(
R2 +

R′2

R2

)]
+ f2dz

2 + f3(dχ2 + sin2 χdξ2).

The entanglement entropy is

SEE =
1

4GN

∫
d8σ e−2φ

√
det g8,ind, GN = 8π6g2

sα
′4 = 8π6 (2.20)

SEE =
128V4

6561GN

(∫ zf

0
α′′(z)α(z)dz

)∫
dx1R

5

√
1 +

R′2

R4
, V4 =

∫
dx2dx3dx4dx5.

Following the formalism of the works [31, 32], we find the regularised version of the entan-

glement entropy, Sreg
EE and the separation between the regions LEE to be,

Sreg
EE =

V4

2GN

[∫ ∞
1

dy

(
y8√
y10 − 1

− y3

)]
NR4

0 = µ1NR4
0,

LEE =

[
2

∫ ∞
1

dy√
y4(y10 − 1)

]
1

R0
=
µ2

R0
,

Sreg
EE = N

(
µ1µ

4
2

L4

)
, N = − 512

6561

∫ zf

0
α(z)α′′(z)dz. (2.21)

The factors µ1µ
4
2 are common to all six-dimensional conformal field theories. The power

L−4 is the only possible one given conformality and the dimension of the CFT. All the

information about the particular CFT in consideration is in the factor N ∼
∫
αα′′. Notice

that this factor also appears when computing the central charge of the CFT, see [30]. This

is not a surprise as both quantities measure the number of degrees of freedom.

2.2 Connecting the holographic background with the CFT

Let us discuss the connection between a quiver field theory, and the geometry in eq. (2.3).

The problem can be organised as follows: first, we consider a non-anomalous quiver

with bifundamental matter, gauge and flavour groups satisfying the relation in eq. (2.2).

Then, we define the function R(z), a piecewise continuous linear function such that at

– 8 –
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NS51

1N D6

NS52

2N D62N D6

NS53

3N D63N D63N D6

1N D8

NS54

3N D63N D63N D6

3N D8

NS55

Figure 1. The Hanany-Witten set-up for the field theory. The vertical lines denote individual

Neveu-Schwarz branes extended on the (x4, x5) space. The horizontal ones D6-branes, that

extend on x6, in between fivebranes. The crossed-circles represent D8-branes, that extend on the

(x7, x8, x9) directions. All the branes share the Minkowski directions. This realises the isometries

SO(1, 5)× SO(3).

1N 2N 3N

1N

3N

3N

Figure 2. The quiver corresponding to the Hanany-Witten set-up above.

z = j (with j being a positive integer number) the value R(j) = Nj is the rank of the j-th

gauge group. It was shown in [25] that this rank-function must be convex to satisfy the

anomaly cancellation condition in eq. (2.2).

The link with the holographic description is given by the identification,

R(z) = − 1

81π2
α′′(z). (2.22)

Finally, after this identification, we need to determine the function α(z) by imposing bound-

ary conditions and continuity of α and α′.

Working out examples is possibly the clearest way to explain the procedure to the

reader not acquainted with this formalism. We first present full details for a simple example

and then we consider a more generic situation. The interested reader can consult the

examples in section 2.1.1 of the paper [30].1

A simple example. Consider the Hanany-Witten set-up, quiver and Rank function R(z)

in figures 1–3.

1In order for the background to capture faithfully the CFT dynamics one should work with long linear

quivers and with large ranks. In this sense the examples of eqs. (2.6) and (2.8) of [30] are rigorously

trustable. Our examples in this section should be taken as illustrative of the procedure.
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1 2 3 4 5
z

R(z)

Figure 3. The rank function R(z) corresponding to the field theory.

In this example, the rank function and the function α′′(z) are given by,

R(z) = − 1

81π2
α′′(z) = N



z 0 ≤ z ≤ 1

(z − 1) + 1 1 ≤ z ≤ 2

(z − 2) + 2 2 ≤ z ≤ 3

3 3 ≤ z ≤ 4

3− 3(z − 4) 4 ≤ z ≤ 5.

This implies that the generic function α(z) for this example is,

α(z) = −81π2N



a0 + a1z + z3

6 0 ≤ z ≤ 1

b0 + b1(z − 1) + 1
2(z − 1)2 + 1

6(z − 1)3 1 ≤ z ≤ 2

c0 + c1(z − 2) + 2 (z−2)2

2 + 1
6(z − 2)3 2 ≤ z ≤ 3

d0 + d1(z − 3) + 3 (z−3)2

2 3 ≤ z ≤ 4

p0 + p1(z − 4) + 3 (z−4)2

2 − 3 (z−4)3

6 4 ≤ z ≤ 5.

To determine the ten integration constants, we need to impose:

• That α(0) = α(5) = 0. This is to have an internal space that shrinks smoothly at

the beginning and end of the z-interval. These conditions imply

a0 = 0, p0 + p1 +
3

2
− 3

6
= 0

• That the function α(z) is continuous, this implies the equations,

a1 +
1

6
= b0, b0 + b1 +

1

2
+

1

6
= c0, c0 + c1 + 1 +

1

6
= d0, d0 + d1 +

3

2
= p0.

• That the function α′(z) is continuous. This implies,

a1 +
1

2
= b1, b1 + 1 +

1

2
= c1, c1 + 2 +

1

2
= d1, d1 + 3 = p1.

– 10 –



J
H
E
P
0
6
(
2
0
1
9
)
0
6
9

NS51

N1 D6N1 D6N1 D6N1 D6N1 D6

F1 D8

NS52

N2 D6N2 D6N2 D6N2 D6N2 D6

F2 D8

NS53

N3 D6N3 D6N3 D6N3 D6N3 D6

F3 D8

NS54

N4 D6N4 D6N4 D6N4 D6N4 D6

F4 D8

NS55

Figure 4. The Hanany-Witten set-up corresponding to the generic field theory studied here.

Solving these equations we find,

a0 = 0, −5a1 = 19, −30b0 = 109, −10b1 = 33, −15c0 = 94, −5c1 = 9,

−10d0 = 69, 10d1 = 7, −10p0 = 47, 10p1 = 37.

In this way, we have a well defined function α(z).

We can apply our expressions for the number of NS, D6 and D8-branes and linking

numbers. Using eqs. (2.7), (2.12) and (2.15) we find,

NNS5 = zf = 5, ND8 =
1

81π2

[
α′′′(0)− α′′′(zf )

]
= 4N,

ND6 = − 1

81π2

∫ zf

0
α′′(z)dz = 9N. (2.23)

Notice that this coincides with the numbers we count from the Hanany-Witten set-up in

figure 1.

We can also calculate the linking numbers using eqs. (2.18), (2.19). We find,

K1 = K2 = . . . . = K5 =
1

81π2
α′′′(zf ) = −3N →

N5∑
i=1

Ki = −15N.

L1 = L2 = . . . . = LN = 3, L̂1 = . . . . = L̂3N = 4→
N8∑
i=1

Li + L̂i = 3N + 4× 3N = 15N.

We have denoted by Li, L̂i the linking numbers of the D8-branes in the first and second

stacks. These numbers are also obtained by simple inspection of the Hanany-Witten dia-

gram. The relation in eq. (2.17) is satisfied. The entanglement entropy can be calculated

straightforwardly using eq. (2.21).

Let us now study a more generic example.

A more generic example. Following the same logic, we can work out a slightly more

generic situation. Consider the field theory represented by the Hanany-Witten set-up in

figure 4 or equivalently, the quiver in figure 5 .

For the gauge anomalies to cancel, we need

2N1−N2 =F1, 2N2 −N1 −N3 =F2,

2N3 −N2 −N4 =F3, 2N4 −N3 =F4. (2.24)
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N1

F1

N2

F2

N3

F3

N4

F4

Figure 5. The quiver corresponding to the generic field theory studied here.

We construct the rank-function

R(z) =



N1z 0 ≤ z ≤ 1

(N2 −N1)(z − 1) +N1 1 ≤ z ≤ 2

(N3 −N2)(z − 2) +N2 2 ≤ z ≤ 3

(N4 −N3)(z − 3) +N3 3 ≤ z ≤ 4

−N4(z − 4) +N4 4 ≤ z ≤ 5.

The function α(z) reads,

α(z) = −81π2



a0 + a1z +N1
z3

6 0 ≤ z ≤ 1

b0 + b1(z − 1) +N1
(z−1)2

2 + (N2 −N1) (z−1)3

6 1 ≤ z ≤ 2

c0 + c1(z − 2) +N2
(z−2)2

2 + (N3 −N2) (z−2)3

6 2 ≤ z ≤ 3

d0 + d1(z − 3) +N3
(z−3)2

2 + (N4 −N3) (z−3)3

6 3 ≤ z ≤ 4

p0 + p1(z − 4) +N4
(z−4)2

2 −N4
(z−4)3

6 4 ≤ z ≤ 5.

(2.25)

We determine the ten coefficients by imposing that α(0) = α(5) = 0, the continuity of α(z)

and α′(z). The resolution of the system is straightforward, we do not quote the result here.

We calculate the number of branes in the Hanany-Witten set-up. We find,

NNS5 = zf = 5, ND8 =
1

81π2

[
α′′′(0)− α′′′(5)

]
= N1 +N4 = F1 + F2 + F3 + F4,

ND6 = − 1

81π2

∫ zf

0
α′′dz = N1 +N2 +N3 +N4,

this coincides with the counting from the Hanany-Witten set-up. Similarly, for the linking

numbers we obtain

K1 = K2 = . . . . = K5 = −N4 →
N5∑
i=1

Ki =
1

81π2
α′′′(zf )zf = −5N4.
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For the i-th stack of D8-branes we find the linking number L(i),

L(1) = 1→
F1∑
1

L(1) = F1, L(2) = 2→
F2∑
1

L(2) = 2F2,

L(3) = 3→
F3∑
1

L(3) = 3F3, L(4) = 4→
F4∑
1

L(4) = 4F4,

N8∑
1

Li = F1 + 2F2 + 3F3 + 4F4 = 5N4.

Again, we find agreement between the holographic calculation and the direct inspection of

the Hanany-Witten set-up, validating our proposed expressions (2.12), (2.15), (2.18), (2.19).

In what follows, we analytically study the integrability of strings in generic backgrounds

dual to six-dimensional N = (1, 0) CFTs.

3 Study of the integrability of strings on generic string backgrounds

In this section we discuss the non-integrability of the classical string sigma model on the

backgrounds given by eqs. (2.3), (2.4). The strategy we adopt is the following: suppose

the sigma model on the background is integrable, then any subsector of the sigma model

(in particular, any string soliton) must also be integrable. The aim is then to find a

contradiction by finding a subsector that is not (Liouville) integrable. If such a subsector

is found, the whole sigma model can not be integrable. This strategy was applied to a large

variety of examples, see the papers [33, 34] and citations to them. Of course, not finding

such a subsector does not guarantee the integrability of the sigma model.

In the papers [30, 35] the authors presented particular string solitons for which the

classical equations of motion were solvable and the non-integrability was shown under

generic circumstances. We would like to revisit the treatment in those works. Indeed, we

present a generalisation of [30, 35] that leads to a condition on the background for which the

string soliton fails to detect non-integrability. In other words, the string soliton proposed

in the papers [30, 35] and its generalisation presented below are very ‘efficient’ at detecting

non-integrable subsectors of the sigma model. Imposing that the soliton fails to detect a

non-integrable subsector singles out a particular function α(z). As we discuss further in

section 4, the particular background satisfying this condition turns out to be integrable.

To proceed, we write the relevant part of the Neveu-Schwarz sector of the background

in eq. (2.3) choosing global coordinates for AdS7. We have

ds2 = f1(z)
[
−dt2 cosh ρ+ dρ2 + sinh2 ρ(dϕ2 + cos2 ϕdθ2 + sin2 ϕdΩ3)

]
+ f2(z)dz2

+f3(z)
(
dχ2 + sin2 χdξ2

)
, B2 = f4(z) sinχdχ ∧ dξ. (3.1)

We propose an embedding for the string soliton of the form,

t = t(τ), ρ = ρ(τ), ϕ = ϕ(τ), θ = µσ, z = z(τ), χ = χ(τ), ξ = κσ. (3.2)
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Here the integers κ and µ indicate how many times the string wraps around the ξ and

θ-directions respectively.

We study the equations of motion of this soliton derived from the Polyakov action,

supplemented by the Virasoro constraint,

SP = − 1

4πα′

∫
Σ
d2σ

(
ηabGµν + εabBµν

)
∂aX

µ∂bX
ν , (3.3)

Tab = ∂aX
µ∂bX

νGµν −
1

2
ηabη

cd∂cX
µ∂dX

νGµν = 0.

The equations of motion are,

f1(z)ṫ =
E

cosh2 ρ

f1(z)ρ̈ = − E2

f1(z)

sinh ρ

cosh3 ρ
+ f1(z) sinh ρ cosh ρ

(
ϕ̇2 − µ2 sin2 ϕ

)
− f ′1(z)ρ̇ż

f1(z)ϕ̈ = −f1(z)

(
2

cosh ρ

sinh ρ
ϕ̇ρ̇+ µ2 cosϕ sinϕ

)
− f ′1(z)żϕ̇ (3.4)

f3(z)χ̈ = κf ′4(z)ż sinχ− f ′3(z)żχ̇− κ2f3(z) sinχ cosχ

2f2(z)z̈ = f ′1(z)

(
− E2

f1(z)2 cosh2 ρ
+ ρ̇2 + sinh2 ρ

(
ϕ̇2 − µ2 sin2 ϕ

))
− f ′2(z)ż2

+f ′3(z)
(
χ̇2 − κ2 sin2 χ

)
− 2κχ̇ sinχf ′4(z).

Here the dots indicate derivatives with respect to τ and the primes indicate derivatives

with respect to z. We have used the first equation above, to replace for ṫ in the other four

equations. Notice that when we set ρ = ϕ = 0 this system of equations reduces to the

system that was studied in eq. (3.5) of the paper [30].

The Virasoro constraints for the string soliton are,

Tττ = 0, Tσσ = 0, Tστ = 0→ (3.5)

→ f1(z)
(
−cosh2 ρ ṫ2 + ρ̇2 +sinh2 ρ

(
ϕ̇2 +µ2 sin2ϕ

))
+f2(z)ż2 +f3(z)

(
χ̇2 +κ2 sin2χ

)
= 0.

The reader can check that the equations of motion imply that the string soliton satisfies

the Virasoro constraints by making an appropriate choice for the integration constant E.

We proceed with the strategy outlined above. The reader unfamiliar with the technical

details should consult the papers [30, 35] for a clear explanation of the procedure. First,

we find a simple solution by solving the equation for z̈(τ), choosing configurations with,

ϕ̈(τ) = ϕ̇(τ) = ϕ(τ) = χ̈(τ) = χ̇(τ) = χ(τ) = ρ̈(τ) = ρ̇(τ) = ρ(τ) = 0.

In fact, the equations of motion in (3.4) are automatically solved, aside from the equation

for z̈ that reads,

2f2(z)z̈ = − f ′1(z)

f1(z)2
E2 − ż2f ′2(z). (3.6)

After inserting the expressions for the functions f1(z) and f2(z) in terms of α(z), the above

equation for z̈ reads,

z̈ −
(
αα′′′ − α′α′′

4α2

)( α
α′′

)( E2

16π2
− ż2

)
= 0, (3.7)
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which has a simple solution

zsol(τ) =
E

4π
τ. (3.8)

This also solves the constraint in eq. (3.5) using the first of eqs. (3.4) for ṫ and the expres-

sions for f1(z), f2(z).

We then have a ‘base solution’ around which we perturb the other variables. This leads

to writing the Normal Variational Equation (NVE) for the different coordinates ϕ, ρ, χ.

These NVEs are second order linear equations with variable coefficients, for which there

are well developed criteria for the existence of Liouville integrable solutions — see [30, 35]

for a summary of these criteria. Below, we study the NVE for the ρ-variable. The detailed

study of this NVE and those for the other coordinates together with the analysis of the

Liouville integrability are given in appendix A.

3.1 NVE for the ρ-coordinate

We allow for small fluctuations in ρ(τ) = 0 + εr(τ) and insert the zsol(τ) in (3.8) into the

equation of motion for r̈(τ), we find for the NVE, at leading order in the small parameter ε,

r̈(τ) + Br(τ)ṙ(τ) +Ar(τ)r(τ) = 0

Br(τ) =
f ′1(z)

f1(z)

E

4π

∣∣∣∣
zsol

=
E

8π

(
α′

α
− α′′′

α′′

)∣∣∣∣
zsol

(3.9)

Ar(τ) =
E2

f1(z)2

∣∣∣∣
zsol

=
−E

128π2

α′′

α

∣∣∣∣
zsol

A detailed analysis of the Liouville integrability of this equation is relegated to appendix A.

Here, we make a simple observation: if the warp factor f1(z) is equal to a constant,

then Br = 0, and the above differential equation is that of a harmonic oscillator, which

admits a Liouvillian solution of the form r(τ) = exp(iEτ). On the other hand, if f1(z) is

not equal to a constant, we show in appendix A that the NVE in eq. (3.9) does not admit

Liouvillian solutions.

In summary, the analysis above strongly suggests that the situation with constant

AdS7 warp factor is quite special. This implies that the background-defining function

α(z) = A sin(ωz), for which the functions f1(z), f2(z) are constant, is special. This solution

does not fall within the class of solutions studied in section 2.1. In spite of this, we study

below the background and the integrability of the string sigma model for strings moving

on this special solution. We postpone to section 5 a more detailed analysis of the CFT

dual to this special solution.

4 Integrability of strings on the special background

As pointed out above, there is only one particular function α(z) = A sin(ωz), that makes

constant the warp factor of AdS7. We gave reasons to suspect that strings might be

integrable on the resulting background. We analyse this in what follows.

Let us first write the complete Massive IIA solution and then show that the equations

of motion of the sigma model can be derived from a Lax pair.
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When α(z) = A sin(ωz), the z-coordinate varies in the interval 0 ≤ z ≤ π
ω . We choose

ω = π
N5

, being N5 a large integer number. The full background in eqs. (2.3), (2.4) reads,

ds2 =

√
2π

ω

(
8AdS7 + ω2 dz2 +

(
sin2 ωz

1 + sin2 ωz

)
dΩ2

)
, (4.1)

e−2φ = e−2φ0(1 + sin2 ωz), B2 = π

(
−z +

sinωz cosωz

ω(1 + sin2 ωz)

)
dΩ2, (4.2)

F0 =
Aω3 cosωz

162π3
, F2 = −Aω

2

81π2

(
sin3 ωz

1 + sin2 ωz

)
dΩ2. (4.3)

The expression for F0 suggests that we have a continuous distribution of D8-branes. Indeed,

in contrast with the results of the examples discussed in section 2.1, the F0 in eq. (4.3)

is a continuous function, instead of a piece-wise constant and discontinuous one that is

characteristic of localised D8-branes. Postponing to section 5 the discussion of the dual

field theoretical understanding of the Massive IIA background in eqs. (4.1)–(4.3), we focus

here on the integrability of the string sigma model in this solution.

As it is well-known, the way to show classical integrability of the string sigma model

is to find a Lax pair that encodes the classical equations of motion. We present a Lax

connection for the Polyakov action of strings moving on a background with the Neveu-

Schwarz sector of eq. (4.1)–(4.2).

As discussed above, the warp-factor f1(z) as defined in eq. (2.3) is constant for this

background, making the metric in eq. (4.1) a direct product of the AdS7 and M3 spaces.

This will simplify proving integrability of the string on this background considerably, as

the oscillations of the string on these different spaces decouple. We can write the Polyakov

action in eq. (3.3), for the string on this background as the sum of the action for a string on

a seven-dimensional AdS7 geometry, and the action for the string on the three-dimensional

internal space M3, with a B2-field. This reads,

SP = SAdS7
P +SM

3

P (4.4)

= − 1

4πα′

∫
Σ
d2σ ηabGAdS7

αβ ∂aX
α∂bX

β− 1

4πα′

∫
Σ
d2σ

(
ηabGM

3

µν +εabBM
3

µν

)
∂aX

µ∂bX
ν

where the Latin indices range over the worldsheet coordinates, and the Greek indices range

over the target space. In particular, α, β range over the AdS7 directions, and µ, ν range

over the coordinates z, χ and ξ of the internal space M3. We reinstated the constant

α′ = 1. Let us study in turn the Lax connection for each part of the action.

Lax pair for AdS7. The Polyakov action on an AdSn target space without a B2-field,

is known to be integrable (as is the action of the string on the other symmetric space dSn
and the Euclidean counterparts Hn and Sn, see appendix B for a more detailed explanation

and references). We can think of these symmetric spaces as cosets F = G/H of a Lie group

G by a Lie subgroup H.

Therefore, we first introduce the Principal Chiral Model (PCM) on a semisimple Lie

group G,

SPCM = −κ
2

2π

∫
d2σ Tr

[
∂ag∂

ag−1
]
, g ∈ G. (4.5)
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which exhibits a GL × GR global symmetry and can be written in terms of the Maurer-

Cartan form ja, a Lie algebra valued connection on the group manifold,

SPCM =
κ2

2π

∫
d2σ Tr [jaj

a] , ja = g−1∂ag ∈ g. (4.6)

This Maurer-Cartan form is by construction flat. The flatness condition together with the

equations of motion for the action in eq. (4.6) read

∂+j− + ∂−j+ = 0,

∂−j+ − ∂+j− − [j+, j−] = 0.
(4.7)

Here we used lightcone coordinates on the string worldsheet. The above eqs. (4.7) combine

to construct a Lax connection

L± =
1

1∓ Z
j±, (4.8)

where Z ∈ C is the spectral parameter, such that the flatness of the Lax connection

dL+ L ∧ L = 0, (4.9)

is equivalent to the equations of motion obtained from the action in eq. (4.6).

However, our case at hand is not a group manifold G, but a symmetric coset F = G/H.

That means that there is a Z2 automorphism of the algebra of G, under which the latter

decomposes as g = f⊕ h. Thus, the right action of H is realized as a gauge symmetry and,

by introducing a h-valued gauge field Ba, the new gauge invariant PCM action reads

SPCM =
κ2

2π

∫
d2σ Tr [JaJ

a] , Ja = ja −Ba, (4.10)

where we have defined the projection Ja = Pf(ja). The resulting equations of motion are

DaJ
a = 0, Da = ∂a + [Ba, · ] , (4.11)

while the new flatness condition

∂aBb − ∂bBa + [Ba, Bb] +DaJb −DbJa + [Ja, Jb] = 0, (4.12)

uses the commutation relations [h, h] ⊂ h, [h, f] ⊂ f and [f, f] ⊂ h to decompose into two

separate projections on the algebras h, f as

∂aBb − ∂bBa + [Ba, Bb] + [Ja, Jb] = 0,

DaJb −DbJa = 0.
(4.13)

As before, the flatness eq. (4.13) together with eq. (4.11) combine in a Lax connection for

the coset space,

L± = B± + Z±1J±, (4.14)

whose flatness condition is equivalent the equations of motion of the symmetric PCM. This

demonstrates that the string on a symmetric space is classically integrable in the absence

of a B2-field.

In appendix B we introduce a more natural environment to realise the symmetric PCM.

The reader unfamiliar with these technical details should consult this appendix. We now

construct the Lax pair on the M3 part of the space.
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Lax pair for M3. Here we state the Lax connection whose flatness condition gives

the equations of motion for the three coordinates in M3 derived from the action SM
3

P in

eq. (4.4). We will elaborate more on the derivation of this Lax connection in section 4.1.

The Lax connection is of the form

L± = 2
(

1 +
√

2
) A±

1∓ Z
, (4.15)

where

A±

=


±sinχsinξz±± sin2z

2(1+sin2 z)
(cosχsinξ χ±+sinχcosξ ξ±)− sin2 z√

2(1+sin2 z)
(2cosξ χ±−sin2χsinξ ξ±)

∓sinχcosξz±± sin2z

2(1+sin2 z)
(cosχcosξ χ±−sinχsinξ ξ±)− sin2 z√

2(1+sin2 z)
(2sinξ χ±+sin2χcosξ ξ±)

∓cosχ z±+ sinχ

2(1+sin2 z)

(
±sin2z χ±+2

√
2sin2 z sinχ ξ±

)
 .

We denoted by Z the spectral parameter, and use the notation f+ = ∂+f , f− = ∂−f and

f+− = f−+ = ∂+∂−f . We wrote A± in the adjoint representation of SU(2). One can check

that the flatness condition for this connection is equivalent to the equations of motion for

the Polyakov action on the internal space M3 with B2-field. These equations of motion

take the form,

z+− =
1

2
√

2
(
sin2 z + 1

)2
×
(√

2 sin 2z
(
χ+χ− + sin2 χ ξ+ξ−

)
−
(
5 + sin2 z

)
sin2 z sinχ (χ+ξ− − χ−ξ+)

)
,

χ+− =
1

2
sin 2χ ξ+ξ− +

1

2
√

2

(
1 +

4

1 + sin2 z

)
sinχ (z+ξ− − z−ξ+)

− cot z

1 + sin2 z
(z+χ− + z−χ+) ,

ξ+− = − 1

2
√

2

(
1 +

4

1 + sin2 z

)
sin−1 χ (z+χ− − z−χ+)− cot z

1 + sin2 z
(z+ξ− + z−ξ+)

−cosχ

sinχ
(χ+ξ− + χ−ξ+) .

It is illuminating to discuss the reason why this background is integrable, or more precisely,

where the form of the Lax pair on M3 in eq. (4.15) comes from.

4.1 Relation with λ-deformation

We explain more intuitively the reason why the bosonic sector of the string worldsheet on

the background (4.1)–(4.3) is integrable.

It turns out that the Neveu-Schwarz sector part of the internal space M3 for this

background — eqs. (4.1)–(4.2) is exactly equal to that of the λ-deformed Wess-Zumino-

Witten (WZW) model on SU(2). The λ-deformation is an integrable deformation of the

WZW model proposed by Sfetsos in [36]. The WZW model is given by an action of the form,

SWZW,k =
k

2π

∫
∂B

Tr [jaj
a] +

k

6π

∫
B
εabcTr

[
jajbjc

]
(4.16)
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Here the first term is the action of the PCM and describes the fluctuations of the string on

a group manifold. Just like the PCM, the WZW model on any Lie group G is integrable.

The λ-deformation is an integrable deformation of the WZW model. Namely, a defor-

mation term added to the action in eq. (4.16) that preserves the integrability. The action

of the λ-deformed WZW model is given by

Sλ = SWZW,k +
k

π

∫
∂B

̃A+
(
λ−1 −DT

)−1

AB
jB− (4.17)

where ja as before in eq. (4.16) and (4.6) is the left invariant current, and ̃a = ∂agg
−1

is the right invariant current. Notice these currents are algebra valued and the indices

A and B range over the components of the algebra of the group on which we study this

action. The matrix DAB = Tr
[
TAgTBg

−1
]

relates the left and right invariant currents as

jAa = DA
B ̃Ba . Here the TA are the generators of the group.

If we analyse the λ-deformed WZW model on the Lie group SU(2), the action (4.17)

is equivalent to the Polyakov action of the string on a target space of the form [37, 38],

ds2
λ = 2k

(
1 + λ

1− λ
dz2 +

1− λ2

∆
sin2 zdΩ2

2

)
,

Bλ
2 = −2k

(
z − (1− λ)2

∆
cos z sin z

)
volΩ2, (4.18)

e−2Φλ = e−2Φ0∆,

where ∆ = 1 +λ2−2λ cos 2z and λ ∈ [0, 1]. For λ = 0 we obtain the original WZW model.

The action we obtain for λ → 1 is related to the non-Abelian T-dual of the WZW model

in eq. (4.16). See [37, 38] for a detailed explanation.

The λ-deformation for λ = 3− 2
√

2. The connection between the λ-deformation of

the WZW model on SU(2) in eq. (4.18) and the background solution in eqs. (4.1)–(4.3) is

made by noting that for λ = 3− 2
√

2, which implies ∆ = 4λ
(
1 + sin2 z

)
, the geometry of

eq. (4.18) reads,

ds2
λ = 2

√
2k

(
dz2 +

sin2 z

1 + sin2 z
dΩ2

2

)
,

Bλ
2 = −2k

(
z − sin z cos z

1 + sin2 z

)
volΩ2, (4.19)

e−2Φλ = e−2Φλ0

(
12− 8

√
2
) (

1 + sin2 z
)
.

This is identical to the Neveu-Schwarz sector of the internal spaceM3 in eqs. (4.1), (4.2) if

we identify ω = π
2k and choose conveniently e−2Φλ0 . The holographic limit ω → 0 associated

to long quivers, corresponds to k → ∞, the semi-classical limit of the WZW model. We

write the metric, dilaton and B2-field for this solution as,

ds2
10 = 8

√
2πds2

AdS7
+
π

2
ds2
λ, e−2Φ = e−2Φλ , B2 = πBλ

2 . (4.20)
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In summary, for the function α(z) = A sin(ωz), the geometry becomes a direct product

of AdS7 ×M3. The sigma model for the string factorises into a sigma model on AdS7

times a sigma model on M3 coupled to a B2-field. The first is integrable, and a Lax

pair can be written as explained in detail in appendix B. The sigma model on M3 is the

λ-deformation of the WZW model on S3 — see [37, 38] — for a particular value of the

parameter λ = 3 − 2
√

2. This implies the existence of a Lax pair, given in eq. (4.15), for

this part of the space. As a consequence, the Neveu-Schwarz sector of the string sigma

model on the whole solution of eqs. (4.1), (4.3) is integrable.

There are other examples in the literature of integrable supergravity backgrounds

where it is observed that those geometries are a direct product of integrable sub-spaces,

with constant warp factors. Examples of this are the Sfetsos-Thompson solution [39, 40]

in the Gaiotto-Maldacena class of supergravity backgrounds, the Lunin-Maldacena real

β-deformations [41], etc. It would be interesting to derive a no-go theorem for the integra-

bility of a string background with non-trivial warp factors. Some similar ideas have been

presented in [42, 43].

To complement this analytical proof of integrability, in appendix C, we perform a

careful numerical treatment of the string soliton in eq. (3.2), analysing its dynamics and

finding results in agreement with the integrability of the solitons, like trajectories in phase

space, Poincaré sections, power spectrum, and Lyapunov exponents.

We will now present a short analysis of the background in eqs. (4.1)–(4.3) from the

point of view of the dual N = (1, 0) six-dimensional CFT.

5 Field theory interpretation of the special background

In this section we present a first approach to the conformal field theory dual to the back-

ground in eqs. (4.1)–(4.3). Since the function R′(z) = −α′′′(z)
81π2 is not piece-wise discontinu-

ous and constant, a description in terms of well defined six-dimensional gauge and flavour

groups as that given in section 2 is not the most suitable. Instead, we will define the

CFT by calculating some of its observables. The use of the background to calculate these

observables defining the CFT, is the main message of this section.

It is illustrative to first present a different way to arrive to the function α(z) =

A sin(ωz), than that of our presentation of section 3 was purely based on integrability

of the sigma model. In the paper [30], the authors gave a way to write solutions to the

equation of motion (2.5) — see section 2.3 in [30]. The idea was to choose a quiver, write

the rank function R(z) and the function F0 (typically piece-wise constant and discontinu-

ous). An even periodic extension of F0 was proposed and a Fourier series expansion of F0

found. By integration, the function α(z) was written as,

α(z) =

∞∑
n=1

cn sin

(
nπ

N5
z

)
.

While the infinite sum of harmonics reproduces the piecewise continuous function α(z)

made out of cubic polynomials in each interval, it is natural to wonder what is the physical

content of each harmonic in the sum (since the dynamical equation (2.5) is linear). As we
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discussed around eqs. (4.1)–(4.3), this leads to a background that can be interpreted as if

the D8 sources are smeared all along the z-coordinate, instead of sharply localised as the

expression for α′′′ suggests in the examples of section 2.1. A situation of this sort was also

suggested (though not analysed in detail) in the work of Cremonesi and Tomasiello [25].

These authors observed that a possible scaling under which the backgrounds of the form in

eq. (2.3) are trustable representations of N = (1, 0) SCFTs, involved taking the number of

D8-branes to infinity and creating a continuous distribution. The authors of [25] emphasise

that their treatment of anomalies still holds true in this case. Below, we analyse the different

observables discussed in section 2.1 for the particular solution of eqs. (4.1)–(4.3).

We consider the solution derived from α(z) = A sin(ωz). We choose ω = nπ
N5

which

makes the coordinate range in 0 ≤ z ≤ N5
n . We work with n = 1 only (the first harmonic)

in what follows. The expression of eq. (2.7) indicates that NNS5 = N5. We can calculate

the number of D6 and D8-branes in this background. Using eqs. (2.12), (2.15) we find,

ND6 = − 1

81π2

∫ N5

0
α′′(z)dz =

2A

81πN5
, (5.1)

ND8 =
1

81π2

[
α′′′(0)− α′′′(N5)

]
= − 2Aπ

81N3
5

. (5.2)

In absolute value, these expressions imply relations among the quantities,

A =
81π

2
N5ND6, A =

81

2π
N3

5ND8, π2ND6 = ND8N
2
5 . (5.3)

We can use the expressions for the linking numbers — eqs. (2.18), (2.19) and the expression

for A in terms of the number of flavour D8-branes,

N5∑
i=1

Ki =
1

81π2
α′′′(N5)N5 =

Aπ

81N2
5

= −N5ND8

2
. (5.4)

In the paper [30], the authors found an expression for the central charge of the conformal

quiver — see eq. (2.14) in [30]. This coincides with the holographic central charge a found

in [25], derived by field theoretical means. Let us apply this expression for the case at

hand. For α(z) = A sin(ωz), we find

c = − 28

38 × 16×GN

∫ zf

0
α(z)α′′(z)dz =

8

38 ×GN
A2ω2N5 =

N2
D6N5

4π2
. (5.5)

We have used the expression for A in terms of the number of colour D6-branes and that in

our conventions GN = 8π6.

We can compute the entanglement entropy. Using the expression in eq. (2.21), we find

that for this particular CFT

Sreg
EE =

(
µ1µ

4
2

L4

)
× 64π4N2

D6N5, (5.6)

that, as anticipated, has the same scaling with N5 and ND6 as the central charge.
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An interesting observation is that these expressions for the linking numbers, central

charge and entanglement entropy in eqs. (5.4), (5.5), (5.6) have the same scaling with ND6

and N5 as a four-dimensional N = 2 quiver that starts with a flavour group of rank ND6,

continues with N5 − 1 colour groups of rank ND6 and closes with a flavour group of rank

ND6. See around eq. (3.16) of the paper [29].

Another interesting observable in all CFTs is the Wilson loop, in particular those

for which the non-dynamical quarks transform under the internal symmetries. We find it

interesting to study a fundamental string on a generic background of the form in eq. (2.3),

parametrised by

t = τ, x = σ, R = R(σ), z = z(σ). (5.7)

We use Poincaré coordinates for the AdS7 space, parametrised by (t, ~x,R). The Nambu-

Goto action of the fundamental string on a generic background is,

SNG =
1

2π

∫
dτdσ

√
f2

1R
4 + f2

1R
′2 + f1f2R2z′2 =

T

2π

∫
dσ
√
f2

1R
4 + f2

1R
′2 + f1f2R2z′2.

(5.8)

This action does not depend explicitly on the ‘time variable’ σ and this implies the con-

served ‘Hamiltonian’,
f2

1R
4√

f2
1R

4 + f2
1R
′2 + f1f2R2z′2

= C. (5.9)

At this point, it is interesting to analyse three situations:

• The situation for which the coordinate z(σ) is constant. In this case, we are back to

the usual Wilson loop calculation in strongly coupled CFTs [44], that gives EQQ ∼√
λ

LQQ

• The situation in which R(σ) = R0 is constant. In this case we find the Nambu-Goto

action,

SNG =
T

2π

∫
dσ
√
f2

1 (z)R4
0 + f1(z)f2(z)R2

0z
′2. (5.10)

That leads to more a conventional minimisation problem, equivalent to the calcu-

lation of the ‘usual’ rectangular Wilson loop in a background of the form ds2 ∼
R2

0f1(z)
[
dx2

1,p

]
+f2(z)dz2. Using eq. (2.4) we find that f1(z)f2(z) = 16π2. The main

difference with the situations calculated previously in the bibliography is that the

z-coordinate is bounded.

• More interesting than the general study presented above is to consider the action in

eq. (5.8) for the case of our special background in eq. (4.1), for which f1(z) = 8
√

2π
ω

and f2(z) =
√

2πω. Using these values, the action in eq. (5.8) reads,

SNG =

√
32T

ω

∫
dσ

√
R4(σ) +R′2(σ) +

ω2

8
R2(σ)z′(σ)2. (5.11)

We can redefine the variable z̃ = ωz√
8

and from the action in eq. (5.11) we find two conserved

quantities,

R4

√
R4 +R′2 +R2z̃′2

= E,
R2z̃′√

R4 +R′2 +R2z̃′2
= J, R4 J

2

E2
= z̃′2. (5.12)
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Following the usual procedure to write the separation of the external quarks in the x-

direction LQQ,x and in the z̃-direction LQQ,z̃,

LQQ,x =
E

R3
0

∫ ∞
1

dy
1

y2
√
y4 − J2

R2
0
y2 − E2

R4
0

,

LQQ,z̃ =
J

R0

∫ ∞
1

dy
1√

y4 − J2

R2
0
y2 − E2

R4
0

. (5.13)

The Energy of the quark-antiquark pair EQQ is after regularisation,

EQQ =

√
32R0

ω

∫ ∞
1

dy

 y2√
y4 − J2

R2
0
y2 − E2

R4
0

− 1

− 1

 . (5.14)

After redefining J̃R0 = J and ẼR2
0 = E, we observe that these expressions in eqs. (5.13)–

(5.14) are the same as those obtained by Maldacena in [44] when considering quarks that

are charged under the R-symmetry. In our background the z-coordinate is not isometric,

but the fundamental string in the configuration of eq. (5.7) does see it as part of the

R-symmetry.

We close this section hoping to have given the reader a flavour of the many things

that can be holographically computed with the background of eqs. (4.1)–(4.3). These

observables serve as a definition of the six-dimensional N = (1, 0) CFT, even when the

precise ranks of the colour and flavour groups are not easy to determine. Let us present

some summary and conclusions.

6 Conclusions and future directions

In this paper, we have studied six-dimensional superconformal field theories with N = (1, 0)

SUSY. The main goal was to learn about these non-Lagrangian, strongly coupled, field

theories using holography.

In particular, we have found new expressions calculating (in holographic language)

the number of NS5, D6, and D8-branes, and their linking numbers, that characterise the

Hanany-Witten set-ups associated with the CFTs. We also found a closed expression

calculating the entanglement entropy of a rectangular region, explicitly dependent on the

matter content of the CFT.

Interestingly, we have found a particular background in Massive Type IIA on which

the NS sector of the string sigma model is classically integrable. We have written the Lax

pair from which the sigma model equations of motion are derived. We related this special

background to a λ-deformation of a WZW model. Our study was complemented with an

intensive numerical analysis and a careful discussion of the Liouville integrability of string

solitons. Various explicitly worked out examples and detailed appendices complement our

study.

Let us comment on the natural lines of investigation suggested by this work. It is

interesting to understand in detail the character of our special background in eqs. (4.1)–

(4.3). In fact, as we commented, D8-branes are smeared in this solution. Finding the
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precise smearing form and fitting the solution in the framework developed in the past, see

for example the works [45–48], may be illuminating and useful for further progress.

It would be good to exploit the integrable background of eqs. (4.1)–(4.3), by repeating

various of the studies that in the paradigmatic case of AdS5×S5 gave insightful results. It

would also be interesting to learn about the applicability of the formalism that we presented

for the situation in which a flow from the six-dimensional CFT to a lower dimensional field

theory is realised by a background solution.

This work and previous experience suggest that when the pre-factor in front of the AdS-

space is independent of the coordinates of the internal space, the study of the string sigma

model decouples between an AdSp part and a Σ10−p one. We suggest that searching for

backgrounds with these characteristics is a good guide to find integrable solutions. Along

these lines, it should be interesting to understand the conditions that allow to formulate a

no-go theorem for integrability.

The study of these issues is fascinating and we hope to report on them in the near

future.
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A Non-integrability of strings on general AdS7 backgrounds

In this appendix, we analyse in more detail the eqs. (3.4) for a string soliton on the AdS7-

backgrounds defined in eqs. (2.3)–(2.5), where we take for α(z) a general third order poly-

nomial of the form a3z
3 + a2z

2 + a1z + a0. A similar analysis was originally performed

in [30], but we will generalise the results found there in two ways:

• First we will derive two relations between the coefficients a0, a1, a2 and a3. When

either of these two relations — (A.8) and (A.9) — are met, the string soliton will be

non-integrable for these coefficients.

• Second, from these relations we then derive that the string soliton will always be

non-integrable at the beginning and end of the z-interval for any generic quiver.

We start from the equations of motion for the string soliton that are listed in eq. (3.4).

As is explained in section 3, we can solve the equations of motion for z̈(τ) by first choosing

the solutions ϕ̈(τ) = ϕ̇(τ) = ϕ(τ) = 0, χ̈(τ) = χ̇(τ) = χ(τ) = 0, and ρ̈(τ) = ρ̇(τ) = ρ(τ) =

0. These solutions simplify the equation for z̈ to a new expression that has the solution

zsol(τ) = E
4π τ .
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NVE for ρ. If we now allow for small fluctuations in ρ(τ) = 0 + εr(τ) and insert the

solution for zsol(τ), we find for the NVE

r̈(τ) + Br(τ)ṙ(τ) +Ar(τ)r(τ) = 0

Br(τ) =
f ′1(z)

f1(z)

E

4π

∣∣∣∣
zsol

=
E

8π

(
α′

α
− α′′′

α′′

)∣∣∣∣
zsol

(A.1)

Ar(τ) =
E2

f1(z)2

∣∣∣∣
zsol

=
−E

128π2

α′′

α

∣∣∣∣
zsol

When only considering a string that moves along the z and ρ-directions, it is now easy to

see that if the warp factor f1(z) is equal to a constant, Br = 0, and the above differential

equation admits a Liouvillian solution of the form r(τ) = exp(iEτ).

When we allow for a warp factor between the AdS7 and M3 spaces, such that f1(z)

is no longer equal to a constant, we can use Kovacic’s algorithm [49] to try to determine

if the resulting differential equation (A.1) will still admit any Liouvillian solutions. This

can be done by combining the coefficients A(τ) and B(τ) of a second order differential

equation into a new function V (τ), defined below. By applying Galois theory to second

order differential equations, one can find if the solutions to the differential equation will

be Liouvillian by studying the pole structure and the behaviour at infinity of this function

V (τ). For the differential equation (A.1) to admit Liouvillian solutions, the function V (τ)

has to satisfy at least one of following necessary but not sufficient conditions:

• The poles of V (τ) are all either of order 1 or of even order. At infinity, the function

V (τ) is of even order, or of order greater than two.

• The function V (τ) has at least one single pole that is either of odd order greater than

2, or of order 2.

• The order of the poles does not exceed 2, and the order of V (x) at infinity is at least

2.

Here the order of V (τ) at infinity is equal to the degree of the denominator minus the degree

of the numerator. For a more detailed summary of Kovacic’s procedure, see appendix B

of [30]. In this case the NVE for ρ, in eq. (A.1), has a corresponding function Vr(τ) of the

form

Vr =
1

4

(
2B′r + B2

r − 4Ar
)

(A.2)

=
E2

256π2α2(α′′)2

(
− 3

(
α′
)2 (

α′′
)2 − 2αα′α′′α′′′ + α

(
6
(
α′′
)3

+ 5α(α′′′)2 − 4αα′′α′′′′
))

If we now consider a function α(z) corresponding to a general background, α(z) will be a

piece wise continuous polynomial along the z-direction of at most order 3 at every point.

α(z) = a3z
3 + a2z

2 + a1z + a0 (A.3)
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cubic poles r0 6= r1 r0 = r1

∆ > 0 (τ − r1)(τ − r2)(τ − r3) 2, 2, 2, 2 4, 2, 2

∆ = 0 (z − r1)3 2, 6 8

∆ = 0 (z − r1)2(z − r2) 2, 4, 2 6, 2

∆ = 0 (z − r1)(z − r2)2 2, 2, 4 4, 4

∆ < 0 (τ − r1)(τ − c2)(τ − c3) 2, 2, 2, 2 4, 2, 2

Table 2. The orders of the poles of V (τ), depending on both the determinant ∆ of the cubic

polynomial in the denominator, and on whether the additional root r0 coincides with one of the

roots of the cubic polynomial or not.

Inserting this solution for α(z) into the potential in eq. (A.2) will allow us to analyse the

pole structure of Vr(τ) corresponding to a general Massive IIA background,

Vr(τ) =
3E2

2

3a4
3E

6τ6 + 24a2a
3
3E

5πτ5 + . . .

(4a2π + 3a3Eτ)2 (64a0π3 + 16a1Eπ2τ + 4a2E2πτ2 + a3E3τ3)2 . (A.4)

The dots in the numerator are quartic terms in τ , the order of V (τ) at infinity is thus equal

to two. Note that Vr(τ) has one pole of order two at τ = r0 = −4a2π/3a3E. The other

poles come from the cubic polynomial that is the second term in the denominator, one of

the real roots of this cubic polynomial can coincide with the earlier pole τ = r0.

Let us first examine the possible roots coming from this cubic polynomial: a cubic

polynomial of the form aτ3 + bτ2 + cτ + d = 0 has three complex roots, the multiplicity of

which can be obtained from the determinant

∆ = a2b2 − 4b3 − 4a3c− 27c2 + 18abc

= −4096
(
−a2

1a
2
2 + 4a3

1a3 − 18a0a1a2a3 + a0

(
4a3

2 + 27a0a
2
3

))
E6π6. (A.5)

If ∆ > 0 the polynomial has three distinct real roots, for ∆ < 0 there is one real root and

two complex conjugate roots. When ∆ = 0 there are roots with multiplicity larger than

one, this can be either a single real root of multiplicity 3 or one real root of multiplicity 2

with another additional root. If we list all possible options we arrive at the following table

where the order of the poles of Vr(τ) are listed in both the case when first pole r0 does

coincide with one of the real poles from the cubic term (r0 = r1), and when this does not

happen. We see that in all cases all poles will be of even order, and that the resulting Vr(τ)

thus might pass the first of Kovacic’s criteria. These conditions are however necessary but

not sufficient to guarantee the existence of Liouvillian solutions. Let us next turn to the

string soliton moving along the ϕ direction.

NVE for ϕ. We now examine the equation of motion for ϕ̈. If we allow for small

fluctuations in ϕ(τ) = 0+ εf(τ), and we insert the solution for z(τ) from eq. (3.8) while we

– 26 –



J
H
E
P
0
6
(
2
0
1
9
)
0
6
9

now freeze the string along the other directions such that ρ = ρ̇ = ρ̈ we find for the NVE

f̈(τ) + B(τ)ḟ(τ) +A(τ)f(τ) = 0

Bf (τ) =
f ′1(z)

f1(z)

E

4π

∣∣∣∣
zsol

=
E

8π

(
α′

α
− α′′′

α′′

)∣∣∣∣
zsol

(A.6)

Af (τ) = µ2

Again, we see that when f1(z) is equal to a constant, the above NVE will reduce to the

harmonic oscillator with solution a(τ) = exp(iµτ).

When we allow for a more general warp factor where f1(z) is no longer constant, we

can again use Kovacic’s algorithm to determine if the above differential equation will still

admit Liouvillian solutions. Inserting again for α(z) a general third order polynomial as

given in eq. (A.3) gives us for the potential

Vf (τ) =
−36a4

3E
8µ2τ8 − 384a2a

3
3E

7πµ2τ7 + . . .

4(4a2π + 3a3Eτ)2 (64a0π3 + 16a1Eπ2τ + 4a2E2πτ2 + a3E3τ3)2 (A.7)

Notice that though the order of the numerator is different from Vr(τ), the pole structure

in the denominator is identical to that in eq. (A.4). Since the numerator does now contain

terms τ8, the order of V (τ) at infinity is zero, as Vf (τ) ∼ µ2 when τ → ∞. We thus see

immediately that Vf (τ) fails to meet the first and third of Kovacic’s criteria. Only when

both ∆ 6= 0 and r0 6= r1 all poles are of order 2, we can pass the second of Kovacic’s criteria.

Requiring that r0 is not a root of the cubic polynomial in the denominator implies,

after inserting τ = r0, that

c = 2a3
2 − 9a1a2a3 + 27a0a

2
3 (A.8)

Here c = 0, when r0 coincides with one of the roots of the cubic polynomial. We can use

the expression for c to simplify the expression for ∆ in eq. (A.5).

d =
∆

−4096E6π6
= a1

(
c− 27a0a

2
3

)
− a2

1

(
a2

2 − 4a1a3

)
(A.9)

We have thus found two constraints relating the constants a0, a1, a2 and a3 in a general

solution for α(z) of the form in eq. (A.3), such that when either c = 0 or d = 0, Kovacic’s

criteria guarantees the non-integrability of the string soliton.

From this, we can immediately conclude that for every function α(z) corresponding

to a quiver diagram, on the first part of the z-interval the string-soliton is guaranteed to

be non-integrable. This is because any quiver, starting with an SU(N) flavour group will

have α(z) = −81π2N
(

1
6z

3 − a1z
)

for z ∈ [0, 1], for which c = 0. The pole at r0 will thus

coincide with one of the roots of the cubic polynomial, giving us 2 poles of order two, and

one pole at r0 of order 4. The function Vf (τ) corresponding to this solution will fail to

meet any of Kovacic’s criteria and the NVE (A.6) will have non-Liouvillian solutions.
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NVE for χ. If we allow for small fluctuations in χ(τ) = 0+ εx(τ) and insert the solution

in (3.8) in the equation of motion for χ̈(τ), we find for the NVE for ẍ(τ)

ẍ(τ)+Bx(τ)ẋ(τ)+Ax(τ)x(τ) = 0

Bx(τ) =
Ef ′3(z)

4πf3(z)

∣∣∣∣
zsol

=
E

8π

(
3
α′

α
+

(α′2 +2αα′′)α′′′

(α′2−2αα′′)α′′

)∣∣∣∣
zsol

(A.10)

Ax(τ) =

(
κ2−κ Ef

′
4(z)

4πf3(z)

)∣∣∣∣
zsol

(A.11)

=

(
κ2− Eκ

4π

1√
−2αα′′

6αα′′2−2αα′α′′′−3α′2α′′

2αα′′−α′2

)∣∣∣∣
zsol

We now only consider fluctuations of the string along the z and χ-direction, which is the

same situation that was considered in [30]. Because the function Vx(τ) now involves f3(z)

and f4(z) and their derivatives, it is far less obvious to see from this result that the string

soliton will directly fail to be integrable when f1(z) is not equal to a constant (as we

obtained from the NVE’s for ρ and ϕ). If we would again insert a general function α(z) of

the form given in eq. (A.3), the resulting Vx(τ) will be a complicated sum of large fractions.

We will omit the result here, but is it difficult to see from this result what functions α(z)

would give rise to an integrable string soliton. For this reason the authors in [30] did not

make a general argument, but instead studied various examples. It is quite difficult to

extract general expressions for these cases, as could be nicely done for the NVE’s for ρ

and a, where we saw that the only backgrounds for which the string soliton could have a

Liouvillian solution is when f1(z) is constant.

B Integrability on the symmetric σ-model

Classical Liouvillian integrability for a Hamiltonian dynamical system, or for a field theory,

emerges over the existence of a flat Lax connection L, i.e.

dL+ L ∧ L = 0, (B.1)

on the cotangent bundle T ∗M (phase space), together with the involution of all the analo-

gous independent conserved quantities. Generally, though, there is no particular prescrip-

tion for finding such a connection and one has to rely on their inspiration to address the

problem.

However, given a 2-dimensional scalar field theory in a homogeneous space for a con-

nected semisimple Lie group G, the action can be reformulated in terms of its underlying

group structure as

SPCM ≡ −
κ2

π

∫
Tr jaj

a, (B.2)

where the Lie-algebra-valued current j ∈ g(G),

j± ≡ g−1∂±g = ji±ti, g ∈ G, ti ∈ g, (B.3)
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is defined over the group element g = eX
iti , that is all the point transformations on the

scalar field worldsheet, on the group manifold. This one-form current is by construction

flat and its flatness condition, together with the equations of motion,

∂+j− + ∂−j+ = 0,

∂+j− − ∂−j+ + [j+, j−] = 0,
(B.4)

can be combined in a parametrized Lax connection

L± =
j±

1∓ Z
, (B.5)

where Z ∈ C is the spectral parameter, whose flatness condition, eq. (B.1), is equivalent to

the equations of motion, eq. (B.4). Then, one also defines the holonomy of L for constant

time, i.e. the monodromy

M(Z) = P exp

∫
L (B.6)

which defines a parallel transport on the group manifold Σ(G) and whose eigenvalues are

conserved, which means that by expanding in Z at infinity we can obtain an infinite set of

conserved charges. This is known in the literature as the Principal Chiral Model (PCM),

it exhibits a global GL ×GR symmetry and it is obviously integrable.

Moreover, the σ-model (in the presence of a B2 field) in a homogeneous space for a

group G can be represented by the Wess-Zumino-Witten (WZW) model as

SWZW,k =
k

2π

∫
∂B

Tr jaj
a +

k

6π

∫
B
εabc Tr jajbjc, j ∈ g(G), (B.7)

which exhibits an GL,cur ×GR,cur current algebra symmetry, it is an exact CFT and thus

integrable.

The situation becomes even more elegant in the case of the non linear σ-model in a

symmetric homogeneous space. Symmetric spaces are backgrounds with rich underlying

group structure, which can be exploited in a natural way to make the integrability of the

σ-model manifest. From the group theoretical point of view, a symmetric space is a coset

space G/H, where the isometry G is a connected Lie group and the subgroup H ⊂ G is

its isotropy group. Then the σ-model (without a B-field) can be recast as a PCM with

currents projected on the coset algebra. The WZW model on a symmetric coset, on the

other hand, does not correspond to the σ-model on that space (except in the case of a

group manifold) and exhibits alternative interpretations.

In what follows we will illustrate the classical integrability of the string worldsheet on

a symmetric space. To study this in more detail see [51], for a more general review of

integrability in the context of string theory [52] and AdS/CFT correspondence [53].

Integrability of AdS space. The σ-model on AdS space is integrable. We know this

as a fact, since, as we illustrated above, the σ-model is integrable on every symmetric

homogeneous space. Of course, an uneasy mind shall always ask for an explicit Lax for-

mulation given a specific background, something that proves to be quite challenging as we
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climb higher in dimensions of the target space. The difficulty rests in the fact that finding

the gauged group element (matrix) of the coset space becomes an involved task in higher

dimensions.

Nevertheless, if one desires to make this portrait more delicate, they shall preserve the

rich underlying group structure of the PCM, adopting at the same time a more geometric

point of view.

In particular, one can realize the element of a group G abstractly as

g ≡ expXi ti, (B.8)

where ti ∈ g(G) and Xi parametrize the adjoint space, which produces another formulation

of the PCM action as

SPCM = −κ
2

π

∫
d2σ ηij e

i
µ(X) ejν(X) ∂+X

µ∂−X
ν , (B.9)

where ηij = 〈ti, tj〉 is the metric on the Lie algebra g, defined by [ti, tj ] = fij
ktk, while the

vielbein

eiµ =
∂X i

∂Xµ
, (B.10)

represents the relationship between the adjoint and the target space.2

Therefore, in this context, the vielbeins eiµ represent the components of the symme-

try transformations of G or, equivalently, the Killing vectors of the manifold at hand.

Subsequently, the vielbein is realized as the Maurer-Cartan connection

ji± ≡ ei± = eiµ ∂±X
µ, (B.11)

where j± = ji±ti, and satisfies the structural flatness condition

∂µe
i
ν − ∂νeiµ + f ijk e

j
µ e

k
ν = 0. (B.12)

As in the standard case, this flatness identity together with the equations of motion of the

PCM

∂+

(
eiµ ∂−X

µ
)

+ ∂−
(
eiµ ∂+X

µ
)

= 0, (B.13)

construct the Lax connection

L± =
j±

1∓ Z
, (B.14)

where Z ∈ C is the spectral parameter, and whose flatness condition

[∂+ + L+, ∂− + L−] = 0, (B.15)

is equivalent to equations of motion.

2i runs in the adjoint space of G while µ spans the target space dimensions. The vielbeins represent a

relationship between different bases, i.e. they express an object in different frames. As such, this relationship

can exist between any kind of spaces.
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Thus, we conclude that in order to specify a particular Lax connection for the σ-model

on a symmetric space, one only needs the Killing vectors of the background manifold.3

The reader could argue that the Lax connection eq. (B.14) works only for the PCM on

a group G, since it is not of the appropriate coset form, i.e. it doesn’t project on separately

the isotropy and coset algebras. However, this is not the case since, as we argued above,

the Killing vectors are a special coset parametrization, constrained by the target space

metric. In other words, as the Lax connection is defined up to a gauge transformation, one

could gauge transform our Lax eq. (B.14) into a traditional coset Lax connection.

Next, finding the Killing vectors is, thankfully, a simple task for a symmetric space.

This is because a symmetric space can always be realized as an embedding in a higher

dimensional space, the former inheriting most of the isometries of the latter. A standard

example is S2 which inherits the SO(3) isometries from R3 (but not the translations).

AdSn space is a hypersurface in R2,n−1 onto which only the Lorentz group is tangent.

Therefore, the boosts and the rotations of R2,n−1

Vi ≡ ViA∂Y A (B.16)

where Y A, A = 0, . . . , n are the embedding coordinates which build the hypersurface

ηABY
AY B = −l2, (B.17)

with ηAB =diag(−1, 1, . . . ,−1), are inherited into AdSn as the Killing vectors

ξi ≡ ξiµ∂µ = gµν
(
∂Y A

∂xν
VA

)
i

∂µ, (B.18)

where xµ, µ = 0, . . . , n− 1 are the AdSn coordinates and gµν its metric, while i runs in the

vector space. By choosing one of the solutions to eq. (B.17), like the global embedding

Y 0 = l cosh ρ cos t,

Y j = l sinh ρ Ωj , j = 1, . . . , n− 1,

Y n = l cosh ρ sin t,

(B.19)

where Ωj are the Euclidean coordinates for the unit sphere (ΩjΩj = 1), one can find each

one of the n(n+ 1)/2 Killing vectors of AdSn.

It’s worth emphasizing that the Killing vectors that are inherited into a symmetric

space, through an embedding, are constrained by the metric tensor. This means that while

their number (number of isometries) exceeds the dimension of the space, in reality they

encode the actual degrees of freedom. In other words, the PCM metric

Gµν = ηij e
i
µ e

j
ν ∂+X

µ∂−X
ν = ηij ξ

i
µ ξ

j
ν ∂+X

µ∂−X
ν , (B.20)

matches the target space metric (it has not redundant degrees of freedom). Thus, while in

a matrix realization of the PCM we would, traditionally, have to gauge the isotropy group

3One could be naively troubled about the fact that a symmetric space has less degrees of freedom that

the number of its Killing vectors, e.g. S2 has two d.o.f. and three Killing vectors. In reality, the Killing

vectors — the space isometries — are constrained by the metric and encode the actual degrees of freedom.
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H out of the isometry group G to obtain the element of the coset G/H, the Killing vectors

constitute a natural environment to describe a symmetric space.

Since we have identified the Killing vectors ξi of the background space of the PCM with

the vielbeins ei in eq. (B.9), then one can explicitly check that the equations of motion of

this action, eq. (B.13), are equivalent to the standard equations of motion of the σ-model

in the same background, as they should. Therefore, the Killing vectors can be used to

build up an explicit Lax connection through equations (B.11) and (B.14), as promised.

The AdS3 example. While AdSn can give frustrating results as we climb up the ladder

of n, AdS3 constitutes a relatively compact example of the above methodology. The reader

should not be worried about the special case of AdS3, it being a group manifold. As we

argued above, our construction holds for every symmetric coset and, in fact, it was also

tested for higher dimensions, successfully as it should.

Choosing a global AdS3 embedding in R2,2 as

Y 0 = cosh ρ cos t,

Y 1 = sinh ρ cos t sinφ,

Y 2 = sinh ρ cos t cosφ,

Y 3 = cosh ρ sin t,

(B.21)

then the six corresponding Killing vectors are

ξ1 = ∂t,

ξ2 = ∂φ,

ξ3 = tanh ρ sin t sinφ ∂t + coth ρ cos t cosφ ∂φ + cos t sinφ ∂ρ,

ξ4 = tanh ρ sin t cosφ ∂t − coth ρ cos t sinφ ∂φ + cos t cosφ ∂ρ,

ξ5 = tanh ρ cos t sinφ ∂t + coth ρ sin t cosφ ∂φ + sin t sinφ ∂ρ,

ξ6 = tanh ρ cos t cosφ ∂t − coth ρ sin t sinφ ∂φ + sin t cosφ ∂ρ,

(B.22)

where the curved indices of the components ξi
µ can be lowered, as usual, with the global

AdS3 metric gµν . These Killing vectors ξi, as discussed before, are the vielbeins ei of the

PCM action eq. (B.9) that construct the flat current eq. (B.11), namely

ji± = ξiµ ∂±X
µ, (B.23)

from which the Lax connection in eq. (B.14) is built as

Li± =
ji±

1∓ Z
. (B.24)

The flatness eq. (B.15) of the PCM Lax connection results in two sets of equations, the

first being the flatness eq. (B.12) of the Maurer-Cartan current, which is a structural fact

as it can be easily checked by the reader. This is an identity to be expected, since this

flatness equation can be realized as just the Cartan’s first structure equation applied on

Killing vectors.
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The second set of equations are the equations of motion eq. (B.13) of the PCM, the

necessary condition for an integrable model.

If one desires to further validate all the above, all they have to do is to secure the

fact that the equations of motion of the PCM coincide with the equations of motion of the

bosonic string, on AdS3.

For that purpose, we use the AdS3 Killing vectors, eq. (B.22), on the PCM equations

of motion , eq. (B.13), that is

∂+

(
ξiµ ∂−X

µ
)

+ ∂−
(
ξiµ ∂+X

µ
)

= 0. (B.25)

In particular, ξ1 = e1 (which lifts to a boost in the Y 0 − Y 3 plane of R2,2) gives

cosh ρ ∂+∂−t = − sinh ρ (∂+ρ ∂−t+ ∂+t ∂−ρ) , (B.26)

which is the correct equation of motion for t, while ξ2 = e2 (which lifts to a rotation in the

Y 1 − Y 2 plane of R2,2) gives

sinh ρ ∂+∂−φ = − cosh ρ (∂+ρ ∂−φ+ ∂+φ ∂−ρ) , (B.27)

which is the correct equation of motion for φ. Last but not least, ξ6 = e6 (which lifts to a

rotation in the Y 2 − Y 3 plane of R2,2), supplemented with the above equations for t and

φ, gives

∂+∂−ρ = cosh ρ sinh ρ (∂+φ ∂−φ− ∂+t ∂−t) , (B.28)

which, of course, is the correct equation of motion for ρ.

In accordance with what we have discussed so far, the fact that it took just three of the

six Killing vectors of AdS3 to deduce the equations of motion is just another manifestation

of the actual degrees freedom encoded in the Killing vectors.

C Numerical analysis of the string on the integrable AdS7 background

In this appendix, we will complement our analytical study of the integrability of the string

worldsheet on the background (4.1)–(4.3) with a numerical analysis, following [33]. Our

numerical analysis indeed confirms the integrability of the string worldsheet on this back-

ground. This underlines the reliability of the numerical methods used in [30], where these

same numerical methods were used to show that the dynamics of string solitons on the

more general quiver solutions discussed in appendix A were non-integrable.

Here we will analyse the dynamics of a string soliton wrapping around the ξ-direction,

and moving along the χ and z-directions of the internal space M3. This amounts to

studying the numerical evolution of the last two equations of motion in eqs. (3.4), setting

ρ = ϕ = µ = 0. We study the solution where the function α(z) is given by

α(z) = −81π2
[
A sin

(πz
4

)
+B sin

(πz
2

)]
, (C.1)

where we let B range from 0 (for which the dynamics of the string is integrable) to 1.
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We will show that the dynamics becomes increasingly more chaotic as B deviates from

0. We will first study how the string moves through the (z, χ)-plane. Note that the ‘energy’

of the classical string soliton — the integration constant E, that has to be tuned to satisfy

the Virasoro constraint (3.5) — is given by

E2 = f1(z)2
(
ρ̇2 + sinh2 ρ

(
ϕ̇2 + µ2 sin2 ϕ

))
+ f2(z)ż2 + f3(z)

(
χ̇2 + κ2 sin2 χ

)
. (C.2)

This energy minimises for the point ρ = ϕ = χ = 0. Here we will numerically study the

dynamics of the string when we increase χ away from the stable point χ = 0 and increase

its energy.

We show plots of various observables. The reader should compare them with the

figures displayed in section 4 of [30], where an analysis of strings on generic (non-integrable)

backgrounds was performed.

In figure 6a we see that if we start with an initial value that is very close to the poles

of the 2-sphere (χ = 0 and χ = π) for the integrable background with B = 0, the string

oscillates around this minimum. Every time the string hits the endpoints on the z-domain

it flips to the other pole on the 2-sphere (indicated by the dashed grey lines) and moves

back along the z-direction. As we increase the energy and allow the string to move further

away from the poles, it starts to moving freely around the entire 2-sphere, see figure 6b.

Note that even at high energies, the motion of the string remains quasi-periodic. As we go

away from B = 0 in eq. (C.1) we are no longer considering the integrable background from

eqs. (4.1)–(4.3). The asymmetry along the z-direction of this background makes it harder

for the string to probe the right side of the space. In figure 6c we see that again for small

energies the string oscillates around the poles. Though it’s motion around these poles does

still look quite regular and quasiperiodic, it appears somewhat more disorderly that what

we observed earlier for a string with roughly the same energy, moving on the integrable

background. We see in figure 6d that as we now increase the energy for the string on the

non-integrable background, its motion becomes chaotic.

Lyapunov exponents. To verify our intuition — that the trajectories for B = 0 look

regular while those for B 6= 0 look chaotic, — we obtain the Lyapunov exponents corre-

sponding to our initial conditions. One other typical characteristic of an integrable classical

mechanical system is a vanishing Lyapunov exponent. The Lyapunov exponent is a mea-

sure of the sensitivity of the system to its initial conditions. Typically for a chaotic system,

two nearby initial points will diverge during the dynamical evolution as

∆F (xi, pi, t) ∼ ∆F (xi, pi, 0)eλ
ixi+λ̃

ipi , (C.3)

where the λ are the Lyapunov exponents associated with the position directions in phase-

space, and the λ̃ those associated with the momentum directions. Since our string soliton is

a Hamiltonian system the initial volume in phase space will be conserved (as a consequence

of Liouville’s theorem). The Lyapunov exponents will therefore satisfy the additional con-

straint that their sum is equal to zero. The largest Lyapunov exponent (LLE) is typically

used as an indicator to tell us how chaotic the dynamics of the system is.
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(a) χ(0) = 0.1, E ≈ 6.58, tmax = 400, B = 0. (b) χ(0) = 0.9, E ≈ 43.33, tmax = 400, B = 0.

(c) χ(0) = 0.1, E ≈ 7.19, tmax = 150, B = 0.2. (d) χ(0) = 0.9, E ≈ 48.95, tmax = 250, B = 0.2.

Figure 6. Trajectories of the string on the internal space M3 for low and high energies (from left

to right), for the embedding in eq. (3.2) with ρ = ϕ = λ = 0. The two images at the top correspond

to the integrable background in eqs. (4.1)–(4.3) with B = 0 in eq. (C.1), for those on the bottom

B = 0.2. For the integrable background (in the top two images) the trajectories of the string soliton

remain regular, even at high energies. We choose initial conditions pχ(0) = 0, z(0) = 2, pz(0) = 1.

The orange surface corresponds to the angle χ fibred over the z-interval with the warp-factor f3(z).

The dashed line indicates the points where χ = 0, π. Points on opposite sides of this line should be

identified for fixed values of z as χ ∈ [0, π].
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(a) LLE for χ(0) = 0.1.
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(b) LLE for χ(0) = 0.9.

Figure 7. Lyapunov exponents for low- (left) and high-energy (right) string configurations, using

the same initial conditions as in figure 6. We consider both the integrable background (B = 0, in red)

and on a non-integrable background (B = 0.2, in blue). We find that the integrable background has

a Lyapunov exponent that asymptotes to zero (indicating the absence of chaotic behaviour), while

the LLE for the non-integrable background asymptotes to a finite value, indicating increasingly

chaotic dynamics for higher energies. This agrees with what we see in figure 6.

We numerically estimate these largest Lyapunov exponents for the same low and high

energy (left to right) initial conditions that we considered in figure 6. The result is shown

in figure 7. We see in figure 7a that the low energy dynamics for the string are indeed both

not very chaotic, the LLE for the integrable background (B = 0, in red) should asymptote

to zero (with possibly some numerical noise making it slightly larger). The LLE for the

non-integrable background (B = 0.2, in blue) is a bit larger, telling us the low energy string

on the non-integrable background is slightly more chaotic. This agrees with what we see

in figure 6a and 6c.

We see in figure 7b that the dynamics for the high energy string still has an LLE of

almost zero on the integrable background (B = 0, in red), thus numerically confirming the

absence of chaos for this case. On the non-integrable background (B = 0.2, in blue) the

value clearly asymptotes to a non-zero value λ ≈ 0.01, larger than we saw for the low-

energy string on the non-integrable background, clearly confirming its dynamics is chaotic.

This agrees with what we see in figure 6b and 6d.

Poincaré sections. Another numerical tool we can use to examine if we are indeed

dealing with an integrable system — where the dynamics is quasi-periodic — is to plot a

Poincaré section. For this, we choose different initial conditions in the (χ, pz)-plane, that

all correspond to the same energy (C.2). We then run the numerical evolution for all these

initial points and monitor the (z, pz)-plane every time the trajectories pass through the

point χ(t) = 0.

If the dynamics of the string soliton we are studying is integrable, this classical me-

chanical system with 2×2 degrees of freedom would have 2 independent integrals of motion

that are in involution (meaning their Poisson bracket vanishes). The trajectories of this

system would then be confined to the surfaces of a series of embedded 2-dimensional KAM
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(b) B = 0.025.
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(d) B = 0.065.

Figure 8. Poincaré sections for (z, pz)-plane at χ(t) = 0, for high energy string configurations (E =

45) on backgrounds with values of B. As we increase B, we clearly see the onset of chaos as more

and more KAM tori break apart until there is no structure left and we have a purely chaotic system.

tori in the (z, pz, χ, pχ) phase-space. We see this is exactly the case in figure 8a where we

consider the integrable background (B = 0). As we increase the value of B we lose the

integrability of the dynamical system. This onset of chaos can clearly be seen in figure 8b–

8d, as more and more KAM tori break apart when we increase B until there is no structure

left and we have a purely chaotic system

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J.

Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

[2] E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85

[hep-th/9503124] [INSPIRE].

– 37 –



J
H
E
P
0
6
(
2
0
1
9
)
0
6
9

[3] N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys. B

471 (1996) 121 [hep-th/9603003] [INSPIRE].

[4] J.D. Blum and K.A. Intriligator, New phases of string theory and 6D RG fixed points via

branes at orbifold singularities, Nucl. Phys. B 506 (1997) 199 [hep-th/9705044] [INSPIRE].

[5] N. Seiberg, Nontrivial fixed points of the renormalization group in six-dimensions, Phys. Lett.

B 390 (1997) 169 [hep-th/9609161] [INSPIRE].

[6] U.H. Danielsson, G. Ferretti, J. Kalkkinen and P. Stjernberg, Notes on supersymmetric

gauge theories in five-dimensions and six-dimensions, Phys. Lett. B 405 (1997) 265

[hep-th/9703098] [INSPIRE].

[7] A. Hanany and A. Zaffaroni, Branes and six-dimensional supersymmetric theories, Nucl.

Phys. B 529 (1998) 180 [hep-th/9712145] [INSPIRE].

[8] I. Brunner and A. Karch, Branes at orbifolds versus Hanany Witten in six-dimensions,

JHEP 03 (1998) 003 [hep-th/9712143] [INSPIRE].

[9] K. Ohmori, H. Shimizu and Y. Tachikawa, Anomaly polynomial of E-string theories, JHEP

08 (2014) 002 [arXiv:1404.3887] [INSPIRE].

[10] M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d conformal matter, JHEP 02

(2015) 054 [arXiv:1407.6359] [INSPIRE].

[11] C. Cordova, T.T. Dumitrescu and K. Intriligator, Anomalies, renormalization group flows

and the a-theorem in six-dimensional (1, 0) theories, JHEP 10 (2016) 080

[arXiv:1506.03807] [INSPIRE].

[12] K. Intriligator, 6d, N = (1, 0) Coulomb branch anomaly matching, JHEP 10 (2014) 162

[arXiv:1408.6745] [INSPIRE].

[13] K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, Anomaly polynomial of general 6d

SCFTs, PTEP 2014 (2014) 103B07 [arXiv:1408.5572] [INSPIRE].

[14] M. Beccaria and A.A. Tseytlin, Conformal anomaly c-coefficients of superconformal 6d

theories, JHEP 01 (2016) 001 [arXiv:1510.02685] [INSPIRE].

[15] L. Bhardwaj, Classification of 6d N = (1, 0) gauge theories, JHEP 11 (2015) 002

[arXiv:1502.06594] [INSPIRE].

[16] I. Bandos, H. Samtleben and D. Sorokin, Duality-symmetric actions for non-Abelian tensor

fields, Phys. Rev. D 88 (2013) 025024 [arXiv:1305.1304] [INSPIRE].

[17] C.-M. Chang, 5d and 6d SCFTs have no weak coupling limit, arXiv:1810.04169 [INSPIRE].

[18] D. Gaiotto and A. Tomasiello, Holography for (1, 0) theories in six dimensions, JHEP 12

(2014) 003 [arXiv:1404.0711] [INSPIRE].

[19] F. Apruzzi, M. Fazzi, A. Passias, D. Rosa and A. Tomasiello, AdS6 solutions of type-II

supergravity, JHEP 11 (2014) 099 [Erratum ibid. 05 (2015) 012] [arXiv:1406.0852]

[INSPIRE].

[20] F. Apruzzi, M. Fazzi, A. Passias, A. Rota and A. Tomasiello, Six-dimensional superconformal

theories and their compactifications from type IIA supergravity, Phys. Rev. Lett. 115 (2015)

061601 [arXiv:1502.06616] [INSPIRE].

[21] A. Passias, A. Rota and A. Tomasiello, Universal consistent truncation for 6d/7d

gauge/gravity duals, JHEP 10 (2015) 187 [arXiv:1506.05462] [INSPIRE].

– 38 –



J
H
E
P
0
6
(
2
0
1
9
)
0
6
9

[22] F. Apruzzi and M. Fazzi, AdS7/CFT6 with orientifolds, JHEP 01 (2018) 124

[arXiv:1712.03235] [INSPIRE].

[23] N.T. Macpherson and A. Tomasiello, Minimal flux Minkowski classification, JHEP 09 (2017)

126 [arXiv:1612.06885] [INSPIRE].

[24] N. Bobev, G. Dibitetto, F.F. Gautason and B. Truijen, Holography, brane intersections and

six-dimensional SCFTs, JHEP 02 (2017) 116 [arXiv:1612.06324] [INSPIRE].

[25] S. Cremonesi and A. Tomasiello, 6d holographic anomaly match as a continuum limit, JHEP

05 (2016) 031 [arXiv:1512.02225] [INSPIRE].

[26] A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional

gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

[27] W. Nahm, Supersymmetries and their representations, Nucl. Phys. B 135 (1978) 149

[INSPIRE].

[28] S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories,

Adv. Theor. Math. Phys. 2 (1998) 783 [hep-th/9712074] [INSPIRE].
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[40] Y. Lozano and C. Núñez, Field theory aspects of non-Abelian T-duality and N = 2 linear

quivers, JHEP 05 (2016) 107 [arXiv:1603.04440] [INSPIRE].

[41] O. Lunin and J.M. Maldacena, Deforming field theories with U(1)×U(1) global symmetry

and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086] [INSPIRE].

[42] L. Wulff, Condition on Ramond-Ramond fluxes for factorization of worldsheet scattering in

anti-de Sitter space, Phys. Rev. D 96 (2017) 101901 [arXiv:1708.09673] [INSPIRE].

[43] L. Wulff, Classifying integrable symmetric space strings via factorized scattering, JHEP 02

(2018) 106 [arXiv:1711.00296] [INSPIRE].

[44] J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859

[hep-th/9803002] [INSPIRE].
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