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impact of two symmetric bars, a tube onto a footing strip, and an -ssembly
of granular particles to a tailor rolled blank, are simulated ir 'astic regime
to assess the accuracy and applicability of the proposed me hor..

Keywords:  Isogeometric analysis, Discrete element, Coupu. ~. Contact,
Penalty

1. Introduction

Granular materials (GMs) play an important »~'e 1., ...any engineering and
industrial applications such as food processing, por.de - compaction, mineral
processing, construction and renewable energ prodr o tion. During process-
ing and transporting of GMs, GM-structure inters ‘tions may have significant
effects on structure wear, and even lead to po <ible structure failure. e.g. mill
agitator wear, mixer ribbon or blade wear, . "mveyor wear, etc. At the same
time. the interactions acting on GMs d. - cuy arect the flow, mixing process-
ing and/or fracture behaviour of GMs [1].

The discrete element method (DEM) ouginally proposed by Cundall and
Stack [2, 3] in the 1970s, is an effer “ive 1. ymerical method to track the motion
and flow of individual particles, an' 1."2r has been extended to model con-
tinuous solid media and partici. «.., * 2 failure of brittle matters by bonding
elements together [4]. However, in -e context of DEM, structures interact-
ing with particles are usual’, ~presented by rigid walls without considering
their deformation [5], and aence i he interaction between GMs and structures
may not be taken into iccow-t accurately. The structure deformation can
be analyzed by using .he .inite element method (FEM), which is the most
commonly used nun eric.! v ethod for structure analysis. Therefore, some
FE/DE coupling < hods have been represented to deal with GM-structure
interactions [6, 7. 8, 9, 1J; 11, 12, 13, 14, 15, 16].

In traditions « F M, Lagrangian basis functions are used for the geomet-
ric description a. - the displacement-field approximation of structures [17].
This approe :h »suauy requires substantial efforts in mesh generation for
complex geu  tries, leading to the non-smoothness at the common edges
and/or v ues of wdjacent surfaces, and also relatively low accurate geomet-
ric appr ximat on. However, the interaction between GMs and structures
“= ghe structure geometry, especially the interaction surface be-
twee 1 the tructures and GMs. Consequently, a higher precision geomet-
ric represer.tation is preferable to more accurately calculate the interaction
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force. Furthermore, the non-smoothness between FE surfaces asu v leads
to three types of DE/FE contact situations: DE-surface, DF  'ge and DE-
node. Some complicated approaches are developed to han: le t.iese contact
situations approximately, such as several-plane-triangle or -maa. "ngle equiv-
alences [12, 13, 14| curved-surface equivalences [11, 15, 71 1n ~ddition, the
FE/DE contact force is prone to suffering the so-called ¢im . o stinuity prob-
lem, especially when a DE is near FE edges and/or noa = [11, 18, 19], and
may also lead to numerical instability due to the gener - tion of superficial
energy. A possible solution to this problem with.n the ombined FE/DE
framework involves using energy based contact “ucories |7, 20, 21].

A new computational method termed isog or.etr = analysis (IGA) was
proposed by Hughes et al. [22] aiming at integ:. *ing 7.2 meshes and computer-
aided design (CAD) models. To achieve this purpc e, IGA employs the same
geometric basis functions as those describing oer metries in CAD [23], e.g.
B-spline or NURBS basis functions, to approa.mate the solution field. There-
fore, CAD design models can be directly ~dopted for analysis in IGA without
additional mesh generation. In addi“on. the analysis model in IGA is typi-
cally smooth, and almost the same as that i CAD, and thus the geometric
approximation error is minimized. aca. se of these significantly advantages,
which are considerably difficult to b achieved in traditional FEM, IGA has
drawn numerous attentions in « varic.y of engineering applications. such as
structural vibrations [24], plate and shell analysis [25, 26, 27]. contact anal-
ysis (28], damage and frac ure mechanics [29, 30|, electromagnetic analysis
[31], and fluid mechanics {*21. Mc reover, IGA has shown more computational
advantages than the st ndara ©” £M in fluid-structure and particle-structure
interaction problems. -sor.e n vel coupling approaches have been developed,
such as an isogeome ric-11. <ifree coupling approach [33], a scaled boundary
FEM-isogeometric co. nling method [34], and an isogeometric-BEM (bound-
ary element meth-) coupling approach [35].

In order to ".tilir ¢ the advantages of both IGA (the exact and smooth ge-
ometry and highe: ~rder approximation) and DEM (effectiveness for granular
matters or £ mp ucitv for failure of brittle materials), it is desirable to couple
IGA and DELT to s mulate GM-structure interaction problems in one system.
To the a «thors” best knowledge, no computational approach in terms of the
coupled GA /T ZM framework has been proposed to model GM-structure in-
teractl.as. 1u1s paper aims to develop such a coupling approach that utilizes
two ubdon ains: the IGA subdomain for structure analysis and the DE sub-
domau. fo GMs or structural (using bonded DEs to represent) simulations.
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The CGRID method [36, 37] is extended to detect the potenti [ cotact be-
tween IGA elements and DEs by using the strong convex hull . ~perty of the
NURBS surface. Then, the contact position is determined = ia *ae combina-
tion of the Brent method [38, 39] and simplex iterations 10| . » providing
initial estimations. The contact force between the conte * pan »f a DE and
an IGA element is computed by employed a penalty b sed ni thod.

The paper is organized as follows. Section 2 introu ~es NURBS basis
functions and isogeometric approximations. The 1 asic farmulations of dis-
crete element models for both particulate systems ai 1 cont nuous solid media
are briefly reviewed in Section 3. Section 4 desc.ines tue coupling approach
and its algorithmic aspect based on a penalty fu. ct'on | ased method. Section
5 presents three numerical examples to assess “he & aracy and applicability
of the proposed coupling approach. Conclusions a e drawn in Section 6.

2. Isogeometric method

2.1. NURBS basis functions

In order to construct NURBS bas’s r'uictions, the knot vector k' associ-
ated with the /™" dimension of a 0 sw. “ace patch is defined as

I I ¢l .4 I 1 1
I (TEISIL 91 -SR-S < S - -
= N— — — ——
(pr+1)terms (pr+1)terms

i . . :
where &/ denotes the I ' not. » ' is a nondecreasing sequence of real num-

bers, i.e. & < fl+1 i = U, ., %+ p;. Also, nk¥ + 1 is the total number
of the accompanying ¢ ntrol nodes in the I dimension, and p; denotes the

degree of the accomna. ng 3-spline basis functions. m% = n% + n¢, where

ng = pr + 1 is the rode nmnher of each control mesh in the I'" direction.
The non-zero knou spaw [}, &1, ), [€7.&3,)) and [§}, &) are defined as the
parameter space 0. a 3D IGA element (4,7, k).

To d(—‘T(—‘I'H]ih - t1.e NURBS basis functions, the I'* B-spline basis function
of degree pr. pip (& ", can be defined recursively as

1, ifg <el<éf
. Ty , i+l
Gi(£7) { 0, otherwise 2)
and
1 1 51 51
bipil€!) = i1 Gup 1 (€)+ i (€), forpr 21 (3
i — & Sitpr+l T Sitl
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When some repeating knots are involved in evaluating a basis fractic . which
leads to a quotient of form [1/0, the function is assigned to be ~.. ~. ¢, (€1) is
non-negative, and is referred to simply as ¢;(£?) below for cc cis ness. ¢;(€7)
is infinitely differentiable in the interior of any non-zero ki ot sp.n (&, ¢! 0
At a knot &, however, ¢;(¢1) is (p; — k) times continv ~sly ifferentiable,
where k; denotes the multiplicity of the knot. In an given not span, at
most p;+1 of the basis shape functions ¢;(£!) are not eq *al to zero, i.e. for
i I ¢l
the knot span [£/,&, )

i+1
Gm(E1) # 0, for m = (i — prlpw. . ¥ (@)
Om(E) =0, form < (i—p ) o m>i

The NURBS hasis function R@-(EI ) is represe.ted by a weighted average
of the B-spline basis functions as

R{eT) = — il (5)

where w; is the " weight. By app'vice q. (4), Ri(&!) in a given knot span
[, £ 1) can be rewritten as

; Iy, ,
R;frj\ _ Oﬂ(£ )t’“’i (6)
i
> Om(Ewm
m=i—py
and in this knot span, o’y B _, (£1),..., B;(§") are not equal to zero.

By using the NURBS 1.~ ,is functions, a point in a NURBS solid element
(4,7, k) can be par ancrized as

V'fjn v l: 525 ‘53) = Z Z Z Rmnl (51-. 62- ‘Sg)mm'nl (7)

m=mg n=ngp l=ly

where mg =1 m ng = j—pa, lp = k — ps: T, denotes the position vectors
of the ccatrol ~odes; and R;jy is represented as

0i(€);(6%) Dr(€%)wi
i ik |
Y om(E)0n(E)O(E ) wmn

m=mo n=no l=ly

R‘ijk?(,gl,‘é?:f:%) = (8)
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By inheriting the geometric parameters from the NURBS vo' ume, « NURB-
S surface patch can be fully determined [41] by setting £&* = 5 w 1. For in-
stance, by substituting £* = 1 and Eq. (8) into Eq. (7), the (ur per) surface
of the NURBS element (i, j, k) at €3 = 1 can be expressec. 2s

U E 6 Z Z RmnE E m (9)

m=mgp n=ng

where z,,, are the position vectors of the control nod s for the surface £ = 1
and

@m (£1>®n(\.2\ “mn
i -

> EJ: om(Er)e (2)wmn

M=mqg N=ng

R, (&%) = (10)

in which R,,, (£, £?) denotes the NURBS su1.>~e shape function of the control
node (m,n) that is located at the m “osion in the €' direction and the
n' position in the &2 direction; wy,~ is the weighting factor of the control
node on the element surface &3 = 1. 11 ¢ _aur to calculate the projection of a
point on the NURBS surface (see "~ctic> 4.2), the derivatives of the NURBS
surface with €2 = 1 can be determii~a s

0& 061 Ly (I =1, 2) (11)

n=1my 1. =1no
with

aRmn(glv 52) _ W, )[O i(fl)On(Ezﬂ/agl T Rmn(fl' Ez)aw/afl
aE] W

where w is repre c.ed as

Z Z Om @n )me ( 13)

M=1mngp =1y

2.2. Th weak ‘orm of the governing equations in [GA

or a v o IGA element, the weak form of the governing equations can
Fi «1. IGA el t, tl k f f th g t
be e press. 1 as
xs ext int /
Mii, = 7% — f (14)
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where u, is the nodal displacement vector of the element; @, is e accel-
eration vector; f&' denotes the external nodal force vector; .. 1 f™ is the
internal nodal force vector given hy

Fit = / B'sdv (15)
Ve

where o = |01, 092, 033, a3, 013, 012] 1s the Voigt ne . tion . 2presentation of
the stress tensor; and the strain matrix B can be : 2writte n as

B:[BITBQ ..... B],...‘B]\[]. iZ\T:(pl r—l\{‘ +1)(pg+]_) (].G)

in which By is represented as

p ; 5 T
AR, AR OR,
?):2“1 O U q o.r3 31,‘2

_ IRy AR JR;

BI o 0 Oz 0 dxs O oz (17)
0 0 L S% 52 0
(o T T1
where R; is equal to R, and [ = * x 7 < F.

3. Discrete element models

Both contact models an” © ~nded models are commonly used in the spher-
ical discrete element met! od. Verious contact models have a wide range of
applications to handle t'ie i 7 ction of granular materials [42, 43]. Bonded
models are usually em slov:d to analyze the deformation of brittle materials.
e.g. glass, rock and cou et [44, 45]. To simulate the fracture process of
brittle materials, t.- bonded model can be switched to the contact model
when the failure criterio. is satisfied [4, 46]. The switch between these two
models and the sin ulation of fracture processes are not considered in our
present work as .- «ocuses on the couping between IGA and DEM.

3.1. Conta * mode’ for spherical elements

Only paerica. discrete elements are considered and no friction force will
be taker into ¢ zcount in the present work. When two spheres i and j are
in contact, = shown in Fig. 1, a contact model based on the Hertz-Mindlin
thec v is u: »d to calculate the contact force. The contact force in this model is
usuan 7 div ded into normal and tangential contact components. The normal

=l
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Figure 1: Two discretr ' . in contact

contact force f, for the element 7 can he aiculated based on the Hertz model
[47] as

4 e
Fan = ~E" 1 8aal*)8an (18)
where dq, are the overlap vector de.~rmined by
6r‘1: (7'l+7ﬂj— ”dl_d,j”)e (19)

in which e = (d; —d;)/ ||d- — «,||) is a unit vector through the DE centroids;
and r; and r; are the 1 ~di* of TVEs ¢ and j respectively. The equivalent radius
r* and Young’s moc alus .. are defined as
s
e (20)
T + Tj
EE;
(1-)E;+(1-1])E;

where E; --d £, ~re the Young’s moduli of the two DEs, and »; and v; denote
their Po sson’s -atios.
The te.»oer.ial contact force f,. for DE ¢ can be determined based on the

E* = (21)

Minr lin thory as

16
s = 5 G Bunl) 0 (22)

8
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Here G* and d4¢ are the equivalent shear modulus and tangs nti.! relative
displace respectively, which are defined as

GG

¥ = : 2
G (2 — I/@')Gj + (2 — Vj)Gid ( 3)
t2
b= [ ol (24
51

where G; and G; are the DE shear moduli; ¢/ is tl e relat ve velocity at the
contact point Cg; and [t1, 5] is the contact time inte, !

3.2. Bonded model

9

Figure 2: Springs conn. ~t1.2 two discrete elements

Ficare 3: A cubic arranged bonded diserete element model

" he bor ded model is relatively simple in which two neighbouring spher-
ical e~ Lts are connected by a beam, or by one normal spring and two
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tangential springs, as shown in Fig. 2. In this model, the sp mg tiffness-
es are usually related to the DE arrangement. Several bond- & models with
different arrangements have been reported in the literature 48 49, 50]. Be-
cause the cubic arranged DE model is prone to describing 1he geo metry more
accurately, this particular bonded DE model is emplov-" in .-is paper for
simplicity, as shown in Fig. 3.

In this bonding configuration, the central gray eleme.. is connected with
twenty-six neighboring orange elements by springs. JSecat e of the symmetry
of the packing, the connections between the central « lemen . and its neighbors
can be classified into three types and are marked "y mmmuers 1, 2 and 3 on the
neighboring elements, as shown in Fig. 3. Bas:d n t e energy equivalence
principle, i.e. the total elastic energy stored in _he s} ~iags in a certain domain
is equal to the strain energy stored by the elastic 'olid in the same domain,
the spring stiffnesses for the three connection “vr s are found to be [51]

ol . £
o = (1—2v)(1 -v) (25)
P LA (26)

RN +2)
. Er(l —4v)
21 —2v)(1+v)
klgmmgl — 5 =13 —p3 =0 (28)
where k, and k, denote tn. norn al and tangential spring stiffnesses. respec-

tively; k4 means sprin¢, stiffne.s for type ¢ connection (i = 1, 2, 3); and E
and v are the Young’s mc dul' s and Poisson’s ratio of the solid, respectively.

k= K

s

(27)

4. Coupling approa ™

4.1. Global sear ch

The purpese o. the global search is to detect potential or candidate con-
tact pairs beowe n a NURBS surface or its control mesh and discrete elements
based on the.. bor.nding box representations. The key to this step is to u-
tilize the strore convex hull property of a NURBS surface, i.e. a NURBS
surface .+ fully enclosed in the convexr hull of its control nodes, and thus to
use th . bouuuing box of its control nodes of a NURBS for the global search.

" o illus: -ate this strong convex hull property of a NURBS more clearly, a
two-c.. 2~ s10nal (2D) second-degree NURBS curve is shown in Fig. 4, where

10
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N; denotes the i® control node; C; is the i section of the “eco. 1-degree
NURBS curve; Hgy is the third convex hull, i.e. control triar .. It is clear,
for instance, that the triangle Hs contains the curve Cj.

Ns

Figure 4: The convex hull contains the corresponding  ~cond-degree NURBS curve (degree
p1 = 2, node number of a control polygon n§ 1 +1=3)

Figure 5: The con c. hull contains a section of a third-degree NURBS curve (p; = 3,
ng =4)

Note ths ¢ the convex hull instead of the control mesh contains the cor-
responding c.. ve .ection. Fig. 5 shows a third-degree NURBS curve with
p1 = 3,71, = 4). In this figure, the control mesh and the curve are both
concave, and tl 2 curve section () is not inside the control mesh Ny N5NgN+,
but ir...de wue convex hull Hy, i.e. polygon NyN;N7Ng. Hence, when a DE
over aps th: convex hull of a control mesh, this DE has the possibility to be
in cou. <t with the corresponding NURBS section of the control mesh.

11
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In this paper, the CGRID search method [21, 36] is exter ea "~ detect
overlapping convex hulls of IGAs and DEs by representing be 1. ~onvex hulls
and DEs as axis aligned bounding boxes (AABB).

It is worth noting that a convex hull has the same cc~tror 2odes as its
control mesh, and thus it is unnecessary to distinguish » ~onve. hull and its
control mesh when generating AABBs. The detected poter ia. contact pairs,
the DEs and the corresponding control meshes, are storc. for the next local
search stage to be described in Section 4.2.

Since the global search for a problem involving a lar e number of DEs
is often time-consuming. it is desirable not to ypiiorm this process at every
time step, but only when necessary. This is aci iev ed | y extending both DE
radii and NURBS surfaces by (small) buffer » es ¢ - chat the corresponding
AABBs are also enlarged. Thus, as long as bot: the DE and the control
mesh of a contact pair are fully enclosed by “hei. extended AABBs in the
subsequent time steps, the contact pair is sti.’ valid and a new search is not
necessary. A new global search only necd~ to be conducted at a time instance
when any contact pair is no longer vetid  Sec [52] for more detail about using
the buffer zone for the global search. e ause a much smaller deformation is
expected for NURBS surfaces the . DE:  a smaller buffer zone is used for a
NURBS than those buffer zones for Dk...

Generally speaking, the larg v .o DE radii/NURBS are extended, the
lesser frequent the global search neeus to be performed, thereby reducing the
associated costs. However mo. - potential candidate contact pairs are likely
to be detected. Consequ ntly, 11 the local search stage more calculations
needs to be involved tr exclul @ those non-overlapping contact pairs, lead-
ing to the increased « ste in _his local search stage. Therefore an optimal
overall performance .or tn. <ontact detection including both global and local
searches may be arae od by properly selecting the sizes of buffer zones used
on the basis of th- (relative) velocities of DEs and NURBS concerned.

4.2. Local seorch

Since po’ ent’al candidate contact pairs between NURBS surfaces and DEs
have been ide. -ific 1 in the global search stage, the actual contact situations
between chese contact pairs can be further determined in the local search
stage. It is comr putationally expensive to determine whether a DE is in con-
tact v i.h an 1A element or not, as will be described below, the convex hull
of a1 IGA (lement is first replaced by the corresponding Oriented Bounding
Box (\R7), and then a local contact resolution is conducted between the
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OBB with the sphere of the DE. This will exclude those contar ¢ pa.~s where
the DE is not in actual overlap with the OBB due to the b _. =r compact-
ness of the OBB representation than that of the AABB, o 'd t.aerefore will
reduce the computational cost involved in the local search. For 'ority, Fig. 6
illustrates both AABB and OBB of the convex hull Hz " the . 7UJRBS curve
displayed in Fig. 4.

M

Y \\\ E L : / e :
. N A, AABBi .
fV],

Figure 6: The AABB an. U~ £ the convex hull Hy

In isogeometric analysis, existiyy local contact methods can be mainly
divided into three types: the nede-to- surface (NTS) method [53], the Gauss-
point-to-surface (GPTS) methoa 1, 54, 55| and the Mortar method [56, 57,
58]. Because the particulate nature of GMs that are simulated by DEM, the
so-called NTS method is e aploy. 1 in the local search for IGA/DEM contact.

A possible contact situc‘ion oetween a NURBS surface and a sphere is
shown in Fig. 7, in waick D denotes the centre of the DE, and ' is the
closest projection of o ~. th . NURBS surface. Note that D can be viewed
as a slave node in e NT> method. Let d and « be the position vectors of
D and C, respectively.

To find the <10 st projection C i.e. x(£, &%), the following equations
need to be solv. 1 s.multaneously

Jd
%ksg,@ d—a(e, €)= 0 (29)

)
O—;I@,a&) [d— (e, )] =0 (30)

whe e £ a1 1 &2 are the unknown values of the parameter coordinates at the
projec.io» on the NURBS surface.

13
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Structure line

Control Node Y o Lj

Figure 7: The projection of a DE centroid on e NURBS surface

The Brent iteration method [38, 39] is en. Toyed to solve Egs. (29) and
(30) simultaneously. Because of its locar ~-mvergence, the initial values of &!
and &2 need to be estimated by a 1<+ approach. Since only the squared
distance function sq = ||d —z (&L, €2)|” 5 needed, not its derivatives [40, 59],
the simplex method is considered .-, “e « robust unconstrained optimization
method. and thus is employed for t. e itial value estimation of the Brent
iteration.

In the simplex method, the minimmal function value is approximatively
obtained by mirroring ar (/or “hrinking triangles in the parameter space
[40]. Specifically, a vertex with -he maximal sq4 is identified from the three
vertices of a triangle. Taen a new triangle is formed by mirroring this vertex
along its opposite side o, shown in Fig. 8. If the mirrored vertex still has
the maximal sq amr ng the ertices of the new triangle, the vertex with the
second largest sq vill .~ mirrored next to avoid a runaway loop. Besides, it
is worth noting “.. t one vertex may stay in a position without movement
for ¢ iterations wh’ch suggests that the triangle may just rotate around this
vertex in thes 2 iter. “ions. In this situation, the triangle will be scaled down,
e.g. by half In 2D -ases, the iteration number ¢ is advisably set to be five.

In this papc- tae initial parameter coordinates of the vertices of the start
triangle are de ermined as

Vo - (&ncen): Vo = (G + ap & + 00), Vo = (&9 + ag.&p +ap) (31)
where » = (V3 + 1)/(2v2). ¢ = (V3 — 1)/(2v/2); the initial length of the

14
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1 .2 1 2
(‘f[:f_jﬂ) (fiﬂsf,‘-;—])
Q;;
VO """""""""" i
a
Vo
Highest function value at J;! [

(€& Cirvl))

Figure 8: The initial triangle and the mirrored one 1. the parameter domain of surface

simplex edge « is set as
o = min(L /N, L?/JV) (32)

where N can be set to a value in tue interval [5, 10]. The centroid of the
initial triangle is assumed o co'ncide with that of the parameter rectangle
of the surface (4, j), as sho m in " ig. 8, and thus £!, and &2, are determined

as
oS0 -3 (518 ) -% (3)

: ¥ 2\ & +&n V6
During the ite atio. = of the simplex and Brent methods, the parameter
values obtained ‘o1 the surface (i, j) may occasionally be out of the param-

. e — el g1 2°¢2 1. T A _
eter domain €, = [§;,&}4] % [§7,&7 1), and then return again. Hence, the
parameter so ution 'omain for the surface is extended as

Ecl < [53 = ﬁL@l—h €i1+1 + /3L§+1] (34)

& e [53 - ,BL?—D .?+1 e !5.3L2+l} (35)

wher: € (0,1) denotes the buffer factor, and the corresponding extended
dom. in is ¢ enoted as €F ;.
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If the parameter values in the iteration process are outsid: tn. domain
Qf ; described by Eqgs. (34) and (35), they will be assumed not . return back
to the domain again. Consequently, the DE is assumed to ! e n .t in contact
with this IGA element. When the parameters are located i~ the 'omain QF
in order to calculate the shape function values, it is nec  sary ‘o determine
which subdomain that the parameters belong to. Her ce, o intermediate
values y; and vy, are defined as

X1 = 52 - fil: X2 = 5& - '£i1+1w X3 — 53 - 5?: X4 = 53 - ffﬂ (36)

By the sign combinations from y; to x4, we car de* criine which subdomain
(i.e. its surface index) where the parameters <!, &2
Fig. 9. Note that signs in round brackets mean 1.2t these signs are unneces-
sary to be computed when determining the bde nain. For instance, if the
sign combination from y; to x, is compute] as +(—) — (—), the subdomain
that the parameters lie in can be deterr ‘.o as £ ;1. When the subdomain
is determined, the corresponding shape-fui *ion values can be calculated by
using Eq. (10).

Once the shape-function valus at -he projection point are calculated,
the projection of the DE centroid o . » NURBS surface can be determined
from the position vectors of tl. .z« ponding control nodes. Because only
the shape-function values of the . rface’s control nodes are nonzero. the
position vector of the proje~* =4 point @, = x(¢!, £?) on surface (i, j) can be
calculated as

a2 located, as shown in

m=mgm n=ng

where m and n denote, .espectively, the m*" and n** control nodes of the
patch in both € ard £ directions; R,,, (&L, &%) denotes the shape-function
ralue at the proj. rion; and m,,, is the position vector of the control node.

Because “ne “enewration between a DE and a NURBS surface is generally
small in coi. >+ riseo « with the DE radius, the DE centroid is assumed always
to be ouf .ue IGr. elements. Hence, we can characterize the relative position
of a DE and a JURBS surface by the penetration vector

(38)

0. otherwise

5{ (r—|a:d—a:6])n, fi_lmd_mc|>0
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Figure 9: The exten-'~1 paranieter solution domain and the sign combinations from y; to

Y4 in subdomains
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where n = (xq — @) /||2a — .|| denotes the unit normal vector «t t..» projec-
tion; and 7 is the radius of the DE.

The central difference method, as an explicit method, is cmployed for
the subsequent time integration of the whole system, an ' its ritical time
step is usually very small. Within such a small time int~ —al, J>e projection
generally shifts slightly on the NURBS surface, and taus .1 - advisable to
set the initial parameter values of the Brent method in t..® current time step
from the converged value from the last time step. By alopting this initial
guess, the Brent method usually converges in five iterat ons or less. As a
result, for a certain contact pair, it is unneces iy to preform the simplex
iteration at every time step.

4.3. Contact force

After the projection of a DE centroid o. a WURBS surface and their
penetration vector have been computed in tu. local search stage, the contact
force between the DE and the IGA elew. »nt can be calculated.

In the present work, a penalty function n.2thod is employed to determine
the contact force based on the Hert. 1 oael. The curvature radius of the
NURBS surface at the contact 1 mt 1 usually much larger than the DE
radius, and thus the equivalent r* .~ a,.proximated to be the DE radius r.
Hence, the contact force betwee.. 2 CL and an IGA element can be calculated
based on Eq. (18) as

J B8] 25 (39)

where F, is the nominal . ~mng’s modulus for contact calculated from the
material properties of Hot!. coutacting IGA and DEM domains, and ~ is a
user-specified penaltv “coor. A proper estimation of this penalty factor is
needed to prevent . large penetration but more importantly to obtain an
accurate solution. [his *ssue will be further discussed in numerical examples
presented in Sec’iu. 5.

Because the neetration vector § points to the DE centroid, the contact
force facts 1 the °W centroid without generating a torque. The reciprocal
reaction for 'e 7 ctirg on the IGA element can be distributed to the corre-
sponding ~onti ' 1odes by using the nodal shape functions. Because only
the cont ol nod 2s of the contact surface have nonzero shape-function values,
the conte -t for e should only be distributed to these control nodes, and the
corre sponding distributed contact forces

T Are given by

fmn - _Rmn(fés 53)]8 (40)
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where R, (£L.€2) is the shape-function value at the contact poun.® for the
control node at the m' and n'* positions along the €' an: “? directions
respectively.

4.4. Implementation

Based on the above proposed IGA/DEM coupling riet} 5 a 3D numeri-
cal analysis program CIGADEM is developed. An expu. ' time integration,
i.e. a central difference method, and an updated Le srangian formulation are
employed. The program implementation flow chart is des ribed in Fig. 10.

The whole procedure mainly contains several .. aciai sieps: (1) IGA/DEM
global search when needed, (2) IGA/DEM cont. ct ou) ling, (3) IGA element
internal force calculation, (4) DEM contact ar. ! con»-_tive force calculations,
(5) external force computations, (6) kinetic variai’es update (solution step),
and (7) displacement boundary imposition a. 4 et:. Note that steps (2)-(5)
can be implemented in an arbitrary order ana “an be simultaneously executed
in a parallel computing environment.

Compute IGA internal nodal forces

Allocate global ! | J

arrays; compute IGA

surface inform- Compute DE
connective and contact forces

Compute IGA element mass ‘
matrices; o .un now ' mass Add external forces to

CPs and DEs

l ]
%gh tin.  .tep
R— Update DEs and IGA nodes

velocities, displacements and positions

_gl_{z_qlobr ’SE?I'_CQ’>' ¢
Yes

Giu. | search for
IGA/DEM contact

Impose displacement boundary

Write output data

No

Local search for
IGA/DEM contact

Figure 10: Implementation flow chart

" he prc cedure for the IGA element internal force calculation is depicted
in Fig. 7' In this procedure, the Cauchy stress rate tensor o is employed,
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which is determined as
c=0c"+o W+ W.o (41)

where W is a spin tensor; and oV is the Jaumann stress . +e tensor. The
Cauchy stress tensor at time ¢t + At, i.e. o(t + At), can be updated from
that of the previous time step as

o(t+ At)=0o(t) + o(t + %f 1At (42)

Here, At denotes the current time step.

Loop through
IGA elements

Loop through

Gaussian po 5

Evaluate b- "~ #nctions aid
derivative. tour s - 2

Compute w. ™enta strain and
spin maw, ¥; up. te strain
T

Upu. ~ Cauchy stress

Comy. ‘e internal nodal force from
| curre  GP; add it to the node

S

Figr .. 11: IGA nodal internal force calculation procedure

In the CI'AL “M program, the simplex algorithm [40] is modified to
evaluate the ini'1al varameter values of the Brent iteration, and the imple-
mentation o1 . e ] sA/DEM contact method is described in Table 1.

The otatign Ulym, €8 Runs Loy

standing In th : program implementation, however, the control node indices

is used for conciseness and casy under-
are re .. as wput data and stored for each IGA element via one-dimensional

1D array. Therefore, [, is also stored in a 1D arrav havine the corre-
J V mmn o (=]
spona..~ -ements as those of the control node index array.

20




Table 1: The algorithm of the local search and contact force ¢ icu’ation

WU wN =

loop over contact surfaces of IGA elements

9 1. obtain the detail of current surface and its 8 neighbor ~mes (see Figure 9)
12 2. obtain surface index Pg = (1, 7)
12 3. compute parameter solution space (2f;
13 loop over potential contact DEs for the current srfac.
14 1. obtain DE datum, e.g. d, r, E. u, ctc.
}2 2. initialize contact-state flag, cFla,g‘ =0
17 3. initialize m%, = —1, m&y = —1, P! = Fq
18 4. initialize center and vertex coordinates ¢y, V/,
;g for k=1.2,---, k. for minimal Sy
21 (a) if(V,, Vior V; ¢ Q)F; Jthen e it;
22 (b) update surface index P4 where VI 1.,
i (b) compute R, (€1, €2,) at V2 V2 d V§ on suface Pl
(c) compute Sy at these vertices
25 . oo s " . :
26 (d) find vertex indices m,, m, a..’ , with maximal,
27 medium and minimal Sy, respe dively
gg (e) if (my = m¥,)then m, = 1, - €ise m, = my
30 (f) Tncld = My
31 (g) if (M, =miy)then c = -+ 1
32 else m3; =my; =0
gi (h) if(c > ))then1r % :ﬂ v+ 0.5( an — VI, # ma;
L
35 (i) Vi =053, '
36 (G) Vim=V.+ (V,— V")
37 . 1 5
38 ( ) £CJ~‘+1 -5 Lh:, Vtx
39 (1) if ([[€cks - &ck|l < tol)then cFlag = 1; exit
40 end for
i; if (cFlag = 0 ¢ 1d & = Kpax)then show error information
i else %f(ci* « 7 =0)then cycle
44 else if ‘cFalg=.)then
45 (a) i1 &L .2) at the projection via the Brent iteration
ig (b comp.. e contact force and add it to current DE
43 () comj ute the distribution and add it to nodes
49 end lo . »
50
end loo
51 2
52
53
54 _
55 21
56
57
58
59
60
61
62
63
64

65
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Because of the Cp continuity nature of a FE mesh surfo ¢, « DE/FE
contact method may have to deal with several distinct cont ..’ cases: DE-
surface, DE-edge and/or DE-node contact [11, 15, 16, 60], a' 4 t'.us may lead
to the time discontinuity of the contact force. The IGA/DEM ethod pro-
posed here, however, only needs to handle the the conte * pro. 'em between
DEs and smooth NURBS surfaces. As a result, the cor.act 1. —es are always
time-continuous, if ignoring contacts between DEs and . arp corners or Cjy
edges of a NURBS patch or patches.

5. Numerical examples

In order to assess the accuracy and robus mess ~* the proposed coupling
method, three examples involving contact betweern. DEs and NURBS surfaces
are simulated. The first two examples are 1. nlv employed to examine the
accuracy of the method. In these two exa. nles, the bonded DEM model
which is appropriate for analyzing ela ¢ and brittle materials, is used in
the DEM domain. In order to investigate “he robustness of the proposed
algorithm, the DEM contact model 1. e apioyed to model the granular ma-
terials in the third example. In & I thes» examples, the interaction between
the DE domain and the IGA doman « handled by using the proposed ap-
proach based on the penalty iomicics method where the penalty factor ~
is selected to avoid large penetratio.s or oscillations between the DEM and
IGA domains. In additior, .~ critical time step of the central difference
method is the smallest ax ‘ong tl bse determined by DEs, IGA elements and
the DEM/IGA interact’ons. Z*e time steps used in the these examples are
all much smaller than che cor esponding critical time steps.

5.1. Impact betwee . 1ouble symmetric bars

Because its aralyticar solution is available, the impact problem of dou-
ble symmetric "ars in elastic range is often used to test numerical contact
methods [15, 61, “?[. Herein, this impact process is also considered to as-
sess the pro,ose 1 coupling method in elastic range. The geometry, material
constants an nit’al conditions of the impact system are listed in Table 2.
At the b _gining of the impact, the two bars with no constraint have a gap
of 0.5 mn betv een their closed ends and move towards each other with an
initial _slav..© velocity of 20 m/s.

1 the si nulation, the right bar is analyzed using IGA, while the left bar is
mode, 1 b the bonded DEM. as shown in Fig. 12. The DEM region contains
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10000 bonded discrete elements with a radius of 0.25 mm, and t'.e 1. A region
is divided into 332 equal-sized IGA elements of degree two. ..~ interaction
between both DEM and IGA regions is dealt with by the IG." /D =M coupling
approach proposed. The nominal Young’s modulus for co. *act > set as

E.=min{E;/(1 — 2v;), Eq/(1 — 2v,,}

where F£; and 1; are the Young’'s modulus and Po' ..on’s .atio of the IGA
domain respectively, while Ey and vy are those of t 1e DE. I domain. To cal-
culate the internal forces of IGA elements, the Ganss te_ration is employed
with three points in each direction of the par:i met . space. The time step
used in the central difference method is chosen vo be .07 ms.

.

Figure 12: IGA/DEL . ade. of two symmetric bars

Table 2: The geometry, initial velocity and material properties of the twin-bar system

Length of the bars 50 mm

Cross secticn o “he pars 5 mm X 5 mm
Initial gar between the bars 0.5 mm

Initial relac. @ vo1ocity of the bars 20 m/s

Radius ~f DEs 0.25 mm

Mass densiu, of the bars 102 g/mm?
Yorag modulus of the bars 1.0 GPa

Pow = 1’s ratio of the bars 0.0

Because 1. @ prnalty function method is employed to handle the inter-
action b tween tne DEM and IGA regions in the coupling approach, the
penalty ctor - has a direct influence on computational results. Thus, dif-
ferent Lenauwvy factors are chosen to obhserve the influence. The time histories
of tl e cont wct-force, velocity and displacement at the free ends computed
with .%o nt penalty factors are compared with the analytical solutions and
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displayed in Figs. 13, 14 and 15. The results show that the nur.eric ! results
are generally in good agreement with the analytical solutions, "ut fluctuate
around the analytical solutions, particularly at the beginni: o o’ the impact.
The figures also demonstrate that the numerical results v.’th 1. oer penalty
factors tend to agree better with the analytical solution~ whu. at the same
time the contact force and velocity fluctuate more sever \ly. « 1. 3, the penalty
factor is usually chosen to be sufficiently large with acce, *able fluctuations.
This confirms the general behaviour of the penaltr func ion method in the

explicit FEM and DEM/FEM coupling method.

600 -
S 40 i
P A
= ——Factor 0.
A | e Factor 0.6
® —— Faclii e
rEl — Analyu al solution
= 200 |
0 n L L 1 :l}' L ]
0.00 .05 0.10 0.15

Time (ms)

Figure 13: Comparison of the cme histories of the contact-force with different penalty
factors

5.2. A tube impacting a .irip footing

In the abov: eyample, some features of the proposed coupling method
have been derons.~ated and its validity and accuracy to handle the collision
with small cefor mation at the contact area has also been tested. To further
test the abili, of tae proposed method to handle the collision with relatively
large deformation, a tube impacting a strip footing with an initial velocity
of 10 m, : is co sidered as shown in Fig. 16 and Table 3.

Ir cie LM /FEM coupling model as shown in Fig. 17, the strip footing
with a fixec bottom surface is analyzed by the bonded DEM, and the tube is
simula. ~ Ly IGA. The open knot vectors are employed not only in the axial
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and radial directions but also in the circumferential directior ot ‘he tube.
Thus, there is a zero-thickness opening along its axial and 1.1l directions
in the tube IGA model, as shown in Fig. 17. In order to m el che physical
continuity of the tube, a penalty function method is emple_=d 1o nrevent the
separation and penetration of the free surface on the tut - ope. ing.

In the simulation, the nominal Young’s modulus for cor vac* is calculated
the same as that in Section 5.1, and the penalty factor -, ‘or the IGA/DEM
contact force is set to be 0.12. For comparison, t! e san = penalty function
and factor are used to model contacts in the corres »ondir ¢ FE model. The
time step for both models is set to be 1077 ms.

W gure 16: The geometry of the tube-strip impact system

The -ime h stories of the contact-force and the displacement at points
A and B [1or.cted in Fig. 17) are shown in Figs. 18 and 19, respectively.
The: e figw, s illustrate that the results obtained from the proposed coupling
meth ~d ag’ ce reasonably well with those calculated by FEM. In Fig. 19, the
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_ Opening plane

Figure 17: The IGA/DEM coupling moc =1 of the tube-strip impact system

Table 3: Geometry, initial lc :ity .nd material properties of the tube-strip impact system

Dimensions f the scip, L x W x H
Dimension: of e tube, R x L; xt

48 x 12 x 10 mm
8 x 28 X 2 mm

Initial pc.on of the tube, G 5.0 mm
Initial v “loc .ty of the tube, V' 10 m/s
Radiv, of LTs, r 0.5 mm
Mas . de isitr of the tube and strip, p 107* g/mm?
Young » modulus of the tube and strip, £ 1.0 GPa
Toisson’s ratio of the tube and strip, v 0.0
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Figure 18: Comparison of ** _ Couvaci-foree histories

displacement along the impact direct.or at point A tends to be larger than
that at point B, mainly because t. . ine. “ia force near point A is larger than
that near point B at the time aroun? 1.2 ms. In addition, since the penalty
function method is used to prc =ue (e separation and penetration of the
tube opening in the IGA model, tie displacement difference between the
FEM and the proposed ar proc-h at point A is slightly larger than that at
point B.

At time instants t= 0.2 u.- and 0.4 ms, the displacement distributions
from the IGA/DEM c¢ wup'ing nodel are compared with those from the FEM
model as shown in F gs. = =2.1d 21, and they are generally in good agreement
despite of some fir : <screpancy.

No direct corrarison in terms of the overall computational efficiency is
made between .he .GA/DEM and the FEM/DEM. It is obvious that the
computation ‘nvo. d in the contact between a DE and an IGA element is
higher than nat petween a DE and an FE element. Nevertheless, a very small
number of 1" ele ments is required to accurately represent the geometry of
the struc.ure. Also the IGA representation leads to smooth contact surfaces.
Hence, {1e con act force for every contact pair in the proposed IGA/DEM
meth~ . is coucinuous with time. These are, however. difficult to be achieved
by tsing t1 2 coupling FEM/DEM method because of the non-smoothness
conne “inr between neighbouring FE surfaces.
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Figure 19: Comparison of the displacement hi ... «o points A and B on the tube surface

(a) IGA/DEM (b) FEM

Figure 20: Comparison o the disp’acement distributions in the vertical direction at 0.2
ms

‘2) ICA/DEM

(b) FEM

Figui » 21: C mparison of the displacement distributions in the vertical direction at 0.4
ms
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5.3. Granules impacting tailor rolled blank

To further test the applicability of the IGA/DEM couplin , a, proach pro-
posed, granules impacting a tailor rolled blank (TRB) is comn. ‘e ed as shown
in Fig. 22. At the beginning, 6144 particles with a radius ~f 0.2 mm move
toward the TRB with an initial velocity of 10.0 m/s, .1 the particles at
the bottom are just in contact with the wave crest of he .op surface of the
TRB. The material constants of the particles and the 1. R are depicted in
Table 4. The particles are modeled as DEs and the 'RB .3 modeled by 1332
second-degree solid elements of IGA.

The contact between the DEs and the 1G 1 el~ments is handled with
the proposed coupling method. However, the ! ssic Hertz model, namely
Eq. (18), is adopted to calculate the normal co. “ac 1orce between a DE and
an IGA element. This is based on a furtbor inves igation [63] which shows
that the Hertz model without the penalty “cto. - rrection is the best normal
contact interaction law between a spherical 1.7 and a deformable structural
element. The time step used in the cenral difference method is set to be
107° ms.

1

Figures22: "1

geometry of the granules impacting TRB system (unit: mm)

Both . »na ¢ force and displacement histories in the vertical direction at
the center ~f the TRB bottom surface are displayed in Fig. 23. From 0 ms to
0.5 L. s the mpact force first increases and then decreases. In the following
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Table 4: Radius, initial velocity of particles, and material properties of particles  ~d TRB

Initial velocity of the particles, V' 10.C my s
Particle’s radius, r 0.5 Tl
Mass density of the particles and TRB, p 10" »/mm?
Young's modulus of the particles and TRB, £ 1. ©=Pa
Poisson’s ratio of the particles and TRB, v 0

time interval [0.5, 0.65|ms, the impact force rema.ns near zero, and most
particles seem to not maintain contact with the 1 B™ during this time peri-
od. Afterwards, some particles and TRB are i1. -~ nta t again, and thus the
impact force starts to increase. Because mosy natucles move upwards, the
impact force tends to be relatively small. From 0 1 s to 0.83 ms, the displace-
ment increases in the impact direction ain.? the TAB absorbs impact energy
that is mainly transferred to strain enerev. A1~ (.83 ms, the TRB begins to
release strain energy and the displacemes.t along the impact direction begins
to decline.

The configurations of the particles v.id the velocity distributions are dis-
played in Fig. 24 at four different ..~ i tants. As the particles move down,
some bottom particles are in contact with the crest area of the TRB top
surface first and the velocities o1 “he particles in these columns hegin to de-
crease as shown in Fig. 24(a). Then, more particles at the bottom come to
be in contact with the TR .3 top. surface as shown in Fig. 24(b). Afterward-
s, in Figs. 24(c) and (d) 1.~ par icles scatter mainly along the longitudinal
direction because of ths flu~tua.ion of the TRB top surface in this direction.
As shown in Fig. 24, .~e vele Aty distributions of the particles and the TR-
B are roughly symaetrica: along the width and length directions because
of the symmetry f 1.~ model in these directions. Furthermore, no large
penetration is ol .o ved between the particles and the TRB.

6. Conclusons

A three-a.. ‘ens.onal isogeometric/discrete-element method has been pre-
sented te take the advantages of the geometry smoothness and exactness in
isogeome fric ar alysis and the neighboring element interaction flexibility in
discre .o element modelling. In the coupling phase, candidate contact pairs
are 'etecte ! by modifying the CGRID method, and the exact contact po-
sition [~ - and by modifying the simplex and Brent iterations in the local
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Figure 23: The impact force displacement 1. tories at the center of the TRB bottom

surface

(a) t =0.00 ms

G

(¢) © = 0.6 ms

Figure 21 Tuc velocity distributions in the vertical direction and the particle configura-

tions at four ime instants

(b) t = 0.3 ms

(d) t =0.9 ms
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search. The contact force between IGA and DEM is determine'. by ~ nonlin-
ear penalty function based method, and it is found that the . ualty factor
should be set sufficiently large but without causing severe fl ctvations in the
results. Furthermore, a coupled IGA/DEM program CIC'ADCM has been
developed. The accuracy of numerical solutions of the o ex. mples hased
on the 3D coupling model has been assessed in elastic “egi» e © y comparison
with the corresponding analytical solution and/or a FlunZ model. The appli-
cability of the coupling approach for modeling grar alar prticle impact on a
tailor rolled blank has also been tested.

The overall computational efficiency of the r.oposea [GA/DEM method
is lower compared to the conventional FEM/L %M sc) eme as the computa-
tion involved in the DE/IGA contact is highe: *hat - the DE/FEM contact.
However, the geometric exactness and smoothne s of IGA representations
offers the feature that the contact force hetw ~n 1 DE/IGA contact pair is
always time-continuous, which cannot be mav.hed by a DE/FE contact pair.
Thus, unless having a well-defined set o. ~omparison criteria, a fair compari-
son between the IGA/DEM and the "EM/LEM is difficult to be quantified.
For this reason, no direct comparison «  tae computational efficiency between
the two methods has been made 1 . the numerical examples presented.

In the current work, friction betw ~en. IGA elements and discrete elements
has not been considered, but ¢.n vo included within the current coupling
framework.
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