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Many animal species rely on changes in body coloration to

signal social dominance, mating readiness and health status

to conspecifics, which can in turn influence reproductive

success, social dynamics and pathogen avoidance in natural

populations. Such colour changes are thought to be

controlled by genetic and environmental conditions, but their

relative importance is difficult to measure in natural

populations, where individual genetic variability complicates

data interpretation. Here, we studied shifts in melanin-related

body coloration in response to social context and parasitic

infection in two naturally inbred lines of a self-fertilizing fish

to disentangle the relative roles of genetic background and

individual variation. We found that social context and

parasitic infection had a significant effect on body coloration

that varied between genetic lines, suggesting the existence of

genotype by environment interactions. In addition, individual

variation was also important for some of the colour

attributes. We suggest that the genetic background drives

colour plasticity and that this can maintain phenotypic

variation in inbred lines, an adaptive mechanism that may be

particularly important when genetic diversity is low.

1. Background
Animal coloration can indicate social status or the health

condition of animals [1]. Colour signalling allows individuals to

assess the social dominance, mating capability and/or health
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status of conspecifics without direct contact, and this can in turn influence reproductive success,

social dynamics and the likelihood of becoming infected by directly transmitted parasites [2–4].

In vertebrates, changes in the distribution of melanin and carotenoids cause colour variation that has

been related to behaviour, social dominance and infection status. Carotenoid pigments, responsible for

bright orange coloration, have been widely studied for their role in the immune response of

vertebrates and in the production of related signalling for sexual selection [5–7]. However, the

signalling role of melanin is more controversial largely because, being endogenously produced, it does

not seem to be as costly to produce or maintain as carotenoids, and because melanin-based coloration

seems to be highly heritable [8]. Yet melanin-based coloration might also play a role in sexual

selection through its link to body condition, as the genes involved in melanin production also regulate

different phenotypic traits, which can be affected by frequency-dependent selection and/or local

adaptation [9].

In vertebrates, changes in the distribution of melanin related to body colour variation have been

linked with many physiological traits [5,10], including social dominance [11], stress responsiveness

[12] and immune response to pathogens [13]. In a social context, teleost fish appear to use melanin for

signalling subordination, which in brook trout (Salvelinus fontinalis) and tilapia (Oreochromis niloticus)

occurs through darkening of the skin [14] or eye colour [15], respectively. These colour alterations in

response to conspecifics may directly influence social structure, predation risk and population

dynamics [16]. Individual colour may also be influenced by disease-causing agents; some teleost

parasites can manipulate the host [17], potentially influencing colour and crypsis, in some cases,

making infected individuals more vulnerable to predators [18]. For example, three-spine sticklebacks

harbouring the parasitic worm Schistocephalus solidius show a gradual loss of colour in the skin and a

darkening of the eye when compared with their healthy counterparts and this trend increases with

increasing parasite size [2]. Such changes are caused by a decrease and/or redistribution of melanin

in the skin of infected fish, making them less cryptic and more vulnerable to predator attacks [4].

Antibody production also correlates positively with the number of melanized spots in owl plumage

[13]. Thus, there seems to be a link between changes in melanin coloration in relation to social and

infection-related stress, but to what extent these responses are influenced by the genotype is unclear.

Body colour polymorphism has been observed among and within populations in many species, and

its maintenance can have important evolutionary consequences [19]. Genetic polymorphisms in body

colour can occur across populations as a result of advantageous heterozygosity, heterogeneous

selection or frequency-dependent selection on rarer individuals, which can in turn result in trait

variation among closely related individuals [20,21]. A number of individual genes have been

identified to play a role in the regulation of melanin production (such as Mc1r in mammals and birds

[22], and possibly in guppies [23], or Oca2 in cave fish [24]), as well as QTLs [19,25], suggesting that

the genetic basis of body coloration is complex and varies widely among taxa [17].

Colour polymorphisms can be important for the response of populations to variable selection

pressures, such as parasite infections [17,26]. Furthermore, genetically diverse hosts tend to be less

susceptible to parasitism than their less variable or inbred counterparts [26,27], and the interaction

between host and parasite genotypes can elicit variable patterns of gene expression so that even

genetically similar individuals can express varying gene shifts in response to infection [28]. For this

reason, the extent to which genetic background determines phenotypic expression in response to

parasites can be difficult to determine as individual variability complicates interpretation, particularly

among vertebrates.

We have used a naturally inbred species, the mangrove killifish (Kryptolebias marmoratus), to

investigate the importance of the genetic background in melanin-based colour change variation

(plasticity) in response to parasitism and under different social contexts. This species is an ideal

model for this study as its populations consist mainly of self-fertilizing, highly inbred hermaphrodites,

which display low genetic diversity within selfing lines but are genetically different between lines

[29–31]. Kryptolebias marmoratus are considered solitary and territorial [32] but have also been

observed to congregate in crab burrows or inside logs [31,33] in high-density assemblages which can

last for several months [34]. Kryptolebias marmoratus can display aggression towards conspecifics [29]

and seem to prefer to associate with their kin [35]. Males also prefer the scent of hermaphrodites

genetically different to them to those from the same selfing line [36]. Hermaphrodites have a mottled

grey melanin-based colour with a black ocellus on the caudal peduncle and, although there is natural

variation in individual colour, whether it varies in response to the social context and infection is not

known [37]. The species also displays behavioural and transcriptomic variation in response to

infection between genetically different lines [36,38]. On this basis, we hypothesized that, as for other
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teleosts, the social context and infection would result in colour changes in the hermaphrodites and that

these differences would be strongly influenced by the genetic background of fish tested.

2. Methods
2.1. Experimental animals
We used two different K. marmoratus selfing lines (R and DAN) originating from wild populations in

Belize, and subsequently bred in the laboratory for approximately 20–30 generations of selfing (lines

were created in 2009 from 25 eggs from experimental lines maintained at the University of Guelph

that had already undergone 10–20 generations of selfing [34]). Fish from the R strain are identical and

homozygous at 28 of 29 microsatellite loci, while DAN fish form three distinct groups, varying from

27 to 29 homozygous loci [34]. All fish for the current study were age- and size-matched (within

1 mm) prior to testing and housed in individual tanks of approximately 7 � 7 � 6 cm where they were

able to see other individuals but not smell or contact them. Water conditions for individuals were

kept constant at 16 ppt salinity, 12 : 12 h light : dark photoperiod and 248C.

2.2. Experiment 1: colour responses to social context
The first experiment assessed colour change in response to different social situations (being housed with a

single fish or with a group) within and between genotypic lines of K. marmoratus. Thirty-four mature, age-

matched (between 22 and 26 months of age) hermaphroditic individuals were chosen as test fish from the

two lines (17 DAN and 17 R). Three treatments were employed (figure 1): (i) control group where test fish

were observed in a tank without any other fish (n ¼ 8 per line); (ii) a single individual experiment (n ¼ 9

per line); and (iii) a group experiment of three individuals (n ¼ 9 per line). During the experiments, fish

were allowed observation and scent smell but not physical contact. Prior to experimental testing, all fish

were isolated whereby they could not see other fish. All fish were housed in individual plastic aquaria

(12� 8 � 8.5 cm, 16 ppt salinity, 248C) for 11 days prior to the first trial. Test fish (aged between 24 and

36 months) were also isolated in the same manner (same aquaria and conditions) between social context

treatment conditions (single or group context). All social context trials were conducted in aquaria (30�
20 � 20.3 cm) divided into two equal parts by a transparent perforated partition allowing for visual and

olfactory cues but eliminating physical contact between fish (figure 1). Test fish used to assess response

to social context (nine DAN and nine R) were placed in one side of the tank and acclimated for 15 min

prior to being tested against either a single hermaphroditic individual (single individual challenge) or a

group of individuals (group context). Fish used to challenge the test fish (either single or as a group)

were randomly chosen from a tank containing a mixture of R and DAN fish. Placement of tanks, line

used and social context (single or group) were randomized using a random number generator and

aquaria were thoroughly cleaned with ethanol and rinsed with distilled water between tests. After the

first test, test fish were isolated for a further 11 days prior to being tested for the alternate condition.

Photographs of test fish were taken on introduction of test fish and again at 24 and 48 h as described below.

2.3. Experiment 2: colour responses to infection
The second experiment assessed the extent of host colour change in response to infection by an

ectoparasitic crustacean (Argulus foliaceus) as described previously [38]; this species is a generalist

parasite that attaches by suction to the host skin, feeding continuously on blood and tissues. Argulus
foliaceus causes wounding that induces innate and adaptive immune responses leading to reduced

host fitness [39]. For this experiment, 80 mangrove killifish were used (40 DAN and 40 R); 20 fish of

each line were infected with a single specimen of A. foliaceus for 48 h (providing enough time to

trigger an adaptive immune response and the time at which 50% of the infected individuals had shed

the parasite [38]), while the other 20 were kept as uninfected controls as described in [38]. Argulus
successfully attached to all exposed fish. Fish were kept in individual aquaria (12 � 8 � 8.5 cm)

containing 750 ml of water of diluted brackish water (14 ppt salinity, constituted from dechlorinated

water and marine-filtered water, lowered from 16 ppt to increase parasite survival during the

experiment) under the same light (12 : 12 h light: dark photoperiod) and temperature (248C)

conditions for the duration of the experiment. Upon infection, photographs were taken of each

individual fish host immediately after infection, after 24 h and after 48 h (see below).
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2.4. Image manipulation and colour value generation
Multiple images of all fish were taken using a Canon EOS 400D camera with a 18–55 mm EFS lens from a

perpendicular distance of 30 cm to ensure a clear crisp image for analysis; the best image (JPEG) was

selected for analysis. All photographs included an X-rite colour chartw for calibration [40]. All images

were calibrated prior to analysis using Adobew Lightroomw Elements software and a profile created

using the Xrite colour chart and Adobew DNG-profile editorw, to ensure light conditions were

controlled. Each of the 240 photographs was then individually manipulated using the GNU Image

Manipulation Program (GIMP) for use by the custom colour program. For each image, a mask was

created of the whole fish that ensured the fish region was delimited and the background black. All

images were run through a custom-made program (GetRegionColour; electronic supplementary

material, table S1) to calculate average colour values over the selected region. All pixels in the mask

region (grey value above 127 on 0–255 scale) were included in the average. Each pixel’s RGB value

was converted to the XYZ colour space and the CIE L*a*b* colour space (using the D65 illuminant as

the reference white point) before averaging and the results were output to file. Values were

represented in CIELAB space that uses a nonlinear transformation of the XYZ space to create L*, a*

and b* values [40]. L* refers to lightness values from 0 (black) to 100 (absolute white), a* and b* are

measures of colour on a 2D colour circle [41]; a* reflects the red/green colour scale and b* reflects the

yellow/blue colour scale. To assess variations in chromatic attributes, a* and b* values were used to

calculate hue (h*) for observable colour and chroma (C*) for colour saturation or brightness as

described by van der Salm et al. [40]. Variation in light, hue and chroma colour attributes between

time points (0–24, 0–48 and 24–48 h) was estimated for both treatment groups for statistical analysis.

2.5. Statistical analysis
Temporal shifts in colour attributes (i.e. before–after changes in lightness, hue and chroma) were

examined in relation to parasitic infection, social context and genetic lines (R and DAN) using linear

mixed effects models with the lmer function in the R package lme4 [41] using individual identity as

random effects. Models with and without random factors were compared by the anova command and

on the basis of AIC values by maximum likelihood (electronic supplementary material, table S2);

models within 2 AIC units were considered equivalent [42] and the simplest of the two models was

chosen; models were further simplified using step and drop1 functions for linear models and mixed

effects models, respectively. Multiple comparisons were carried out using the lsmeans function in the

R package lsmeans [43]. All analyses were run in R v. 3.4.0 [44].

3. Results
3.1. Colour shifts in response to social context
Changes in fish lightness, hue and chroma values were compared between control, single individual tests

and group contexts for all time periods (table 1 and figure 2). A comparison among four models

30 cm

control(a) (b) (c)

perforated plastic partition

test fish versus individual
hermaphrodite

test fish versus a group of
hermaphrodites

20
 c

m

Figure 1. Schematic of experimental setting for social context experiments of K. marmoratus. (a) Control test fish set-up, (b) test
fish facing a single hermaphrodite and (c) test fish facing a group of hermaphrodites.
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Figure 2. Variations in light (L), hue (H ) and chroma (C ) between lines (on the left, DAN in blue, and on the right, R in red;
controls are represented in grey). These were compared with respect to social grouping over time for 16 control individuals (8 DAN
and 8 R) and 18 test individuals (9 DAN and 9 R). Significant comparisons between groups are indicated by an asterisk (*p , 0.05,
***p , 0.001).

Table 1. Effects of genetic line, social context and time on three colour attributes. Significant differences are indicated by
asterisks.

colour attribute and predictor estimate std. error d.f. t-value p-value

lightness

social context 5.55416 1.09641 238 5.066 ,0.000***

hue

line 0.111 0.0765 238 1.458 0.146

social context 0.244 0.0411 238 5.952 ,0.000***

line : social context 20.205 0.0587 236 23.529 ,0.000***

chroma

social context 0.486730 0.224324 53.65 2.170 0.034*
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including and excluding interactions between line, time and social context, two of them including

individual (ID) as random factor, was conducted for each colour attribute (electronic supplementary

material, table S2). For light and chroma, the model which included social context, line, time and ID

(without interactions) provided the best fit to the data when all individuals were considered, and after

simplification these models only included social context and ID. For hue, the model which included

control
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Figure 3. Variations in light (L), hue (H ) and chroma (C ) between lines in response to infection over time for 20 infected and 20
control individuals for both lines (on the left, DAN in blue and on the right, R in red, controls are represented in grey).
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social context, line and time (with interactions) provided the best fit to the data when all individuals were

considered (electronic supplementary material, table S2). Variation in fish colour attributes did not differ

significantly between fish exposed to individuals or groups of fish (light: t15.998 ¼ 20.766, p ¼ 0.455, hue:

t11.785 ¼ 0.099, p ¼ 0.923, chroma: t11.616 ¼ 1.369, p ¼ 0.197). However, changes in body lightness differed

significantly depending on social context when compared with controls (t93.85 ¼ 5.066, p , 0.001, table 1);

fish paired with individuals or social groups appeared lighter than controls and those paired with a

group appeared lighter than those paired with an individual (post hoc tests; electronic supplementary

material, table S2a). There was also an effect of individual identity on changes in lightness when

comparing models (x2 ¼ 22.45, d.f. ¼ 2, p , 0.001; electronic supplementary material, table S2a).

Changes in hue also differed significantly with social context (t238 ¼ 5.852, p , 0.001). Additionally,

there was a significant interaction between line and social context on changes in hue (t236 ¼ 23.498,

p � 0.001). As with light, line and time had no significant influence on temporal variation in hue

(t238 ¼ 1.458, p ¼ 0.147). There was no effect of individual identity on colour shifts and none of the

other interactions were significant (table 1).

Social context significantly influenced change in chroma (brightness of fish); fish became much

brighter when they paired with other individuals than unpaired controls (t109.25 ¼ 2.170, p ¼ 0.03), and

those paired with a group of fish became brighter than those paired with an individual fish

(electronic supplementary material, table S2c). Shifts in chroma were, however, influenced by

individual identity when models with and without ID as a factor were compared (x2 ¼ 25.47, d.f. ¼ 2,

p , 0.001; electronic supplementary material, table S2c).

3.2. Colour shifts in response to infection
Changes in light, hue and chroma values were compared between treatments and for all time periods for

40 R and 40 DAN individuals, of which 20 were controls and 20 infected fish from each line (figure 3 and

table 2). Comparisons were made with and without interactions, and with and without random factors

(electronic supplementary material, table S3). For light and hue values, the most plausible model

included infection treatment (infected versus control), line and time (without ID as a factor); the hue

model included interactions between factors (electronic supplementary material, table S3a,b,). For

chroma, the most plausible model included infection treatment (infected versus control), line, time

and ID (without interactions) when all individuals were considered (electronic supplementary

material, table S3c); after simplification, the best model included only line and ID.

Changes in body lightness differed significantly between infection status (t238 ¼ 2.854, p ¼ 0.005) and

length of time infected (t238 ¼ 4.031, p � 0.001); infected individuals became lighter than controls, and

Table 2. Effects of genetic line, infection status and time on colour shifts of mangrove killifish experimentally infected with
Argulus. Significant differences are indicated by asterisks.

colour attribute and predictors estimate std. error d.f. t-value p-value

lightness

line 21.48398 0.77553 25.37 21.913 0.056

infection 2.21344 0.77553 93.85 2.854 0.005**

time 0.07976 0.01979 119.34 4.031 ,0.001***

hue

line 20.0327020 0.0208995 148 21.565 0.119

infection 0.1197282 0.0208995 148 5.729 ,0.001***

time 0.0004664 0.0007541 148 0.619 0.536

line : infection 20.0573730 0.0295564 148 21.941 0.053

line : time 0.0008903 0.0010665 148 0.835 0.404

infection : time 0.0036866 0.0010665 148 3.457 ,0.001***

line : infection : time 20.0042634 0.0015083 148 22.827 0.005**

chroma

line 1.856607 0.593470 28.05 3.128 0.003**
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lightness increased with the length of time the fish were infected. Shifts in lightness were not influenced

by line (t238 ¼ 21.913, p ¼ 0.056). In contrast with social context, changes in skin lightness were not

influenced by individual variation (table 2; electronic supplementary material, table S3). Individual

identity had no effect on hue (observable colour) (electronic supplementary material, table S3b);

however, shifts in hue were significantly influenced by infection status (t238 ¼ 5.729, p , 0.001), the

interaction between infection status and time (t236 ¼ 3.457, p ¼ 0.001) and the interaction between all

factors (t238 ¼ 22.827, p ¼ 0.005). Analysis of significant interactions indicated that changes in hue

were higher in infected fish than controls; an increase in hue occurred over time and it was always

higher in the infected group. Similarly, changes in chroma (brightness) differed significantly between

lines (t54.49 ¼ 3.128, p ¼ 0.003) being higher in R than DAN individuals; this attribute was also

influenced by individual identity when models were compared (x2 ¼ 197.41, d.f. ¼ 2, p , 0.001;

electronic supplementary material, table S3c).

4. Discussion
Environmental fluctuations, such as the presence of conspecifics or parasitic infection, have the potential

to influence the phenotypic traits exhibited by individuals, including colour. Our results suggest that

both infection and social context influence lightness, observable colour and brightness in an inbred

fish species which, to some extent, also displayed individual variation. Specific responses to

environmental fluctuations can be difficult to identify in natural populations due to the high degree of

individual genetic variation present [45]. Using a naturally inbred species allowed for estimation of

the influence of the genotype on melanin-based coloration as well as the overall physiological colour

change response to treatments under controlled rearing conditions.

Alterations in social grouping or novel threats from conspecifics have been shown to alter

melanophore distribution, the extent of observable colour displayed and brightness attributes in a

variety of species from across the Animal Kingdom [2,5,46,47]. Here, we showed that fish faced with

small social groups became lighter than control fish faced with blank water, and the number of

individuals in the group further influenced the individuals’ colour. In teleost species, changes in dark

pigmentation (melanization or de-melanization) of the skin of an individual are commonly used as an

indicator of social status, for example, juvenile Atlantic salmon and Arctic charr display darker

pigmentation as a signal of submission to opponents [5]. Phenotypic alterations as a means of

signalling to conspecifics allow a quick approximation of status within groups. Mangrove killifish

have previously shown to be aggressive towards their conspecifics [29,48], particularly when they are

unrelated [33], and the level of aggression has been related to individual cortisol and testosterone

levels [48]. As melanin-based coloration has been related to hormone levels [8], the observed

lightening of skin colour in killifish faced with social groups could indicate dominance [11,12].

Similar to social context, parasitized fish became lighter in skin coloration compared to controls, and

the longer the time of infection, the lighter the fish became. These results could indicate a potentially

similar de-melanization effect in parasitized killifish as seen in Schistocephalus solidus-infected

sticklebacks [2]. These results also support a link between physiological body condition and melanin-

based colour; in wild populations, lighting of skin colour may influence predator–prey dynamics [17]

whereby infected killifish would be less cryptically coloured in their environment in a similar way to

Diplostomum spathaceum-infected rainbow trout [18]. It is also plausible that de-melanization could be

used by killifish as a form of signalling, similar to the way in which colour is used as an honest

signal in turtles [7]. Further to this, observable colour (hue) and brightness (chroma) were also

affected by infection status. Observable colour increases rapidly in response to stress in the red porgy,

Pagrus pagrus [41], while brightness decreases in parasitized guppies [47], supporting the hypothesis

that the changes in colour observed here could be due to stress caused by social context or infection.

These colour changes could potentially influence the way in which hermaphroditic individuals are

perceived, an important factor for this facultative selfing species, where outcrossing is limited and

possibly driven by males [34]. If colour was important for mating decisions, it could also influence

genetic variation within populations and, consequently, the ability to respond to environmental

fluctuations [35]. Although we cannot completely discard that the observed changes could be

influenced by experimental conditions, which could create stress independently from the infection or

social stress, the differences observed between the infected and control group (which was subject to

the same experimental stress and mock infection) and between the different social tests suggest that

the colour variation was due to both infection and social context, respectively.
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Alterations in lightness of individuals were not affected by genotype in any of the experimental

conditions, suggesting a degree of plasticity for this colour attribute. Conversely, genetic line

influenced changes in observable colour and brightness in both experimental tests, with an interaction

between genotype and the social environment, which could suggest the existence of genotype by

environment interactions [48]. Yet our results also highlighted the plasticity of individual variation in

colour responses. This suggests that other individual factors, apart from genotypic variation, could

also drive variation in colour changes in relation to social context and parasitic infection [49].

Individual flexibility in phenotypic (colour) response can be key for indicating health, dominance or

mating.

In summary, our results indicate that melanin-based colour can change relatively quickly in the

mangrove killifish in response to infection or social interactions, and that change might act as a proxy

for body condition, in the mangrove killifish as suggested for other species [9]. Thus, in infected

individuals, colour could be indicative of mate health status if/when hermaphroditic individuals

come into contact with males. If the variation observed between selfing lines in colour in response to

social context and parasitic infection was the result of genotype by environment interactions, it may

be particularly important to maintain colour polymorphism in this inbred species with very limited

genetic diversity.
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