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This paper studies the removal of chemisorbed carboxylates and phosphonates from

TiO2‐coated galvanized steel using NaOH(aq). XPS and FTIR data show that NaOH(aq)

is effective at desorbing these species and so is an alternative to gas phase processes

(eg, plasma cleaning). Tribological investigations show that NaOH(aq)‐treated surfaces

show reduced friction and wear, relative to the “as‐received” galvanized steel. This is

ascribed to carbonate (present as an impurity in NaOH) that adsorbs to the surface of

the substrate during NaOH(aq) immersion. Carbonate removal through sonication in

water generates surfaces that show friction similar to “as‐received” galvanized steel.

This work is useful in areas (eg, automotive manufacturing), where the effective

removal of lubricants following tribological contact is key to subsequent paint

adhesion.
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1 | INTRODUCTION

Functionalization of surfaces with chemisorbed molecules is an

attractive route to tailor interfacial properties such as lubricity1-3 and

wetting.2-5 Self‐assembled monolayers (SAMs) have been widely used

in recent years to this end due to their durability and relative ease of

preparation.1 Reports shows that SAMs form on a variety of surfaces;

eg, Al2O3
2 or copper oxide,3,5 SiO2,

6,7 and metals like Au4,8 and Ag.9,10

Molecules that form SAMs possess a linker group that can interact

with surface sites (eg, CO2H or SH) and an alkyl or perfluoroalkyl chain

that points away from the surface.1,7 Condensation reactions between

the linker groups and surface sites7 create covalent bonds, and the

resultant SAMs lower the surface energy and provide a physical

barrier against tribological contact to improve abrasion performance

and chemical resistance.1,11

SAMs are reported to lower the coefficient of friction (μ) of

substrates by a molecular spring mechanism, where the orientation

of the spacer chains reduces interfacial shear forces.1,12 Hence,

SAMs have been cited as possible lubricants for small length scales

tribological contacts; eg, micro/nano‐electromechanical systems

(MEMS/NEMS)1,5,13 and in sheet metal forming processes3 which

are used in the automotive, building, and aviation industries to create

shaped components.

Oils and oil‐based lubricants are widely used to reduce friction in

these processes.14,15 Thicknesses of these lubricant films are dictated

by the surface roughness of the materials3 that are undergoing plastic

deformation, because it is necessary that the lubricant covers all of the

surface features in order to prevent wear. In practice, this leads to an

over compensation of the amount of lubricant that is applied, which

increases cost and waste because excess lubricant must then be

removed to prevent impacting on subsequent sheet metal forming

operations (eg, painting, welding16).

Previous work has shown that alkyl carboxylic2 or phosphonic

acids3 can be used to imbue inherent lubricity to Al or copper oxide
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substrates. In addition, despite the large number of studies reporting

SAM formation, there are relatively few reports of how SAMs can

be removed from surfaces. The few reports there are describe thiol

removal from Au using gas‐phase processes (eg, plasma cleaning8

and ozonolysis17,18) or electrochemical methods.19-21 By comparison,

there are few reports describing carboxylate or phosphonate SAM

removal from metal substrates although the removal of carboxylates

fromTiO2 surfaces has been achieved through de‐esterification, using

bases like NaOH and Bu4NOH.22

This study investigates the desorption of chemisorbed lauric (R12C)

and dodecylphosphonic acid (R12P) from TiO2‐coated automotive‐

grade galvanized steels using NaOH(aq). Detailed surface characteriza-

tion (X‐ray photoelectron and infrared [IR] spectroscopy) allied to

water contact angle (WCA) measurements to study surface wetting

have been combined with scanning electron microscopy to study

how NaOH(aq) treatment affects the galvanized steel surface. These

data have been correlated with the tribological properties of the

functionalized and NaOH‐treated surfaces using linear friction testing

(LFT) and confocal microscopy. In order to study the effectiveness of

NaOH(aq) as a method of removing these chemisorbed species,

we have evaluated this method against O2 plasma cleaning. Exposure

of surface‐adsorbed species to O2 plasma has been shown to be

an effective method of removing compounds from surfaces.8

Consequently, it was used as comparison to study the efficacy of

the NaOH(aq) treatment.

2 | EXPERIMENTAL METHODS

2.1 | Substrate and surface treatments

Hot‐dip galvanized (HDG) steel substrate (DX56, Tata Steel) was

sheared into 10 × 20 mm2 coupons for characterization and

50 × 300 mm2 strips for LFT. The steel composition (%wt) was Al

0.036, C 0.0022, Mo 0.001, Ni 0.001, N 0.0035, P 0.009, Si 0.003, S

0.010, Sn 0.004, Ti 0.050, V 0.002, Cr 0.012, Cu 0.026, Mn 0.088, B

0.002 (balance was Fe). During galvanizing, the steel immersed in a

bath of molten Zn containing 0.3% wt Al. Consequently, the surface

galvanic layer is 99.7% Zn. All chemicals (Sigma‐Aldrich) were used

without purification. The HDG steel substrate was coated with TiO2

using an isopropanolic solution of Ti (OiPr)4 (100 mM) for 30 seconds

before drying in air for 1 minute as described previously.23,24 Samples

were then immersed in 100 mM isopropanolic solutions of dodecanoic

acid (R12C) or dodecane phosphonic acid (R12P) for 30 seconds and

allowed to air dry. Physisorbed species were removed from the sur-

faces through rinsing the coated substrates with acetone for several

minutes. Bands ascribed to physisorbed species (eg, C═O and O) were

not observed after rinsing using IR spectroscopy. This indicated that

the residual material was chemisorbed onto the surface. Desorption

of chemisorbed R12C and R12P was achieved through immersing the

acetone‐washed surfaces in 100 mM NaOH (aq). Selected samples

were then sonicated in deionized H2O for 1 minute followed by drying

in air. Plasma cleaning was carried out using a radio frequency induced

O2 plasma in an Electronic Diener plasma cleaner. Before cleaning, the

chamber was placed under vacuum (< 1 mbar) before the O2 was

injected (pressure < 10 mbar) and the samples exposed for 10 minutes

on each side.

2.2 | Characterization

Attenuated total reflectance Fourier transform infrared (ATR‐FTIR)

spectroscopy was carried out on a Perkin Elmer 100 Series spectrom-

eter (four scans, 4 cm−1 resolution, 650‐4000 cm−1). Sessile drop WCA

measurements (n = 5, 5‐μL droplets) were conducted with a USB 2.0

camera and goniometer using FTA 32 software (FTA 32 Europe).

X‐ray photoelectron spectroscopy (XPS) was studied using an Axis

Supra XPS (Kratos Analytical) with a monochromated Al Kα source

and large area slot mode detector (ca. 300 μm × 800 μm analysis

area). Charge neutralization was used to limit differential charging,

and the data calibrated with respect to the C 1s peak (284.8 eV).

Survey spectra (step size 1 eV, dwell time 0.1 second, pass energy

160 eV) were collected at three surface locations before high‐

resolution spectra (step size 0.1 eV, dwell time 250 ms, pass energy

20 eV). Data were fitted using CASA software and Shirley back-

grounds. Field emission gun scanning electron microscopy (FEG‐

SEM) was studied using a Hitachi S4800 at 1.0 kV. Confocal

microcopy was performed at 20× magnification (2.1 × 2.1 mm field

of view) on a Nanofocus μSurf Mobile microscope. Topographic

images were plotted using Mountains software (version 7.3). XRD

was performed on a Bruker D8 Discover Diffractometer using Cu Kα

radiation (λ = 0.15406 nm) at 0.0196° step size. Zinc concentrations

were measured by atomic absorbance spectroscopy (AAS) on a Varian

SpectrAA 220FS (λ = 213.9 nm, current = 5 mA slit width = 0.1 nm slit)

using an acetylene flame. The instrument was calibrated using seven

standards from 0 to 2000 Zn2+ μg L−1 diluted from a standard Zn solu-

tion containing 1%wt HCl (Sigma‐Aldrich). LFT was measured (n = 3)

over a length of 60 mm by pulling a strip of steel through flat and

cylindrical tools at an average velocity of 0.345 mm s−1. The tools

were clamped together using a force of 5 kN. The coefficient of

friction (μ) was calculated using Equation (1) where F t is the pulling

force whilst F N is the clamping force. The average μ values were

recorded at the 40 to 50‐mm region of the sample because static

friction often dominated the first 20 mm of sliding. Full details of the

LFT testing are given ESI 1.0.

μ ¼ Ft= 2 × FNð Þ (1)

3 | RESULTS AND DISCUSSION

3.1 | Surface characterization

The surface composition and morphology of the TiO2 coated

HDG‐steel substrate have been in detail previously.24 After deposition

of R12C, the ATR‐IR data show C―H stretching and bending bands of
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the alkyl chain,25 along with asymmetric and symmetric carboxylate

stretching bands for the linker group at 1540 and 1398 cm−1, respec-

tively26-28 (Figure 1A). The wavenumber gap between these carboxyl-

ate stretching bands suggests bridging mode coordination.27 However,

after immersion in NaOH(aq), only very weak CH2 symmetric

and asymmetric stretching bands are observed after the R12C func-

tionalized surface was immersed in the NaOH(aq) (Figure 1B).

This suggests that almost all the R12C was desorbed but there may

have been a trace amount of R12C which was not desorbed during

the treatment. It was not possible to unequivocally confirm this

because carboxylate stretching bands are coincident with the new

and more intense carbonate asymmetric stretching band observed in

the IR spectrum29 (Figure 1B). The trace CH2 bands were not

observed in the IR spectrum of the NaOH‐treated surface after soni-

cation in H2O, which could suggest that they were ascribed to a spe-

cies that could be removed due to sonication. For the newly observed

carbonate bands, these are ascribed to the ca. 2% impurity of

Na2CO3 that typically forms in NaOH during its manufacturing.

Hence, these data show that the substrate is altered so that carbonate

species end up on the substrate surface during the base‐catalyzed

desorption of R12C in NaOH(aq). The bands ascribed to carbonate

stretching and bending modes (1422 and 879 cm−1, respectively) are

at similar positions to as in the IR spectrum of pure sodium bicarbon-

ate.26 Consequently, it is not possible to ascertain from the FTIR data

(A)

(B)

(C)

FIGURE 1 ATR‐IR spectra of the R12C functionalized surface A,
after R12C deposition, B, after immersion in NaOH(aq), and C, after
immersion in NaOH(aq) and sonication in H2O. α = CH3 asymmetric
stretch, β = υ CH2 asymmetric stretch, γ = υ CH2 symmetric stretch,
κ = carboxylate asymmetric stretch, η = CH2 bend, ν = carboxylate
symmetric stretch, ρ = υ CO3

2− asymmetric stretch, and θ = υ CO3
2−

out‐of‐plane bend

(A)

(B)

(C)

FIGURE 2 High‐resolution XPS data of the Zn 3s and P 2p regions
on the R12P functionalized surface A, after R12P deposition, B, after
immersion in NaOH(aq), and C, after O2 plasma cleaning
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what carbonate species is on the surface; ie, whether it is a new

carbonate phase. However, what is known is that the carbonate ion

(CO3
2−) is a planar molecule with no alkyl chains like R12C or R12P.

Hence, if it does adsorb, it could either be perpendicular to the surface

or in planar configuration. The SEM data (Figure 4) do show rod‐like

features which do suggest a separate carbonate phase. Interestingly,

it is known that carbonates can imbue lubricity when added as

lubricant additives30,31 which is in line with the later coefficient of

friction testing for these surfaces.

In addition, in the 100 mM NaOH(aq) solution, the pH is 13 which

greatly exceeds the pKa values for lauric acid (pKa = 5.3) or sodium

bicarbonate (pKa1 = 6.4, pKa2 = 10.3) meaning that all ions are fully

dissociated. In addition, the 100 mM concentration of hydroxyl ions

from NaOH will greatly exceed the number of adsorbed molecules

which helps drive the desorption process. At the same time, the ca.

2% carbonate impurity in NaOH results in ca. 2 mM of CO3
2−.

A partitioning process between CO3
2−

(aq) and CO3
2−

(sorbed) will take

place. Our previous work on dyeing metal oxides22 shows that

2 mM is more than sufficient to drive partitioning towards adsorbed

species. Thus, whilst chemical desorption of carbonate was not

possible in NaOH(aq), sonication of the NaOH(aq)‐treated samples in

H2O resulted in no carbonate stretching or bending bands in the

ATR‐IR spectra (Figure 1C). Instead, the data are very similar to that

of the “as‐received” HDG substrate (ESI Figure 2). This shows that

adsorbed carbonate could be removed from the surface through

sonication. Whilst it is possible that sonication could selectively

remove adsorbed carbonate, it is more likely that weakly held particles

of surface zinc oxide are physically removed and the carbonate

inevitably is removed along with this. This creates a pristine zinc metal

surface which does not dissolve because the pH of the water is neutral

and instead rapidly re‐oxidizes to ZnO.

The IR spectrum for the R12P‐treated sample (ESI Figure 3A) shows

C―H stretching and bending modes from the alkyl chain of R12P, and

asymmetric and symmetric P―O stretching bands (1156 and 1083 cm
−1, respectively) from the linker group.3,32 However, the absence of a

O stretching band at ca. 1220 cm−1 suggests the phosphonate

chemisorbs by tridentate coordination as observed in previous

studies.23,24 After immersion of the substrate in NaOH(aq), no R12P

bands are observed, and only carbonate stretching and bending modes

are present (ESI Figure 3b) as for the analogous R12C sample. This

indicates that the phosphonate had desorbed from the surface and

has been replaced by adsorbed carbonate.

Due to the ubiquitous presence of adventitious C on surfaces,

it was not possible to unambiguously determine whether NaOH(aq)

had desorbed R12C from the surface using XPS data. The positions

of the O―C═O peaks in the XP spectra of an untreated R12C and an

R12C sample after immersion in the NaOH(aq) were both observed at

288.9 eV. Consequently, it is not possible to differentiate whether

the carbonaceous material remaining on the surface was R12C, carbon-

ate, or some other form of adventitious carbon from the XPS data.

However, the atomic % values for C, Zn, and Ti observed for R12C

samples after NaOH(aq) treatment were similar to the unfunctionalized

substrate (Table 1) which suggests that NaOH(aq) does desorb R12C

from the surface, in line with the IR data. The Zn:C ratio of the

NaOH(aq)‐treated sample also changes to 0.9:1.0 from 0.7:1.0 for the

R12C‐treated sample which is a closer ratio to the untreated sample

(1.2:1.0) but not identical which is ascribed to carbon from the surface

carbonate which the IR data show is present after NaOH(aq) treatment

(Table 1). The desorption of R12P was also further studied by XPS.

After R12P deposition, the XPS data (Figure 2A) show 2s and 2p phos-

phorus peaks at 191.3 and 133.7 eV, respectively. Notably, these

values are in agreement with related studies that report phosphonate

FIGURE 3 Water contact angle images for
HDG substrate A, after initial cleaning, B, after
R12painitngC deposition, C, after R12P
deposition, and D, after NaOH(aq) treatment
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binding on alloy and metal oxide surfaces.3,34 After NaOH(aq) treat-

ment, very weak phosphorus peaks are observed in the high‐

resolution XP spectrum. However, the atomic percentage of P was

observed to be 0.0 ± 0.0% using CASA XPS software which indicates

that the amount of P remaining after the NaOH(aq) treatment is below

the limit of detection of the software. This suggests that, at least the

majority of, the chemisorbed phosphonates are removed from the

surface during this treatment, in line with the IR data. Analysis of

the C 1s XPS spectra was also performed. However, the line shapes

of the C 1s peak envelopes of surfaces before and after the NaOH(aq)

treatment were very similar. Consequently, this made it very difficult

to elucidate the nature of the carbonaceous material present on

the surfaces.

Water contact angle (WCA) data of the HDG substrate (Figure 3

and Table 2) were 63.2 ± 6.2°, which increases to values between

105° and 115° following chemisorption of R12C or R12P as reported

in previous studies.3,25 After NaOH(aq) treatment, the surfaces became

substantially more hydrophilic (WCA < 50°) which is ascribed to the

presence of surface adsorbed carbonate. Carbonate is a charge ion

with polarized carbon‐oxygen bonds which will hydrogen bond to

water reducing the surface energy and increasing hydrophilicity.

Finally, after sonication in H2O, the WCA data for either R12C or

R12P samples were very similar to the untreated HDG substrate

suggesting that both chemisorbed R12C and R12P, and carbonate had

been removed the surfaces. Surface roughness data have also been

measured using confocal microscopy for these treatments (Table 2).

The data do not show any substantial changes between the treat-

ments, and so this is not thought to be a major influence on the hydro-

phobicity or surface lubricity of these samples.

SEM of the HDG steel substrate before and after immersion in

NaOH(aq) was studied to investigate to effects of the NaOH(aq)

solution on the zinc galvanic layer of the substrate. The data show that

the surface of the NaOH(aq)‐treated substrate (Figure 4B) is substan-

tially rougher than the as‐received HDG steel (Figure 4A). This

suggests that, in addition to desorbing R12C and R12P, when the

surface is treated with NaOH(aq), the amphoteric surface ZnO

dissolves. This exposes the underlying zinc metal which is also

dissolved by the NaOH(aq) solution. AAS was used to further study

this. The zinc concentration in the initial NaOH(aq) solution was

275 μg Zn L−1 which is ascribed to trace impurities during its manufac-

ture. This zinc concentration increases to 1404 μg Zn L−1 for R12C and

1704 μg Zn L−1 for R12P (ESI Figure 4). Taking into account the

increase in zinc concentration and the 100 mL of NaOH(aq) used, this

suggests that 112.9 μg of Zn was removed from the R12C sample

and 142.9 μg of Zn from the R12P sample. This confirms that NaOH(aq)

removes Zn from the HDG steel through etching, and this affects

the surface morphology of the material, in line with previously

reported data.35 Assuming a 99.7% zinc galvanic coating of 7 to

10 μm, the total zinc present on 1 × 2 cm samples will be ca. 10 to

14 mg. As such, these data suggest that ca. 10% of the galvanic zinc

layer is removed during this etching process. Rod‐like features

(labelled α but present all over the surface in Figure 4B) were also

observed in some areas of the NaOH(aq)‐treated galvanized steel.

XRD data of these samples showed no new diffraction peaks relative

to the untreated HDG substrate (ESI Figure 5), suggesting that this

material was either poorly crystalline or amorphous. Alternatively, it

could be re‐deposited Zn and/or ZnO which would not show up as

extra peaks because these phases were already present in the HDG‐

steel substrate. Figure 4C then shows SEM data for R12C‐coated

HDG which has been acetone washed and then NaOH treated. The

data do not show the same rod‐like features which are observed on

the NaOH‐treated HDG. Instead, the NaOH‐treated R12C surface

appears more like TiO2‐coated HDG (Figure 4A) albeit slightly more

textured which would be expected after a strong alkali treatment of

a zinc‐rich surface.

By comparison, the WCAs of the R12C and R12P functionalized

surfaces after O2 plasma cleaning were 58.4 ± 4.0° and 27.2 ± 16.9°.

These low WCA values show that the surface is changed by the O2

plasma and suggest that more organic material is removed presumably

by oxidation to produce surface largely composed of metal oxide.8,36

TABLE 1 Atomic percentages (calculated using sensitivity factors) and Zn:C ratios calculated the combined areas of the Zn 2p1/2 and Zn 2p 3/2
peaks versus the C 1s peak from XPS on selected surfaces (data are average of three analyses per surface ± standard deviation). Trace contam-
inants (Si, N, Na, Ca) on TiO2‐coated HDG and on the R12C surfaces were ascribed to contamination from laboratory gloves33

Element

Atomic %

TiO2‐Coated HDG R12C Coating R12C Coating + NaOH

C 58.4 ± 0.8 74.5 ± 1.3 61.2 ± 9.0

Zn 1.9 ± 0.2 1.7 ± 0.0 5.4 ± 1.8

Ti 6.3 ± 0.1 1.2 ± 1.0 3.7 ± 1.2

O 28.5 ± 0.3 20.1 ± 1.2 27.7 ± 7.6

Zn:C 1.2:1.0 0.7:1.0 0.9:1.0

TABLE 2 Water contact angles and arithmetic mean surface rough-
ness (Sa) values of selected treatments. Sa values are calculated from
2.1 × 2.1 mm2 confocal images

Sample
Water Contact
Angle, °

Surface Roughness
(Sa), μm

HDG substrate 63.2 ± 6.2 1.34

R12C 107.4 ± 5.824 1.46

R12P 103.0 ± 4.023 1.48

NaOH‐treated HDG substrate < 50 1.23

HILL ET AL. 5



In line with this, the IR spectra of the plasma‐cleaned surfaces show

very weak C―H stretching bands, indicating that the majority of the

chemisorbed organic material had been removed by the plasma (ESI

Figure 6). However, XPS data of the NaOH‐treated R12P sample

still show the presence of P 2s and P 2p photoelectron peaks,

suggesting that the phosphonate linker group remains on the surface

(Figure 2C). The ratio of the peak areas of the P 2p to the adjacent

Zn 3s peak (P:Zn) of this sample was observed to be 4.8:1. An

untreated R12P sample was observed to display a P:Zn of

approximately 3.1:1, whereas an R12P sample immersed in the

NaOH(aq) displayed a P:Zn of 0.0:1. Because the P:Zn of the plasma‐

cleaned sample is more similar to the untreated R12P sample, this

could suggest that the O2 plasma is ineffective at removing the linker

group from the surface. This can be explained because O2 plasmas oxi-

dize carbonaceous matter so that it is lost as CO2.
33 However, the P in

phosphate is already fully oxidized, and, because it is chemisorbed to

the surface, it is not volatile. This explanation is in line with related

studies, which have reported the generation of sulfonate species

when O2 plasma was used to remove thiols from Au.8 In support of

this hypothesis, the atomic percentage of C observed on the plasma‐

cleaned R12P sample was observed to be 57.4 ± 1.7%. The atomic

percentage of C observed on the acetone‐washed, but not plasma‐

treated R12P sample, was observed to be 74.2 ± 2.7%, suggesting that

the alkyl chain of the phosphonate is removed by the O2 plasma. By

comparison, the XPS data of the R12P functionalized specimen

after immersion in the NaOH(aq) show very little P, indicating that

the NaOH treatment is a more effective method for removing

chemisorbed R12P from the substrate.

3.2 | Tribological testing

The tribological properties of the surfaces were studied using LFT.

As discussed in our previous studies, LFT is an aggressive tribological

test that is designed to simulate the sliding conditions galvanized

steels experience during sheet metal forming operations.22,23 The data

show the average coefficient of friction (μ) of the TiO2‐coated HDG

steel substrate is 0.26 ± 0.06. Treatment of the substrate with

either R12C or R12P reduced μ to 0.11 ± 0.01 (Figure 5A,B). This large

reduction is ascribed to alkyl chains of R12C or R12P acting like

molecular springs or brushes during tribological contact.1,11

Interestingly, the μ values of the R12C and R12P functionalized sur-

faces did not increase significantly after immersion in NaOH(aq). This

suggests that the carbonate that adsorbs to the surface during caustic

treatment provides a lubrication effect and acts as an effective barrier

against surface asperity contact. To study this further, LFT measure-

ments were also performed on NaOH(aq)‐treated surfaces that had

been sonicated in H2O (which our ATR‐IR data show removes the

adsorbed carbonate). The LFT data show that the average μ value of

the surfaces increases substantially after sonication to between 0.17

and 0.25 (Figure 5A,B). These data do suggest that carbonate is

responsible for the lower μ values and so does imbue surface lubricity

in its own right. In line with this, confocal microscopy shows substan-

tially deeper scratches on the sonicated surfaces relative to samples

that were solely subjected to NaOH(aq) (Figure 5C‐E). This severe gall-

ing behaviour14 observed after carbonate removal further supports

the hypothesis that carbonate does provide a barrier layer that pro-

tects the surfaces in motion from wear.

Confocal microscopy has been measured on samples before and

after LFT testing. The confocal micrographs and line scans are shown

in ESI Figures 7 to 14, whilst Table 3 shows surface roughness data.

Before LFT, the arithmetic mean surface roughness (Sa) varies from

FIGURE 4 FEG‐SEM images of HDG‐steel substrate A, “as
received,” B, HDG‐steel after immersion in NaOH(aq), and (C) R12C‐
coated HDG after immersion in NaOH(aq)
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1.20 to 1.46 μm across all the samples so there is little difference

between the samples. However, after one LFT pass, the R12P sample

and the R12C and R12P samples show a small drop in Sa values to 0.96

to 1.14 μm. This is ascribed to a polishing effect where the LFT tool

removes extreme surface asperities to effectively smooth the surface

(although this is a small effect). By comparison, the NaOH(aq)‐treated

R12C and R12P samples which have been sonicated show an increase

in Sa to 2.58 to 2.72 μm. This is ascribed to the removal of surface

carbonate particles by sonication, which increases the coefficient of

friction and results in more surface damage during the LFT pass.

3.3 | The potential for green lubricants

This work has used aTiO2 coating onto the galvanized layer as a mimic

for Cr‐free anticorrosion coatings. Whilst the carboxylate or phospho-

nate linkers can chemisorb to this metal oxide surface, the native

oxide of the galvanic zinc layer can also act in this role. In theory, this

makes theTiO2 layer optional in terms of lubricity which would save a

processing step if this layer was not included. However, it is very

important for corrosion protection which is why we have included it

in this work.

For a lubricant to be considered environmentally sustainable, the

active component must be recoverable and reusable. Our data show

that the R12C carboxylate and R12P phosphonate can be desorbed

from the surfaces in aqueous alkaline solution. Neutralizing these

desorbed solutions will enable the compounds to be re‐used. The data

also show some dissolution of the galvanic zinc layer in the NaOH(aq)

during R12C and R12P desorption. Importantly, less than 10% of the

galvanic layer is dissolved in this process so there will be little effect

on the corrosion protection. But this also means that the dissolved

TABLE 3 Arithmetic mean surface roughness (Sa) values of selected
treatments. Sa values are calculated from 2.1 × 2.1 mm2 confocal
images of surfaces in contact with the flat tool

Treatment
Sonicated
in H2O?

Surface Roughness (Sa)

Before LFT (μm) After LFT (μm)

TiO2‐coated HDG No 1.21 1.54

R12C No 1.46 1.47

R12P No 1.48 1.05

R12C + NaOH(aq) No 1.20 0.96

R12P + NaOH(aq) No 1.44 1.14

R12C + NaOH(aq) Yes 1.35 2.58

R12P + NaOH(aq) Yes 1.23 2.72

FIGURE 5 Coefficients of friction (μ) versus sliding distance for A, R12C and B, R12P‐treated surfaces. Data are: TiO2‐coated HDG (grey), R12C
(green), R12P (purple), NaOH(aq)‐treated surfaces (orange), and samples sonicated in H2O (blue). Confocal micrographs (2.0 × 2.0 mm) of the R12C
substrates after LFT measurements C, after R12C deposition, D, after NaOH(aq) treatment, and (E) after sonication in H2O. Data are from the
surface in contact with the flat tool. Scale bars are 10 μm for C, and D, and 15 μm for E,
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Zn2+(aq) should be easily recoverable either by electrolytic recovery or

precipitation. At the same time, the surface morphology will change

through NaOH etching, but NaOH is already widely used in automo-

tive manufacturing, eg, to remove surface‐adsorbing additives in

current metal forming lubricants (albeit the NaOH is typically at a

lower concentration). Additionally, confocal microscopy shows that

the macroscopic surface roughness of the NaOH‐treated surfaces

is similar to the as‐received HDG. Because macroscopic surface

roughness has a greater impact on paint appearance than roughness

of smaller length scales, we do not anticipate any problems with paint

adhesion or surface finish for SAM‐processed substrates.

In a further interesting observation, whilst the NaOH(aq) treatment

desorbs alkyl carboxylates and phosphonates, these are replaced

by adsorbed carbonate which itself imbues similar lubricity to the

substrates. This is important because while sodium carbonate is a

similar price (£99 for 5 kg) to R12C (£70 for 5 kg), it is much cheaper

than R12P (£54 for 1 g)―price data from Aldrich. This would also be

a good end use for fossil fuel‐related CO2 removed from the

atmosphere into water and, in the context of the potential impact of

green lubricants, the processing methodologies described in this paper

should be compatible with existing processes on assembly lines

without requiring any additional steps. In addition, much less SAM

material needs to be deposited compared with oil‐based lubrication

processes and, as stated earlier, the SAM can be recovered and

re‐used.

However, the mode of action of SAMs is very different to

traditional lubricants because it arises from a thin, solid film on the

surface rather than a liquid. Whilst a solid lubricant brings benefits in

terms of reduced liquid waste, it cannot remove debris or friction‐

related heat from the contact area in the same way as a liquid can.

However, this can be overcome by using water with the SAMs during

forming rather than running them dry. As the WCA data show, the

SAM surfaces are hydrophobic, and further LFT data show they work

just as effectively when combined with water as when they are used

dry (eg, the μ of the R12C samples run dry were 0.11 ± 0.005,

whereas with water the μ of R12C was 0.12 ± 0.01). By comparison,

the lubricity for the carbonated surfaces is believed to arise from

carbonate acting either as an electrostatic (due to high polarity)

and/or as a physical barrier coating.30,31 The rod‐like features on the

NaOH (aq)‐treated surface (Figure 4B) suggest that these could

contribute to lowering the coefficient of friction. This is further

confirmed by AFM data (ESI Figure 15) which shows no particles on

the as‐received DX56 surface, then many particles of 300 to 400 nm

size on the NaOH(aq)‐treated surface and then that these particles

are removed by sonication in water.

4 | CONCLUSIONS

This paper has shown that, not only can chemisorbed alkyl carboxyl-

ates or phosphonates act as an inherent, solid lubricants on galvanized

steel, but these compounds can be easily desorbed by briefly dipping

the substrates in aqueous NaOH using processes which are

compatible with current steel manufacturing processes. Whilst

detailed characterization confirms the desorption of the vast majority

of the alkyl carboxylates or phosphonates, the coefficient of friction of

the substrates does not increase as expected. Instead, not only is a

significant adsorption of carbonate observed, but this new layer also

appears to imbue surface lubricity. The fact that such a simple and

low cost adsorbent as carbonate can influence surface properties is

both important and surprising. Also, our data show that NaOH(aq) only

etches 10% of the galvanic zinc layer which does not affect surface

roughness sufficiently to affect painting or surface finish.
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