
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in:

Packaging Technology and Science

                                               

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa50820

_____________________________________________________________

 
Paper:

Allman, A., Jewell, E., Vooys, A., Hayes, R. & McMurray, H. (2019).  Food packaging simulant failure mechanisms in

next generation steel packaging. Packaging Technology and Science

http://dx.doi.org/10.1002/pts.2448

 

 

 

 

 

 

 

_____________________________________________________________
  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

 

Permission for multiple reproductions should be obtained from the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

http://www.swansea.ac.uk/library/researchsupport/ris-support/ 

http://cronfa.swan.ac.uk/Record/cronfa50820
http://dx.doi.org/10.1002/pts.2448
http://www.swansea.ac.uk/library/researchsupport/ris-support/ 


 

R E S E A R CH AR T I C L E

Food packaging simulant failure mechanisms in next generation
steel packaging

Andrew Allman1 | Eifion Jewell1 | Arnoud de Vooys2 | Rachel Hayes3 |

H. Neil McMurray1

1College of Engineering, Swansea University,

Swansea, UK

2TATA Steel, R&D, IJmuiden, The Netherlands

3CROWN Packaging Manufacturing UK

Limited, Wantage, Oxon, UK

Correspondence

Andrew Allman, College of Engineering,

Swansea University, Swansea, UK.

Email: a.m.allman.843855@swansea.ac.uk

Funding information

EPSRC; European Social Fund via Welsh Gov-

ernment; CROWN Packaging Manufacturing

UK Limited; TATA Steel Packaging Europe

Legislative pressures have led to the mature dominant chromium‐coated steel (ECCS)

substrate and epoxy phenolic lacquer replacement in Europe. An investigation was

carried out to examine the interaction between a steel surface engineered with a

novel, developmental substrate coated using Cr (III)‐based electrolytes and the food

stuff being canned. Samples of lacquered material were subjected to a typical retort

process (121°C for 90 minutes) and examined using a variety of laboratory analytical

techniques. The foodstuff being packaged has a significant impact on the

substrate/lacquer adhesion with clear differences in failure mechanisms between

foodstuffs. There is clear evidence of chemical species transfer through the next gen-

eration lacquer, and this can instigate corrosion at the surface where incomplete

chromium coverage leads to exposed iron. In general, the novel developmental mate-

rial exhibits lower adhesive properties and shows a greater sensitivity to the food-

stuff, although this is largely attributed to the homogeneity of the coverage. The

novel substrate proves to be a promising alternative to ECCS due to REACH legisla-

tion, but improvement is required to achieve equivalent performance.
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1 | INTRODUCTION

Metal packaging is an important means by which food can be cooked,

distributed, stored, and consumed in modern society with a global

market of around $110 Bn in 2017, set to increase in the next

5 years.1,2 It is robust, fully recyclable, achieves many years of shelf life

(reducing food waste for producer and consumer), and has established

products with whole supply chain integrity,3 widely known for its eco-

nomic effectiveness.4 The substrate is coated to protect the foodstuff

contained from being damaged or spoiled; the coating also prevents

the corrosion of the substrate material that could be induced by the

interaction with the contents.5

Currently, steel packaging manufacture faces the dual challenges

of removing chromium (VI)6 from the substrate production process

and Bisphenol‐A (BPA) from the protective lacquer. A transition is

therefore required from a trusted mature technology to a novel

substrate/lacquer combination, and this has renewed significant

research interest in their performance. Key to success is the integrity
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of the metal/organic interface, particularly when subjected to the

extreme environment experienced by the packaging when the food-

stuff is cooked in the filled can at temperatures in excess of 120°C.7,8

The two coated steels primarily used for food can applications are

tinplate, having a tin layer approximately 0.2 to 2 μm thick and

electrochromium‐coated steel (ECCS) which has a 10 to 30‐nm layer

of chromium/chromium oxide, produced using a Cr (VI) electroplating

process.9 Trivalent chromium‐based metallic coatings for steel devel-

oped10 as a REACH6 compliant alternative to ECCS is under iterative

development to optimise surface chemistry and characteristics. A

novel developmental substrate, combined with next generation coat-

ings (bisphenol‐A non‐intent) that comply with legislative moves in

some European territories, presents the metal packaging industry with

a system that has been shown to be less robust than the well‐

established ECCS/epoxyphenolic coating system.11

The adhesion of an organic coating to a metallic surface occurs

through a variety of bonding mechanisms, including electrostatic inter-

actions, dispersion forces, and covalent bonds,12,13 all of which are sus-

ceptible to modification through the interaction with a simulant

solution and by extension, foodstuff. Work has previously been con-

ducted studying the effects of the sterilisation process on the quality

of adhesion that is observed, a phenomenon that had not been quan-

tified before.11 This study focussed on the quality of adhesion varied

with adjusting retort parameters, establishing relationships and

highlighting strengths and failures within novel substrate/coating sys-

tems. Previous work has begun the examination process of the chang-

ing chemistry of both the coatings and the substrate, an area that is to

be more fully explored here. The effect of the retort process on poly-

mer coatings has been subject of some limited study. For example,

Axelson‐Larsson examined the oxygen permeability of such coatings

under autoclave conditions, concluding that the conditions can affect

the barrier of some materials, with water acting as a plasticiser.14 Many

studies have been carried out to investigate the effect that the chem-

ical composition of a given foodstuff might have on the coating.15 The

migration study carried out by Errico et al where the BPA transferred

into the foodstuff has been measured16 confirms that BPA transfer

does occur but the overall consumer exposure is low. This work is fur-

ther evidenced by Oldring et al who worked on a model to estimate

BPA‐diglycidyl ether exposure, concluding that exposure for UK con-

sumers was well below the tolerable daily intake for all derivatives.17

With BPA non‐intent (BPANI), migration studies have been carried

out on coatings of similar chemistry,18,19 as is common with all new

coating formulations, with a multitude of analytical techniques used

such as gas chromatography and mass spectrometry.20 While these

methods of interaction are relatively well reported, the effect of the

simulant solution/foodstuff on the adhesion of a coating to the sub-

strate, or the substrate itself post‐retort, has not been reported in

depth. Some work has been conducted exploring the delamination

mechanism of an epoxy coating from a steel substrate, using electro-

chemical impedance spectroscopy (EIS) and X‐ray photoelectron spec-

troscopy (XPS) to determine than an acid treatment improves the

resistance against cathodic delamination,21 most notably in a NaCl

solution. The purpose of this study is to investigate the effects of

the sterilisation (retort) process on both the substrate and the organic

coating, attempting to understand the interaction between the two at

the interface,8 or indeed where any failure may occur.

2 | MATERIALS AND METHODS

Substrates used were ECCS, supplied by Tata Steel, and a develop-

mental chromium‐coated steel substrate (294269M), also supplied by

Tata Steel. The developmental substrate was electroplated using Cr

(III) species in the electroplating bath, rather than the Cr (VI) species

used in ECCS production. 294269M was produced on a full‐scale

industrial electroplating line during parameter optimisation tests and

is hence a developmental only substrate, not commercially available.

In each case, the bath chemistry and operation parameters of the

electroplating process were manipulated to provide a controlled com-

bination of surface species. Neither substrate has free Cr (III) or Cr (VI)

present on the surface after electroplating, and chromium is then pres-

ent in the form of Cr metal, oxide, or hydroxide; the details of which

are shown in Table 1. 294269M shows increased levels of chromium

oxide and lower values of metallic chromium when compared with

ECCS, while also showing some evidence of iron at the surface.

Coatings used were an epoxy‐phenolic (EP) lacquer and a polyester

BPA non‐intent (BPANI) lacquer, both supplied by Metlac. The former

representing incumbent lacquer chemistry, the latter representing

commercial state of the art. For the purposes of this research, sheets

of both substrates were coated with 10 to 12 μm of either the EP

or BPANI coating, providing four substrate/coating systems. For test-

ing, sheets were cut into samples 120 mm × 45 mm.

To simulate the sterilisation process, coated substrates were

placed in sealed jars filled to 80% of total capacity with simulant solu-

tion (Table 2). Simulant solutions were chosen as they represent com-

mon packing media for canned foodstuff; the associated foodstuff is

TABLE 2 Simulant solution compositions and examples of repre-
sentative packaged foodstuffs

Simulant Solution Composition Typical Foodstuff

1% NaCl (standard brine) Peas or beans

1% NaCl, 1% acetic acid (acidified brine) Gherkins or onions

1% lactic acid (carbohydrate

fermentation)

Sauerkraut or dairy

products

0.25% NaCl, 0.25% citric acid

(acidified brine)

Salsify

TABLE 1 Surface characteristics of each substrate as characterised
by XPS, average of three replicates

% ECCS 2017 ETL14 294269 M

CrOx 3.6 14.5

Cr 2.5 1.6

Cr (OH)x 15.5 15.6

Fe 0 0.7
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also detailed in Table 2. The filled, sealed jars were placed in a in a

CertoClav MultiControl 2 autoclave and subjected to retort process

for 1.5 hours at 121°C. Each test conducted used five replicates of

each of the four substrate/coating systems.

Dissolved oxygen measurements were conducted using a Mettler

Toledo FiveGo dissolved oxygen portable meter, calibrated according

to manufacturer guidelines. Measurements were carried out in accor-

dance to ISO17289:2014.22 Three measurements were taken of each

solution.

Adhesion measurements were performed using a variable load

scratch tester in accordance with ISO 1518:2011,23 providing a quan-

titative analysis of the adhesion force without inducing a chemical

change in the thin film organic coating as other methods, such as pull

off tests.24 Each of the five replicates was assessed and an average

failure force taken.

Knoop hardness measurements were taken using a Zwick Indentec

ZHμ microhardness tester, in accordance with ISO 6441‐1, with a

standard error associated with the measurements of 5.1%, across five

replicates.

Surface species characteristics were measured using an Axis Supra

XPS system using a monochromated Al Kα source and large area slot

mode detector using a 300 × 800 μm analysis area. Binding energies

were calibrated to the main hydrocarbon peak (284.8 eV). Spectra were

subsequently analysed in CASA software with Shirley backgrounds.

FTIR measurements of the lacquers were carried out using a Perkin

Elmer FTIR 100 with ATR attachment. Data were interpreted using

Perkin Elmer Spectrum 10 STD software.

Time of flight secondary ion mass spectrometry (ToF‐SIMS) analy-

sis was conducted on a Scientific Analysis Instruments (SAI) MiniSIMS‐

ToF, using a gallium source to obtain positive secondary ion spectra in

the form of images.

In total, each result, for each experiment conducted, represents

an average of five samples providing a statistically valid

measurement of each substrate/lacquer combination. Where the

lacquer properties were to be examined independently of the

substrate, the lacquer was coated to glass microscope slides which

were unaffected by the retorting process. Further details of the

experimental equipment and procedures are available in previous

work.11

In order to examine the impact of the simulant and the retort pro-

cess, the lacquers were applied to glass slides and processed in the

same manner as the steel substrates. In this way, it was possible to

readily obtain a free standing film as the film could readily be detached

from the glass, allowing the lacquer chemistry to be investigated inde-

pendently from the steel substrate.

3 | RESULTS

3.1 | Macro effects

3.1.1 | Adhesion testing

In order to appraise the impact of the simulated foodstuff on the

lacquer/substrate adhesion, a methodology was adopted where each

substrate/lacquer was exposed to each simulant under retort condi-

tions and their characteristics were evaluated. On the basis of the ini-

tial findings, further investigations were initiated to identify the

dominant mechanisms in each instance.

There is a clear interaction between the simulant lacquer and the

adhesion failure force measured (Figure 1). The BPANI lacquer consis-

tently shows the poorest performance when compared with the incum-

bent epoxy phenolic technology, and this is emphasised within certain

simulant composition, reasons for which have been touched on in pre-

vious studies.11 Those materials produced via a trivalent chromium

coating perform consistently poorer compared with the incumbent

chromium (VI) produced ECCS substrate. The presence of NaCl in the

simulated foodstuff causes a reduction in adhesion performance for

all substrates, although the presence of a secondary organic acid

reduces the impact of the NaCl. Visual inspection of the surface

FIGURE 1 Post‐retort adhesion of all
substrates and all simulants with the BPANI
coating. Dashed lines represent the dry
adhesion measurement
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identified surface corrosion, indicating transport of the Na+ and Cl−

through the lacquer and to surface (Figure 2). Figure 2 shows represen-

tative images of the five replicates tested. With all lacquer/substrate

combinations, the lactic acid has the most pronounced impact on adhe-

sion performance, although the degree of substrate corrosion was

lower than that observed with the NaCl simulants. Thus, there is evi-

dence for a reduction in adhesion due to both surface corrosion and

degradation of the lacquer/lacquer interface. Given the strong interac-

tions between the foodstuff simulant, substrate, and the lacquer, a

series of subsequent investigations were carried out to evaluate their

relative impact of the corrosion/lacquer degradation and identify key

mechanisms.

3.1.2 | Visual inspection

From a macroscopic perspective, trends can be observed in the visual

appearance of the substrate/lacquer which indicates that the failure

mechanism in each case varies (Figure 2). With deionised (DI) water,

there is little change in the surface colour and with only a small num-

ber of blemishes, the same can be said for 0.25%NaCl/0.25%citric

acid, where the blemishes do not appear to have the detrimental

effect to adhesion that the defects on the 1%NaCl samples have,

where blistering is commonplace. When 1%NaCl/1%acetic acid is

used as a simulant, the visual effects are minimal; however, there is

an increase in the surface roughness of the coating. 1% Lactic acid,

however, shows blistering across the surface, of a diameter such that

it is not practical to apply a numerical value to blistering.

In order to understand the underlying chemical and physical mech-

anisms which occur in each case, analytical tools were used to exam-

ine the impact of the retort on the substrate and the lacquer.

3.2 | Substrate mechanisms

3.2.1 | ToF‐SIMS analysis

ToF‐SIMS surface maps have been employed with the blue areas

representing iron and the green areas representing the chromium

present on the surface (Figure 3) (areas with no chromium or iron

are depicted in black). In an unretorted state, the surface of each sub-

strate is dominated by chromium, with small areas of iron on

294269M which most likely reflects the nonoptimized nature of

the manufacturing process settings used to produce the material.

Post‐retort, the surface of substrate 294269M changes substantially.

Following retort in DI water and 0.25%citric acid/0.25%NaCl,

294269M is very similar to the pre‐retort image. However, for

1%NaCl, the amount of chromium is greatly reduced, and the

amount of iron is increased. The same can be observed for the

1%NaCl/1%acetic acid simulant and the 1%lactic acid simulant. This

suggests a breakdown of the metallic coating, leading to exposure of

the steel blackplate. The ECCS material shows some increase in sur-

face iron content, but the overall presence of iron is significantly

lower.

3.2.2 | XPS analysis

The changes identified in the findings of the ToF‐SIMS are corrobo-

rated and by examining the XPS surface analysis for 294269M

(Table 3), which also identifies changes in key surface species. Under

DI water conditions, the chromium metal exhibits some hydration,

while the 1% NaCl produces a significant increase in the iron oxide

and metallic iron observed on the surface.

The other notable feature of Table 3 is the increase of Cr2O3 for

the citric and lactic acid for 294269M and the elimination of iron oxide

from the surface with citric acid. In order to examine this mechanism,

ECCS and 294269M substrates were subjected to retort in increasing

concentrations of citric acid in a 1% NaCl solution. In contrast to

increasing NaCl concentrations, there is an increase in the measured

adhesion when the citric acid concentration is raised (Figure 6). The

increase is significant and raises the adhesion between the pre‐retort

dry adhesion. The role of citric acid as a surface passive has been

reported in stainless steel processing25,26 where it provides a more

environmentally friendly and safer passivation treatment compared

with conventional nitric acid passivation. The passivation treatment

results in preferential dissolution of iron oxide25,27 and oxidation of

FIGURE 2 294269M substrate/BPANI lacquer combination after the retort process
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the surface chromium to Cr2O3. Surface Cr2O3 films are advantageous

because of their inherent corrosion resistance, low ion/electron diffu-

sivities, and low electrical conductivity28 and thus increase the chro-

mium oxide layer thickness on the surface and protect the chromium

and the iron subsurface. Although stainless steel has a variety of ele-

mental constituents in the bulk, the major constituent parts of iron

and chromium in the near surface region27 are similar to ECCS and

294269M. It is therefore postulated that a similar mechanism is taking

place in these packaging substrates.

3.2.3 | Effect of NaCl concentration on adhesion

The role of NaCl was investigated by varying the concentration of

NaCl in the simulant and exposing the substrates to the retorting

(A)

(B)

(C)

(D)

FIGURE 3 Elemental surface maps of the surfaces pre‐retort (A) and post‐retort with each simulant (B‐F). Each area represents
1.125 mm × 1.125 mm

ALLMAN ET AL. 5



process. Even small quantities of NaCl have a significant detrimental

effect on the lacquer/substrate adhesion, and this is particularly the

case with the next generation materials (294269M/BPANI)

(Figure 4). With both substrates, the epoxy phenolic provided supe-

rior adhesion during the retort process. The role of the NaCl on cor-

rosion is clearly illustrated in Figure 3 and Table 3 where the

exposed iron levels are greater than the other simulants. For

294269M, the small points of corrosion are evident in the surface

defects of thin or no chromium coverage results in oxidation of the

substrate. These corrosion points then form the initiation focus of

any delamination with blisters being formed at the interface,

resulting in interlayer failure. In the areas away from the corrosion

initiation, the lacquer adhesion appears better, although no numerical

values can be obtained due to the random nature of the blisters and

the measurement length required (120 mm) for a consistent adhe-

sion measurement.

3.2.4 | Effect of oxygen on adhesion

Corrosion of chromium‐coated steel substrates is enhanced by the

presence of oxygen, which acts as an oxygen source in the simulant.29

Thus, by elimination of the oxygen from the simulant fluid, it was pos-

sible to examine the role of oxygen in the corrosion of the substrate.

(E)

(F)

FIGURE 3 Continued.

TABLE 3 XPS analysis of the change in surface of the 294269M
substrate pre‐retort and post‐retort, average of three replicates

C2O3 Cr (OH)3 Cr‐M Fe‐M Fe2O3

DI water +0.9 +2.3 −0.8 0 0

1%NaCl −3.8 −3.4 −1.4 +1.3 +5.3

1%NaCl/1% acetic acid −1.9 −2.7 −0.8 0 +2.1

1%NaCl/0.25% citric acid +5.3 −1.7 −0.9 −0.6 0

1% lactic acid +5.6 −3.3 −0.2 +1.9 +2

FIGURE 4 The impact of NaCl concentration on lacquer adhesion
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In order to achieve this, each solution was deaerated by purging with

N2 gas for 30 minutes prior to retorting resulting in a reduction in dis-

solved oxygen from 3.47 to 0.04 mg/L (+/− 0.01 mg/L). Every simulant

solution shows an improvement in the lacquer/substrate adhesion

(Figure 5), while visual inspections of the sample showed a reduction

in the number and intensity of the blistering. The presence of oxygen

therefore plays an appreciable role in the failure mechanism and thus

reinforces theToF‐SIMS and XPS analysis in Figure 3 and Table 3. This

result has an impact for can fillers as dissolved oxygen in the foodstuff

will tend to increase the corrosion and hence substrate/lacquer adhe-

sion. Similarly, any free air head space in the can will have an impact

on the substrate/lacquer adhesion. From a material testing viewpoint,

any DI water will need to be left for a period of time prior to use in a

retort environment in order to equilibrate the dissolved O2 in the DI

water. Given the liquid volume to substrate surface area employed

in the testing, any corrosion will not be limited by the quantity of dis-

solved oxygen in the liquid. In a sealed can where the liquid volume to

surface area is far lower, the availability of dissolved oxygen may

become a limiting factor in corrosion.30,31 In this instance, the failure

force measured is likely to be overestimated in this research. In the

environment of a can, the surface area of coating and substrate is

much higher than that of the testing regime, where a small number

of samples are tested in a glass container, limiting the substrate that

is available for oxidation.

(A)

(B)

(C)

FIGURE 5 A‐E, Measured adhesion in the presence of simulants where oxygen has been removed

ALLMAN ET AL. 7



3.2.5 | SEM analysis

Where failure occurs on the novel material, further insight on the

mechanisms can be established through cross section SEM examina-

tion of the interface (Figure 6). In each instance, key dimensions and

layer labels are applied, and all observations are representative of

three replicates of each cross section.

SEM analysis shown in Figure 6A‐F shows the effect that the

retort process has on the interface between the novel substrate

and the BPANI coating. The pre‐retort, DI water, and 0.25%NaCl/

0.25%citric acid samples show little in the way of failures of the

interface (Figure 6A,B,E, respectively). In the case of the 1% NaCl

simulant, a clear void between the coating and substrate is observed

of around 3 μm of and was present along the entire interface area.

This is attributed to the presence of the chloride ions causing corro-

sion at points in the surface where iron is present at the interface.31

The thermal expansion of the gaseous corrosion product then leads

to organic/metal separation. At a lower pH, according to the revised

pourbaix diagrams at elevated temperatures32 for Cr3+, Cr2O3 is no

longer the stable state of Cr3+. Instead, chromium is more likely to

be in the aqueous Cr3+ state or in the CrOH2+ state. This suggests

that the mechanisms of corrosion are different when an acid is

added to the system; at low pH, the chromium oxide layer is likely

to be affected, whereas at neutral pH, the oxide layer is stable,

and hence the corrosion mechanism is likely to be related to the

exposed iron in this developmental substrate. In the case of

1%NaCl/1% acetic acid, a corrosion effect is observed with no micro

delamination shown in SEM; the same can be said of the samples

exposed to 1% lactic acid.

3.2.6 | Citric acid effect

The effect of citric acid, demonstrated in Figure 7, is more pronounced

on 294269M than the ECCS, and this attributed to the higher chro-

mium level which is applied which allows greater conversion to chro-

mium oxide and thus an increased number of lacquer bonding

sites.33 This mechanism also results in higher substrate/lacquer adhe-

sion on 294269M compared with ECCS which is in contrast to that

observed in the remainder of this investigation. This suggests that a

chromium surface deposited from a chromium (III) can therefore per-

form to the standard of ECCS, provided the surface uniformity and

species are optimized. Although high chromium oxide values may lead

to an improvement in the adhesion properties, it may lead to surface

cracking when the brittle metal oxide is subjected to deformation dur-

ing the can‐making process.

Having established the key impacts and mechanisms by which

interlayer adhesion is reduced by substrate mechanisms, predomi-

nantly corrosion, those mechanisms associated with the lacquer were

investigated.

(D)

(E)

FIGURE 5 Continued.
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3.3 | Lacquer mechanisms

3.3.1 | Knoop hardness measurements

The retort process has an appreciable effect on the Knoop

hardnesss of the BPANI but has less effect on the Knoop hardness

of the epoxy phenolic coating (Figure 8). When Knoop hardness

measured immediately after retort is compared with the hardness

values taken after a 14‐day relaxation period, the recovery of the

lacquer can be examined. When allowed to recover under 20°C

conditions, the lacquer regains the majority of its original hardness

for all simulants. The exception for this is where the BPANI lacquer

is retorted in 1% lactic acid solution, where there is a 10% reduc-

tion after the recovery period, despite the large change in Knoop

hardness directly after retort. Thus, there is a degree of reversibil-

ity in the impact of the retort conditions on the lacquer bulk hard-

ness (and mechanical properties), except for the 1% lactic acid

retort.

(A)

(B)

(C)

FIGURE 6 A‐F, SEM cross‐sectional images of the adhesion interface following the retort process for the 294269M/BPANI system

ALLMAN ET AL. 9



3.3.2 | SEM analysis

A distinct increase in lacquer thickness is observed via SEM (Figure 6),

especially prevalent for the BPANI coating retorted in 1% lactic acid

solution, showing an increase in thickness of approximately 3 times

that of the original pre‐retort value. Thermogravimetric analysis

(TGA) has previously11 suggested a large uptake of water into the

coating, something that could be further evidenced here, where the

thickness changes depending on the simulant that is used.

3.3.3 | “Relaxation” of adhesion

While the change in lacquer bulk is largely reversible, this measure-

ment is taken on the upper surface of the lacquer and does not

consider the lacquer/substrate interface. The change in adhesion

post‐retort was investigated through measurement at regular inter-

vals over a 168‐hour period (Figure 9). In all instances, the

substrate/lacquer adhesion increases with relaxation time, although

it does not return to its original adhesion level in any case. This

(D)

(E)

(F)

FIGURE 6 Continued.
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may be associated with the corrosion of the substrate surface. The

increase in failure force is initially rapid and, in most instances,

reached 90% of its final value within 50 hours. In the case of 1% NaCl

samples, as an example, the recovery is likely to be the cohesive force

of the coating as the likelihood of the delamination reversing is small.

As reported previously, to provide a statistically valid and reproduc-

ible quantitative measurement, scratch testing has been used which

by nature of the testing will take into account both adhesive and

cohesive forces.

3.3.4 | FTIR analysis

The chemistry that is observed by FTIR shows (Figure 10) that there

is no marked change in the chemistry of the coating as shown by

this technique. Where the Knoop hardness values change

(Figure 8), this is a measure of the mechanical properties, which

has been linked to the amount of simulant solution that is absorbed

into the coating.

Figure 10A shows there is no significant change in the chemistry of

the BPANI coating post‐retort. There is one noticeable difference for

the epoxyphenolic coating, this being post‐retort using 1% lactic acid

as a simulant, where a carbonyl is evident with the peak shown at

1730 cm−1.

4 | DISCUSSION

A number of failure mechanisms of novel materials, designed to be

compliant with future legislation, have been identified. Their perfor-

mance is generally lower than the incumbent technology and the fail-

ure mechanism changes with the simulant (or the food being

packaged). The interaction which occurs at the interface between

the simulant and surface chemistry determines the failure mecha-

nisms, and this is summarised in Table 4.

The overall performance of the novel trivalent substitute substrate

is not comparable to the incumbent ECCS material. SEM analysis

(Figure 6) shows a visual representation of how the coating/substrate

interface is failing and relates to the adhesion measurements taken

and shown in Figure 1, further evidencing the ranking of adhesion

values for the 294269M/BPANI system. This is attributed to develop-

mental nature of the method by which the Cr is deposited from the Cr

(B)(A)

FIGURE 7 The impact of citric acid concentration in the simulant on the measured adhesion

(A) (B)

FIGURE 8 Knoop hardness of substrates immediately after retort and after “relaxation” for 14 days

ALLMAN ET AL. 11



(III) electrolyte. This is evident from Figure 3A,B where the novel sub-

strate shows a lower chromium:iron ratio on the surface prior to any

testing. Any improvement which increases the coverage of chromium

on the surface and reduces the exposed iron would result in improve-

ments in performance.

Testing under dearated conditions (Figure 5) further shows the

impact of the oxygen in the system, with all substrate/coating systems

giving better adhesion results in deaerated conditions. However, the

effect on each system differs depending upon which simulant solution

is used. Oxygen has a consistently large effect on the 1% NaCl

simulant samples, with other simulants showing varied degrees of

effect.

Knoop hardness testing (Figure 8) shows how the mechanical

properties of the coating return to their pre‐retort state, given time

to dry after the retort process. Combined with the FTIR data

(Figure 10), this shows that the coating itself, either chemically or

mechanically, is not being permanently changed through processing.

Conversely, the relaxation testing, where adhesion measurements

have been taken after removal from the retort, shows that there is,

in most instances, a permanent loss of adhesion quality, signified by

the difference in pre‐retort adhesion values and the fully relaxed

values, indicated in Figure 9.

The implications of the work are significant. The performance of

the canning integrity is highly dependent on the simulant being pack-

aged. Significant reductions in performance are obtained when NaCl is

present in the food stuff, even at concentrations of 0.25%; however,

when small concentrations of citric acid are introduced, the reduction

in adhesion quality is mitigated.

The work has shown the novel substrate performs less well that

the incumbent technology. This is primarily associated with the

FIGURE 9 Post‐retort adhesion during relaxation at room temperature

12 ALLMAN ET AL.



evenness of the chromium coating over the substrate on micro scale

with small point areas exposure of the iron, leading to corrosion and

hence a failure of the adhesion. In addition to this, SEM work has

given further evidence that the coating swells, implying that the

simulant solution is in the coatings, allowing the chemical species in

the simulant to interact at the interface readily.

5 | CONCLUSIONS

The investigation has demonstrated that there exists a significant

interaction between the chemical nature of the canned foodstuff,

the packaging materials, and the lacquer/substrate lacquer adhesion.

While past substrate/lacquer combinations have been robust, those

(A)

(B)

FIGURE 10 Post‐retort FTIR spectra of BPANI and EP coating

TABLE 4 Visual appearance and failure mechanisms for each simulant on the novel 294269M substrate

Simulant Visual Appearance Severity Dominant Mechanism Secondary Mechanism Reversible/Permanent

DI water Blemishes Mild N/A N/A Reversible

1% NaCl Blisters and delamination Severe Point corrosion Gas evolution leading to

delamination

Permanent

1% NaCl 1% acetic acid Increased surface

roughness

Moderate Point corrosion Delamination Permanent

0.25% NaCl, 0.25% citric

acid

Blemishes Mild N/A N/A Reversible

Lactic acid Blisters, increased surface

roughness and

delamination

Severe Corrosion Delamination Permanent

ALLMAN ET AL. 13



materials whose manufacture and formulation have been driven by

legislative requirements are far more sensitive to the foodstuff being

canned. The Cr (III)‐plated product is a promising alternative for ECCS

due to REACH legislation. For the early developmental iteration tested

here, there is, however, still some improvement required to exhibit

equivalent behaviour to ECCS in all tests. Results presented here are

based on a selected commercial lacquer; hence, other lacquers may

give differing results but are out of the scope of this work.
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