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Abstract
A methodology is introduced which uses three simple objective function features to
predict effective control parameters for differential evolution. This is achieved using
cluster analysis techniques to classify objective functions using these features. Infor-
mation on prior performance of various control parameters for each classification is
then used to determine which control parameters to use in future optimisations. Our
approach is compared to state-of-the-art adaptive and non-adaptive techniques. Two
accepted bench mark suites are used to compare performance and in all cases we
show that the improvement resulting from our approach is statistically significant.
The majority of the computational effort of this methodology is performed off-line,
however even when taking into account the additional on-line cost our approach out-
performs other adaptive techniques. We also investigate the key tuning parameters of
our methodology, such as number of clusters, which further support the finding that
the simple features selected are predictors of effective control parameters. The find-
ings presented in this paper are significant because they show that simple to calculate
features of objective functions can help to select control parameters for optimisation
algorithms. This can have an immediate positive impact on the application of these
optimisation algorithms on real world problems, where it is often difficult to select
effective control parameters.
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1 Introduction

Despite having a number of advantages over classical gradient based techniques, the
performance of evolutionary algorithms depends both on the problem to be optimised
and the algorithm being used (Wolpert and Macready 1997). To make matters worse,
this performance also depends heavily on the selection of algorithm specific control
parameters. This variability of performance makes the field hard to penetrate for users
in industry who simply want to use an algorithm to solve a problem. Often the problem
they wish to solve is not well understood before they start to solve it, which makes
selecting an algorithm and control parameters all the more difficult. The motivation of
the work, presented in this paper, is to automate this selection using simple machine
learning techniques. Specifically the aim is to automatically select an effective set of
control parameters for differential evolution for an unknown problem.

1.1 Terminology

The problem to be optimised is termed the objective function. This paper focusses on
optimising continuous black box objective functions.We identify a number of features,
β, that an objective function can be described by. An optimisation algorithm instance
is determined by its control parameters p. Our aim is to classify objective functions
using their features, in order to predict a set of effective control parameters which will
result in a high performing algorithm for a particular objective function.

1.2 Background

When applying an evolutionary algorithm to a new application it is common to use
the control parameters suggested in literature. These parameters are usually obtained
from extensive studies on algorithm behaviour using suites of benchmark optimi-
sation problems. Parameters which work well on common problem test suites will
emerge (Eiben and Smit 2011) and this single set will end up being used in the major-
ity of applications. The problem is that with truly novel applications there may be no
understanding of which test suites, if any, correctly represents the real world problem.
Strictly speaking, each time an algorithm is applied to a new application a param-
eter study should be undertaken, to both provide insight into the robustness of the
parameters and perhaps squeeze out some additional performance. The reality is that
these studies are often infeasible in real applications, where a single objective function
evaluation may represent hours, or days, of computational time (Naumann et al. 2015;
Walton et al. 2013a, b, 2015). Thus a great deal of research has been undertaken with
the motivation to address this problem. We have identified three interrelated strands
of research in the meta-heuristic optimisation community relevant to this problem.
These are briefly discussed below, we then place our own approach in this context.
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1.2.1 Automatic tuning algorithms based on performance modelling

A considerable body of work has shown that it is possible to build empirical perfor-
mance models of algorithms (Hutter et al. 2014). These models can then be used to
select tuning parameterswith good predicted performance (Hutter et al. 2006). Sequen-
tial model-based optimization for general algorithm configuration (SMAC) (Hutter
et al. 2011) and sequential parameter optimization (SPO) (Bartz-Beielstein et al. 2005)
are both specific examples of this approach. In the case of SPO the approach facilitates
manual tuning whereas SMAC is automated.

1.2.2 Feature based approaches

It is increasingly argued that we need to understand and use the characteristics and fea-
tures of a problem to select a suitable algorithm, or tune it (Smith-Miles 2008). Feature
based algorithm configuration (FBAC) (Belkhir et al. 2016) can be thought of as an
extension of the automatic tuning algorithms mentioned above. It uses sophisticated
objective function features to classify objective functions. They are able to accurately
predict performance models for objective functions which could, in theory, be used
to determine an effective set of control parameters. However, the features they use
require a large number of samples of the objective function to calculate. This would
lead to an excessive computational cost in real applications. Exploratory landscape
analysis (ELA) (Mersmann et al. 2011) introduces ten features, which are relatively
cheap to calculate and can be used to classify objective functions. These features are
grouped into five classes which relate to different characteristics of objective func-
tions. Promising results have been presented whereby the ELA features are used to
train a one-sided support vector regression model to select an appropriate optimisation
algorithm (Kerschke et al. 2016).

1.2.3 Adaptive algorithms

The most common strategy to address the problem of performance variability is to
design algorithmswith self-adaptive control parameters. In such algorithms the control
parameters are themselves optimised, based on current performance, as the algorithm
runs (Sarker et al. 2014; Zamuda and Brest 2015; Guo et al. 2014). A related field is
hyper-heuristics whose goal is to automate the design of heuristic optimisation algo-
rithms based on current performance (Burke et al. 2013; Li and Kendall 2015). These
strategies are performed on a per-objective function basis and do not use knowledge
of objective function features, or past performance on different objective functions.

1.2.4 Case study optimisation algorithm: Differential Evolution

To show the effectiveness of our approach we are forced to select a single optimisation
algorithm. Differential Evolution (DE) (Storn and Price 1997) will be used to test
the effectiveness of the predictive methodology. It is stressed that this approach is
independent of the evolutionary algorithm, although some thought will be required if
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an algorithm has any non-continuous control parameters. DE is popular and its control
parameters are well studied. The algorithm is aimed at nonlinear non-differentiable
continuous functions and has been designed to be a direct stochastic search method.
The method has a small number of control parameters and applies a crossover and
mutation operator based on the differences between randomly selected individuals of
the population.

There are a number of alternative DE methods and many additions have been made
to the algorithm. It is beyond the scope of this paper to explain these additions in
detail, so instead we describe the algorithm used in this study and allow the reader to
find detailed explanation in original papers.

To select new members of the population, a direct one-to-one competition scheme
is employed in each generation. From the population of the current generation, a target
member, xi,g , is selected, where i refers to the member’s number and g the generation.
A donor vector, vi,g , is generated using the current-to-pbest/1/bin approach (Zhang
and Sanderson 2009). Three members of the population, distinct to that of the target
member, are selected at random and vi,g is calculated according to the relation

vi,g = xi,g + p2(xpbest,g − xi,g) + p2(xr1,g − xr2,g) (1)

where p2 is a control parameter usually referred to as the weighting factor. xr1,g and
xr2,g are two members selected at random from the whole population and xpbest,g is
randomly selected from the top q× p3 (q ∈ [0, 1]). p3 is the population size or number
of parents. q is a control parameter which controls the greediness of the algorithm,
to eliminate this parameter it is randomised as in the success-history based parameter
adaptation for differential evolution (SHADE) algorithm (Tanabe andFukunaga 2013).
In addition, an external archive of previous members of the population is maintained
and used to generate xr2,g (Tanabe and Fukunaga 2013).

A cross over operator is applied to the target and donor vectors to form a trial vector.
The elements of the target and donor vectors enter the trial vector with a probability
p1, a control parameter usually referred to as crossover constant. The target vector is
compared with the trial vector and the vector with the best fitness value is selected
for admission into the next generation. This iteration scheme repeats until a suitable
stopping criterion is met (Storn and Price 1997).

DE has been applied, with success, to the fields of electrical power systems, elec-
tromagnetic engineering, control systems and robotics, chemical engineering, pattern
recognition, artificial neural networks and signal processing (Das and Suganthan
2011). Storn (2016) suggests using the control parameters p1 = 0.900, p2 = 0.500
and p3 = 10D where D is the number of dimensions in the function. The effect of
these parameters on algorithm performance is a well researched subject. For example,
there appears to be complex relationships between problem dimensionality and the
most appropriate population size (Piotrowski 2016).

We compare our proposed predictive technique to a state of the art adaptive
technique: SHADE (Tanabe and Fukunaga 2013). This technique uses an historical
memory of control parameters which have performed well to guide the selection of
control parameters each generation. In the original study it was shown to have com-
petitive performance compared to other state of the art algorithms using the CEC 2005
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benchmarks which are used in this study. All control parameters used in our study are
the same as used in the original SHADE study (Tanabe and Fukunaga 2013).

1.3 Contribution andmotivation of this paper

The approach we have adopted is to select three simple to calculate features and use
these to classify objective functions. Then asweoptimise a series of objective functions
a global memory of the performance, of various control parameters, for each of the
classifications is stored. This information is then used to adapt control parameters for
future optimisations. We do not create a performance model but directly use prior
knowledge to adapt the optimisation algorithm. Thus our approach falls under the
adaptive algorithm category and hence we compare our strategy to other adaptive
strategies below. Our approach also falls under the feature based approach category
since we are using objective function features to drive our adaptation. Our features are
much simpler, and more crude, than those used in FBAC (Belkhir et al. 2016) and we
use fewer than those identified in ELA (Mersmann et al. 2011). Our contribution is that
even when using our deliberately simple approach there is a statistically significant
improvement in performance when compared to algorithms which do not consider
objective function features. The motivation for this is real world applications where
it is infeasible to tune an algorithm each time a new objective function is considered,
and where the form of the objective function may be unknown, making it difficult to
relate to previous analyses of control parameters.

2 Methodology

2.1 Our approach: predicting effective control parameters for evolutionary
algorithms using cluster analysis of objective function features

The aim of our approach is to automatically predict an effective set of control param-
eters for an unknown objective function. This is achieved by classifying objective
functions using three simple to calculate features which are described in Sect. 2.1.2. A
number of experiments are performed off-line with varying control parameters, across
a range of objective functions. The algorithm performance is measured and recorded
for each experiment, the performance metric used is described in Sect. 2.1.1. Func-
tions are split into classifications using the unsupervised machine learning technique
k-means++ (Arthur and Vassilvitskii 2007). All the experiments in a particular classi-
fication are ranked by performance and the mean values of the control parameters used
in the top 10% of experiments is calculated. When a new function is to be optimised
it is sampled, on-line, and its features calculated. It is then classified and the mean
values calculated for its classification are used to optimise it.
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2.1.1 Optimisation algorithm performance metric

There are a number of metrics which can be utilised to define the performance of an
optimisation algorithm (Eiben and Smit 2011; Belkhir et al. 2016). The meaning of
performance may change depending on the application (López-Ibáñez et al. 2016),
but in general we wish to reduce the objective function value with a small number of
objective function evaluations. In this work a performance metric, α, is defined as

α = 100(F1 − FG)

F1Ng
(2)

where F1 is the lowest objective function value in the first generation, FG is the lowest
objective function value in the final generation, G, and Ng is the total number of
function evaluations performed up to and including generation g. Generation g is the
first generation at which the reduction in the objective function reaches 99% of the
total reduction i.e.

FG
Fg

> 0.99 (3)

This choice is justified as follows. In practice, an evolutionary optimisation algorithm
is run until a maximum number of objective function evaluations is reached or a
predetermined accuracy, or tolerance, is achieved. Dividing by Ng means that α gives
us information on the efficiency of the optimisation algorithm. An algorithm which
finds the optimum in the first few generations therefore has a larger α than an algorithm
which found the optimum in the final generation. In real applications, practicalities
such as objective function evaluation cost, limit the number of objective function
evaluations (Naumann et al. 2015; Walton et al. 2013a, b, 2015). α is designed to
reward algorithmswhich exhibit high convergence in the first few function evaluations.

It is not claimed that α is the correct metric for all situations, it is a choice depending
on user requirements. In this study an attempt is made to model a situation where an
engineer wishes to apply an optimisation algorithm to a real problem. One can imagine
that such an engineer would simply select an algorithm and use the set of control
parameters suggested in literature. In the authors experience, in applying optimisation
algorithms to engineering applications, the proposed metric α is relevant for many
engineers. Control parameters suggested in literature may not have been tuned with
this metric in mind, despite this the engineer would likely use these parameters. In
the results section convergence curves are presented to show the effect of this metric
choice.

2.1.2 Objective function features

Functions are often described using features such as symmetry, smoothness, condition
number or separability. It is well understood that these features affect the performance
of optimisation algorithms. The challenge, therefore, is to formulate a set of features
that can be calculated with a small number of objective function evaluations.

In this proof of concept study, the starting point for calculating these features will
be a Latin hypercube sampling of the objective function search space. The number of
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samples taken is referred to as σ . This sampling will be performed prior to the optimi-
sation in this study, but in future this sampling could also be used as the first generation
of the optimisation algorithm. The objective function values in this sampling are first
normalised by subtracting the mean and dividing by the standard deviation. Three
simple features have been selected to test the methodology.

1. β1, is the number of dimensions of the function which is known to strongly effect
algorithm performance.

2. β2, is the interquartile range of the normalised data, which provides information
on function variation within the domain. This feature will identify functions which
have largely flat topology. This is identified as a feature which relates to curvature
in Mersmann et al. (2011).

3. β3, is the skew of the normalised data. The skew tells us how the function value is
distributed, a skew of zero would indicate a normal distribution, whereas positive
and negative values would indicate a tailed distribution. This feature could poten-
tially identify functions with sharp optimum as well as give information regarding
function symmetry. This is identified as a feature which relates to y-distribution
in Mersmann et al. (2011).

Collectively these features make up the characteristics, β, of a particular objective
function.

2.1.3 Control parameter selection

DE requires a number of control parameters, stored in the vector p, which defines a
single instance of the algorithm. Running many p on many objective functions results
in a number of data points in the form (p,β, α). This data is named the training data and
is used to exploit any relationships between the control parameters, function features
and performance.

The approach adopted is to apply the unsupervised clustering algorithm k-
means++ (Arthur and Vassilvitskii 2007). The k-means algorithm takes an unlabelled
data set and classifies it into a user specified number of groups, κ . Each group is
defined by a cluster centroid, a data point belongs to the group whose centroid it lies
closest to. The k-means++ variant of the algorithm carefully initialises these centroids
in favour of random initialisation (Arthur and Vassilvitskii 2007).

Using the training set, the objective functions are classified by applying k-means++
to the β data points. For each classification the data points are sorted by α. The top
10% data points are identified and the mean p is calculated from that set and used to
optimise new functions identified as belonging to that classification.

At the end of optimisation the new data point, (p,β, α), from that run is appended
to the training data and the k-means++ algorithm is run to update the classifications
and redetermine the best control parameters for each new centroid. The key idea is that
the memory of good performing parameters are extended from a single optimisation
run to the entire history of using the algorithm.
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2.2 Experimental methodology

2.2.1 Procedure for a single optimisation

Each time a function was optimised the optimiser was limited to 10,000 objective
function evaluations. To consider our approach fairly the on-line cost of calculating
β, before the optimisation takes place, contributes to the number of objective function
evaluations. In other words our approach has fewer objective function evaluations
available when the optimisation starts. All optimisation runs were repeated 30 times,
with 30 different random seeds used for all random number generation. With the same
random seed the same control parameters would result in the same performance on the
same function instance. This allowed pairwise comparisons between different control
parameters. Repeating each optimisation run with 30 different random seeds ensured
a ‘lucky’ seed was not selected which benefited a particular approach.

2.2.2 Test suites

Two established optimisation benchmark suites were used in this study.
Real-parameter black-box optimization benchmarking functions (BBOB) 2015BBOB
2015 were used to train the predictive methodology. The 24 benchmark functions
which make up the BBOB 2015 test suite are given in Finck et al. (2010) and Hansen
et al. (2010). This suite includes separable functions, functions with low to high con-
dition numbers and multi-modal functions with weak global structure. The same
numbering system for the functions in Hansen et al. (2010) is used in this paper.
All of these functions are defined for an arbitrary number of dimensions and have
the same search domain. The test suite includes 15 instances for each function, for
each instance a combination of optimal location shifting and linear transformations
are applied. Each instance is shifted and rotated in the same manor on subsequent runs
which enables direct comparison of performance. In the experiments presented here,
a single test suite entails optimising each function instance at a range of dimensions
(2, 10, 20, 30, 40, 50) using 30 different random seeds. The resulting number of tests
in a single run of the suite is then 64,800.
IEEE congress on evolutionary computation CEC 2005 real-parameter optimisation
benchmarksTheCEC2005 benchmark functions as detailed in Suganthan et al. (2005)
make up the second test suite. These were used to test the effectiveness of problem
specific tuning on objective functions different to the training set. The 25 functions
were used with the same numbering system presented in the technical report (Sugan-
than et al. 2005). All functions were optimised at 2, 10, 30 and 50 dimensions using
30 different random seeds resulting in a total of 3000 tests.

2.2.3 Statistical methodology

Using the test suites described above allows pairwise comparison of α between dif-
ferent approaches. The approach for using nonparametric statistical tests described
by Derrac et al. (2011) is followed here. The Wilcoxon signed ranks test is used to
compare the predictive methodology to other approaches. The test results in the value
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W , the sum of the ranks of the differences (zero-differences are split between positive
and negative) which will be reported along with the two sided p value. For all the
statistics presented a positive W indicates that the predictive methodology has per-
formed better than the group it is compared to, a largerW indicates a more significant
improvement.

2.2.4 Experiments

For each function in the BBOB 2015 suite a Latin hypercube sampling of p will be
generated and each of these control parameter sets used to optimise that function. Since
there are three control parameters, 30 sets of p will be generated each time. For these
optimisation runs the number of samples used to calculate β, was set to σ = 1000.
The resulting data will be used as the initial training set for the problem aware tuning.

There will then be four methods for selecting the DE control parameters:

– The suggested parameters from literature,
– SHADE,
– The predictive methodology (using cluster analysis),
– Using the best performing control parameters from the training set.

The predictive methodology will be applied with varying σ and κ to gauge the sen-
sitivity to these. Each time our approach is used, a new set of samples is generated
to calculate β in order to simulate the use of the approach in practice. Each of these
methods will be used to optimise both function suites. The non-parametric tests will
then be utilised to compare the effectiveness of each method.

It needs to be stressed that, in the comparisons presented, β is recalculated and
used for objective function classification in each optimisation run. This does mean
that when comparing the number of function evaluations to other methods, the pre-
dictive methodology has σ additional evaluations. These function evaluations have
been included in all measurements of performance as they indicate the cost of our
methodology.

The goal of this paper is to show that features, such as those in β, can be used
as predictors for p in order to maximise α. If this is the case, future research into
minimising the required σ to effectively approximate β can be undertaken, as well as
research into different definitions for α.

3 Results

3.1 BBOB 2015 function suite

Figure 1 shows a two dimensional projection of the training data used in the following
studies. This data resulted from optimising the BBOB 2015 function suite only. The
marker colour indicates which classification each data point belongs to when κ = 10.

In the following experiments the BBOB 2015 suite is both the training suite and
the testing suite. This is the most basic test for our approach. It is worth pointing out
that β is recalculated using new random samplings for each optimisation experiment.
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Fig. 1 TheBBOB2015 training data set.Markers are coloured according to their classificationwhen κ = 10
(Color figure online)

Table 1 The control parameters used in the fixed control parameter optimisations

p1 p2 p3

Best in training set 0.624 0.744 336

Suggested in literature (Storn 2016) 0.900 0.500 10D

Table 2 BBOB 2015 function
suite: Wilcoxon signed ranks
test data comparing the
predictive methodology to using
the best performing control
parameters overall in the
training set (equivalent to κ = 1)

κ σ W p value

10 10 12647560.5 < 0.0001

10 100 12000441.0 < 0.0001

10 1000 14409261.5 < 0.0001

100 1000 13138542.0 < 0.0001

3.1.1 Predictive methodology compared to picking the best from the training set

In the following study a single set of tuning parameters, the best performing in
the initial training set, were used to optimise the BBOB 2015 test suite. The control
parameters used in this study are presented in Table 1. The results of the statistical
tests, shown in Table 2, show that predictive methodology results in a statistically
significant increase of α compared to the best from the training set. This improvement
was achieved regardless of the values of κ and σ .

3.1.2 Predictivemethodology compared to using the best parameters from literature

The test suite was optimised using the control parameters suggested in literature,
these parameters are shown in Table 1. These parameters are what most practitioners
would use in practice as a rule of thumb. Table 3 shows the statistical comparison
between the performance of these fixed parameters to the predictive methodology. In
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Table 3 BBOB 2015 function
suite: Wilcoxon signed ranks
test data comparing the
predictive methodology to using
the control parameters most
commonly used in literature

κ σ W p value

10 10 64554898.0 < 0.0001

10 100 65968426.5 < 0.0001

10 1000 87498052.0 < 0.0001

100 1000 83669358.0 < 0.0001

Table 4 BBOB 2015 function
suite: Wilcoxon signed ranks test
data comparing the predictive
methodology to SHADE

κ σ W p value

10 10 50395288.5 < 0.0001

10 100 51910557.5 < 0.0001

10 1000 68985487.5 < 0.0001

100 1000 66556975.0 < 0.0001

all cases the predictive methodology performs significantly better. There is a jump in
performance when σ increases from 100 to 1000 which indicates a sensitivity on the
sampling of the objective functions.

3.1.3 Predictive methodology compared to SHADE

The test suite was optimised using SHADE. Table 4 shows the statistical compar-
ison between the performance of SHADE to the predictive methodology. In all cases
the predictive methodology performs significantly better than adaptive tuning. The
performance is more significant when σ = 1000.

3.1.4 Convergence behaviour

In Fig. 2 convergence plots are presented for a number of functions in the BBOB 2015
suite. The objective function value is plotted against the number of function evaluations
for each control parameter selection strategy. These data points were only recorded
once per generation if an improvement in the objective function value was found. This
means that the number of data points depends on the population size and is not the
same for every curve. Each function is shown for different numbers of dimensions and
the control parameters selected by the predictive methodology are presented. These
functions were selected to show a range of cases, some where the predictive method-
ology performs well and some where it does not. Where the predictive methodology
performs well it achieves rapid convergence early in the optimisation, which is what
the metric α was designed to achieve.
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Fig. 2 Examples of the convergence behaviour using different control parameter selection strategies for the
BBOB 2015 function suite. In the predictive methodology κ = 10 and σ = 1000

3.2 CEC 2005 function suite (predictive methodology trained using BBOB 2015)

3.2.1 Problem aware tuning compared to picking the best from the training set

The predictive methodology and the best control parameters from the initial training
set were used to optimise the CEC 2005 benchmark functions. Table 5 shows the
statistical tests for this comparison. For all κ and σ the predictive methodology per-
forms significantly better with p values < 0.0001. The improvement observed when
optimising the CEC 2005 function suite is comparatively less significant than the
improvement observed when optimising the BBOB 2015 suite.
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Table 5 CEC 2005 function
suite: Wilcoxon signed ranks test
data comparing the predictive
methodology to using the best
performing control parameters
overall in the training set
(equivalent to κ = 1)

κ σ W p value

10 10 55436.0 < 0.0001

10 100 49811.5 < 0.0001

10 1000 58615.0 < 0.0001

100 1000 58971.5 < 0.0001

Table 6 CEC 2005 function
suite: Wilcoxon signed ranks
test data comparing the
predictive methodology to using
the control parameters most
commonly used in literature

κ σ W p value

10 10 220650.0 0.001

10 100 223100.0 0.003

10 1000 233488.0 0.075

100 1000 243996.0 0.528

Table 7 CEC 2005 function
suite: Wilcoxon signed ranks test
data comparing the predictive
methodology to using SHADE

κ σ W p value

10 10 183736.0 < 0.0001

10 100 187102.0 < 0.0001

10 1000 217967.0 < 0.0001

100 1000 206840.0 < 0.0001

3.2.2 Predictivemethodology compared to using the best parameters from literature

The results of statistical tests comparing the predictive methodology to the fixed
parameters suggested in literature are shown in Table 6. For all cases the predic-
tive methodology outperformed the fixed parameters, but the increase in performance
is not statistically significant when κ = 100.

3.2.3 The predictive methodology compared to SHADE

The results of statistical tests comparing the predictivemethodology to thefixedparam-
eters suggested in literature are shown in Table 7. For all κ and σ the predictive
methodology significantly outperformed SHADE with p values all < 0.0001.

3.2.4 Convergence behaviour

Figure 3 compares convergence plots for functions from the CEC 2005 suite using the
different control parameter selection strategies. Functions were selected to present a
range of behaviours.

123



S. P. Walton, M. R. Brown

Fig. 3 Examples of the convergence behaviour using different control parameter selection strategies for the
CEC 2005 function suite. The predictive methodology was trained using the BBOB 2015 function suite
with κ = 10 and σ = 1000

4 Discussion

The results show that, when optimising the BBOB 2015 objective function suite, the
predictive methodology out performed using fixed and adaptive tuning parameters for
DE with p values< 0.0001. The predictive methodology is more likely to outperform
other methodologies when the initial sampling size, σ , of the objective functions was
increased. There was a slight drop in performance from κ = 10 to κ = 100. This
indicates that having fewer large classifications of objective function are better than
a more granulated approach. This trend does not continue to κ = 1, i.e. simply using
the best parameters from the training set. The observed improvement from κ = 1 to
κ = 10 and σ = 100 to σ = 1000 both support the claim that β can be used as a
predictor for which control parameters to use in an optimisation algorithm.
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Optimising the CEC 2005 benchmark functions, using only the BBOB 2015 suite
for training, is a tough test for the suitability of β to act as a predictor for control
parameters in the general case. In all cases the predictive methodology outperformed
other approaches. The closest performing approach to the predictive methodology was
simply using fixed control parameters suggested in literature, in this case two tests (κ =
10, σ = 1000 and κ = 100, σ = 1000) have p values 0.075 and 0.528 respectively.
This could be explainedby thefixed control parameters not requiringobjective function
evaluations to adapt, i.e. all objective function evaluations are used for optimisation.
The high value of σ for these outliers further supports this explanation, when σ < 100
the p values are < 0.01 when comparing to fixed control parameters from literature.
This effect is then compoundedwhen κ = 100which, as observed elsewhere, performs
less well than κ = 10.

Overall the results show that the simple objective function features, β can act as a
predictor for selecting appropriate control parameters for DE. The advantage of this
approached can be observed when comparing it to SHADE. SHADE learns which
control parameters are most effective during the optimisation process. The predictive
methodology attempts to predict effective control parameters prior to the optimisation,
therefore the benefit is felt from the first iteration. This prediction itself comes at the
cost of objective function evaluations, which were accounted for in this study. The
open problem, therefore, is how to effectively approximate these features with fewer
objective function evaluations. In the future, an aim is to use these objective function
evaluations as the first generation of the optimisation run in order not to waste them.

To improve performance, it may be possible to update the value of β as the opti-
misation runs and better samples the objective function. As the approximation of
β improves the control parameters could be changed mid run. This would require
thoughtful implementation to avoid introducing significant computational overhead.
There is also scope for designing more sophisticated and varied objective function
features. Performance may also be increased with a larger training data set. This does
come with an additional overhead, as the computational cost of the k-means algorithm
increases with the size of the training data. In the future there is no reason why the
k-means calculation could not be performed using cloud computing with training data
collected from many users of the algorithm.

4.1 Conclusions

The methodology proposed has been shown to offer statistically significant improve-
ment over other approaches. This implementation shows that the concept has the
potential to be a powerful addition to evolutionary optimisation algorithms. The
method is general and could be applied to any evolutionary algorithm and any perfor-
mance measure of interest. There are a number of avenues to investigate, discussed
above, which may improve the methodology further. In particular an investigation
into more sophisticated function features, such as those presented in ELA (Mersmann
et al. 2011). The long term goal should be to extend this methodology to automatically
select the most appropriate evolutionary algorithm for a problem, not just the control
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parameters. Such an automation would be of great use for industrialists wishing to
apply evolutionary algorithms to real world applications.

Acknowledgements The Welsh Government is acknowledged for a Sêr Cymru II Fellowship (80761-SU-
006) (A.O.W) part funded by the European Regional Development Fund (ERDF).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Arthur,D.,Vassilvitskii, S.:K-means++: the advantages of careful seeding. In: Proceedings of theEighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, pp. 1027–1035. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA (2007). http://dl.acm.org/citation.cfm?
id=1283383.1283494

Bartz-Beielstein, T., Lasarczyk, C.W., Preuß, M.: Sequential parameter optimization. In: The 2005 IEEE
Congress on Evolutionary Computation, 2005, vol. 1, pp. 773–780. IEEE (2005)

Belkhir, N., Dréo, J., Savéant, P., Schoenauer, M.: Feature based algorithm configuration: a case study
with differential evolution. In: International Conference on Parallel Problem Solving from Nature, pp.
156–166. Springer (2016)

Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics: a
survey of the state of the art. J. Oper. Res. Soc. 64(S12), 1695–1724 (2013). https://doi.org/10.1057/
jors.2013.71

Das, S., Suganthan, P.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput.
15(1), 4–31 (2011). https://doi.org/10.1109/TEVC.2010.2059031

Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical
tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol.
Comput. 1(1), 3–18 (2011). https://doi.org/10.1016/j.swevo.2011.02.002

Eiben, A., Smit, S.: Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol.
Comput. 1(1), 19–31 (2011). https://doi.org/10.1016/j.swevo.2011.02.001

Finck, S., Hansen, N., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2009:
presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE (2009). http://
coco.gforge.inria.fr/doku.php?id=bbob-2015-downloads. Updated February 2010

Guo, H., Li, Y., Li, J., Sun, H., Wang, D., Chen, X.: Differential evolution improved with self-adaptive
control parameters based on simulated annealing. Swarm Evol. Comput. 19, 52–67 (2014). https://
doi.org/10.1016/j.swevo.2014.07.001

Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2009:
noiseless functions definitions. Technical Report RR-6829, INRIA (2009). http://coco.gforge.inria.fr/
doku.php?id=bbob-2015-downloads. Updated February 2010

Hutter, F., Hamadi, Y., Hoos, H.H., Leyton-Brown, K.: Performance prediction and automated tuning of
randomized and parametric algorithms. In: Benhamou, F. (ed.) Principles and Practice of Constraint
Programming—CP2006, pp. 213–228. Springer, Berlin (2006). https://doi.org/10.1007/11889205_17

Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm
configuration. In: Proceedings of LION-5, pp. 507–523 (2011)

Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction: methods & evaluation.
Artif. Intell. 206, 79–111 (2014). https://doi.org/10.1016/j.artint.2013.10.003

Kerschke, P., Preuss, M., Wessing, S., Trautmann, H.: Low-budget exploratory landscape analysis on
multiple peaks models. In: Proceedings of the 2016 on Genetic and Evolutionary Computation
Conference—GECCO ’16. ACM Press (2016). https://doi.org/10.1145/2908812.2908845

Li, J., Kendall, G.: A hyper-heuristic methodology to generate adaptivestrategies for games. IEEE Trans.
Comput. Intell. AI Games PP(99), 1–1 (2015). https://doi.org/10.1109/TCIAIG.2015.2394780

123



Predicting effective control parameters for differential…

López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The irace package: iterated
racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016). https://doi.org/
10.1016/j.orp.2016.09.002

Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape
analysis. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation—
GECCO ’11. ACM Press (2011). https://doi.org/10.1145/2001576.2001690

Naumann, D.S., Evans, B.J.,Walton, S., Hassan, O.: A novel implementation of computational aerodynamic
shape optimisation using modified cuckoo search. Appl. Math. Modell. 40(7–8), 4543–4559 (2015).
https://doi.org/10.1016/j.apm.2015.11.023

Piotrowski, A.P.: Review of differential evolution population size. Swarm Evol. Comput. (2016). https://
doi.org/10.1016/j.swevo.2016.05.003

Sarker, R.A., Elsayed, S.M., Ray, T.: Differential evolution with dynamic parameters selection for optimiza-
tion problems. IEEE Trans. Evol. Comput. 18(5), 689–707 (2014). https://doi.org/10.1109/TEVC.
2013.2281528

Smith-Miles,K.A.: Cross-disciplinary perspectives onmeta-learning for algorithm selection.ACMComput.
Surv. 41(1), 1–25 (2008). https://doi.org/10.1145/1456650.1456656

Storn, R.: Differential Evolution (DE) for Continuous Function Optimization. http://www1.icsi.berkeley.
edu/~storn/code.html (2016). Accessed 6 Jul 2016

Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over
continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem Definitions
and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization, Technical
Report. Nanyang Technological University, Singapore (2005)

Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differential evolution. In:
2013 IEEE Congress on Evolutionary Computation. IEEE (2013). https://doi.org/10.1109/cec.2013.
6557555

Walton, S., Hassan, O., Morgan, K.: Reduced order mesh optimisation using proper orthogonal decomposi-
tion and a modified cuckoo search. Int. J. Numer. Methods Eng. 93(5), 527–550 (2013a). https://doi.
org/10.1002/nme.4400

Walton, S., Hassan, O., Morgan, K.: Selected engineering applications of gradient free optimisation using
cuckoo search and proper orthogonal decomposition. Arch. Comput. Methods Eng. 20(2), 123–154
(2013b). https://doi.org/10.1007/s11831-013-9083-7

Walton, S., Hassan, O., Morgan, K.: Strategies for generating well centered tetrahedral meshes on industrial
geometries. In: Perotto, S., Formaggia, L. (eds.) New Challenges in Grid Generation and Adaptivity
for Scientific Computing, pp. 161–180. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-
06053-8_8

Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82
(1997)

Zamuda, A., Brest, J.: Self-adaptive control parameters randomization frequency and propagations in dif-
ferential evolution. Swarm Evol. Comput. 25, 72–99 (2015). https://doi.org/10.1016/j.swevo.2015.
10.007

Zhang, J., Sanderson, A.: JADE: adaptive differential evolution with optional external archive. IEEE Trans.
Evol. Comput. 13(5), 945–958 (2009). https://doi.org/10.1109/tevc.2009.2014613

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


