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Abstract 
 

Background. There is paucity in the literature regarding the role of interoceptive 

accuracy (IAc) at predicting the effectiveness of osteopathic techniques which increase 

spinal mobility when directed specifically at the thoracolumbar junction (TLJ).  Aims. 

The study aimed to explore whether a high velocity, low amplitude (HVLA) thrust of the 

TLJ would increase spinal mobility (measured through Range of Motion; ROM) and 

change IAc.  Also, whether baseline IAc correlated with the post-ROM measures and 

change in ROM. Method. 21 asymptomatic participants were allocated into three 

conditions in a randomised order.  These were; (1) a high velocity low amplitude 

manipulation of the TLJ; (2) sham (basic touch); and (3) a control (laying supine on a 

plinth). Before and following each intervention, the participants’ spinal ROM was 

measured using an Acumar digital inclinometer. In addition to this an ECG was used to 

measure their pre and post condition IAc.  Results.  There were significant increases in 

ROM for all condition, however, the HVLA thrust led to a significantly greater increase 

in ROM (p < 0.001) when compared to the control and sham.  Baseline IAc was inversely 

associated with post-ROM but there was no association with change in ROM.  The HVLA 

thrust did not significantly change IAc scores from pre to post intervention. Conclusions.  

HVLA thrust over the TLJ is a useful intervention for increasing spinal ROM.  IAc maybe 

a useful predictor for intervention effectiveness of this technique and spinal area which 

could in the future be utilised by osteopaths as part of their diagnostics.  
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Introduction 

 

Low back pain (LBP) is a common cause of pain and disability, which the majority of the 

population will experience at some point in their lives (Bhangare, Kaye, Knezevic, Candido, 

& Urman, 2017; Klyne, Barbe, & Hodges, 2017; Yang, Haldeman, Lu, & Baker, 2016).  It is 

also one of the leading causes of global disability (Freburger et al., 2009), and leads to the 

greatest frequency of medical claims, pharmacological prescriptions and catalogued 

authorised leave worldwide (Driscoll et al., 2014).   

Thoracolumbar junction (TLJ) syndrome has in the past been posited as a source of 

LBP (Maigne, 1980). TLJ syndrome characteristically presents as LBP, pain surrounding the 

iliac region and pseudo-visceral pain which can facilitate irritable bowel like symptoms 

(Aktas, Palamar, Ozkan, & Akgun, 2016). In addition to direct pain, deviation from optimal 

vertebral compliance in this area can lead to restriction of movement which can perpetuate 

into additional pain to the corresponding surrounding regions (Balagué, Mannion, Pellisé, & 

Cedraschi, 2012).  Restriction of movement is commonly measured through range of motion 

(ROM), where, as pain intensifies, ROM typically reduces (Rudolfsson, Björklund, & 

Djupsjöbacka, 2012).  

The TLJ it thought to typically span from the vertebra of T12 through L1, though 

when individual differences are taken into consideration, it is typically more clinically 

practical to take it from the region of T11 to L2 (Tokuhashi, Matsuzaki, Uematsu, & Oda, 

2001).  In addition to this, T10-L2 (Benson, Burkus, Montesano, Sutherland, & McLain, 

1992) and T9-L2 (Panjabi & White, 1978) have both been suggested as viable TLJ spans.  

The TLJ is anatomically complex, inclusive of the 12th rib, intertransverse ligament, the 

diaphragm, the lumbar and thoracic erector spinae, iliopsoas quatratus lumborum, latissimus 

dorsi muscle, thoracolumbar fascia, cisterna chyli, as well as the dorsal rami and superior 
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cluneal nerves (Dakwar, Ahmadian, & Uribe, 2012).   This region is of particular risk, should 

trauma occur, due to the junction being anatomically complex and an important transitional 

area (Smith et al., 2010).  

As one of the principal characteristics of Maigne’s syndrome is restriction of the TLJ, 

primary treatment methods are focused upon improving this (Smith et al., 2010).  A common 

form of manipulation utilised by osteopaths is the high velocity low amplitude (HVLA) thrust 

manipulation, as it is proficient and a relatively safe method utilised to address spinal 

restriction (Goertz et al., 2016).  It is also cost effective in comparison to pharmaceutical 

interventions (Hebert, Stomski, French, & Rubinstein, 2015).  Spinal manipulation is 

primarily utilised when restriction or decreased motion is palpated at specific spinal 

segments, and it is evidenced to significantly increase ROM of the targeted segment (Vieira-

Pellenz et al., 2014).   

Although there are many studies conveying the efficacy of spinal manipulation, they 

are primarily fixated on the cervical, lumbar spine, hip, and jaw areas (Millan, Leboeuf-Yde, 

Budgell, Descarreaux, & Amorim, 2012). In addition to this, though spinal manipulation has 

shown a pain reducing effect (Coronado et al., 2012; Millan, Leboeuf-Yde, Budgell, & 

Amorim, 2012), there is limited evidence on how it effects ROM. A systematic review 

identified only 15 studies which had utilised spinal mobilization and ROM as an outcome (for 

the cervical, lumbar spine, hip, and jaw areas), and none of these included the TLJ 

specifically (Millan, Leboeuf-Yde, Budgell, Descarreaux, et al., 2012).  So, this is one of the 

motivations for the choice of TLJ and ROM specifically, i.e., a lack of existing evidence to 

support an increase in ROM after spinal manipulation and for this area. This area was also 

chosen as it is anticipated with confidence that there will be an increase in ROM after 

manipulation and therefore the baseline measure of interoception could be explored (with 

confidence) as a predictor of outcome.  
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Indeed, few studies have been conducted depicting the effect of spinal manipulation 

upon the TLJ and no studies have been identified which have focused on the effects of a 

HVLA thrust specifically for this spinal region.  One recent case study (Aktas et al., 2016) 

reported through patient feedback that manipulation of the TLJ had positive effects in 

reducing pain, however, being a case study no statistical analysis was reported.  As the use of 

HVLA manipulation on the cervical spine have shown an immediate reduction in neck pain 

and an increase in ROM (Martínez-Segura, Fernández-de-las-Peñas, Ruiz-Sáez, López-

Jiménez, & Rodríguez-Blanco, 2006), this should also be the case for the TLJ. Therefore, as 

the HVLA thrust has been found to be effective in increasing ROM for other areas of the 

spine, it can be reasonably hypothesised that it will also improve the ROM of the TLJ 

significantly more than a sham and control condition.    

Another contributing factor to any increase in ROM may come about through the fact 

that spinal manipulation has been found to alter the discharge of Group I and II afferent fibres 

(Pickar, 1999).  This has been found to reduce the mechanosensitivity at the 

mechanoreceptive nerve endings such as proprioceptors (e.g., muscle spindles, Golgi tendon 

organs) (Behm et al., 2013; Pickar & Wheeler, 2001) and could therefore lead to an increase 

in ROM.  

In addition to this, vey few studies have explored the role of interoceptive accuracy 

(IAc) in predicting ROM outcomes. This, therefore, is the second primary motivation for this 

study, i.e., to explore the effect of spinal manipulation of interoception, and to investigate 

whether baseline interoception could be associated with post spinal manipulation ROM. 

Interoception refers to a set of neuro-anatomical pathways which allow bodily signals to 

travel through to the brain, to form bodily awareness (Craig, 2004; Garfinkel & Critchley, 

2013; Garfinkel, Seth, Barrett, Suzuki, & Critchley, 2015).  More specifically, it involves an 

ongoing homeostatic and sensory afferent pathway of the autonomic nervous system (ANS) 
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which send signals from small diameter A delta and C primary afferent fibers from all bodily 

tissue to the insular cortex (Craig, 2013). Altered interoceptive awareness is associated with 

chronic pain and mental health disorders (Schmidt, Gierlings, & Peters, 1989).  Some 

researchers (Pollatos, Füstös, & Critchley, 2012) have observed that individuals with higher 

interoceptive sensitivity had lower pain thresholds and tolerance, higher pain perceptual 

experience and higher levels of anxiety. In addition to this, baseline interoception has been 

found to correlate with post-manipulation ROM (of the temporomandibular joint) (Edwards, 

Young, & Johnston, 2018). So, given these relations, it may be hypothesised that baseline 

interoceptive accuracy (IAc) will be associated with post-condition ROM outcomes after 

spinal manipulation.  

In summary, this study has four objectives; (1) to explore the effectiveness of a 

HVLA manipulation on the TLJ, when compared against a sham and control, using ROM as 

an outcome measure.  It is hypothesised that the HVLA thrust will be more effective than the 

sham and control at increasing ROM (the null hypothesis is that there will be no difference in 

ROM for these conditions); and (2) to explore whether baseline IAc associates with post 

ROM outcomes, where it is hypothesised that there will be an association (the null hypothesis 

is that there will be no associations between IAc and post ROM). (3) To explore whether 

there would be an association between baseline-IAc and change in ROM for any of the 

conditions (the null hypothesis is that there will be no association with change in ROM and 

IAc). (4) To explore whether the HVLA thrust intervention would lead to a change in IAc, 

and if so whether this would be greater than that of the sham and control (the null hypothesis 

is that there will be no change in IAc for the conditions).   

 

 

Methods 
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Participants 

A purposive sample of 21 asymptomatic (18 males and 3 females) osteopathic students were 

recruited to participate in this study (originally 26 before exclusion), all of which were first- 

or second-year students.  A purposive sample was obtained as opposed to a convenience 

sample which would encompass all osteopathic student years, as first and second year 

students were less familiar with the HVLA thrust and sham (visceral) osteopathic techniques, 

which limits any explication bias (see Consort flow diagram, Figure 1).  

 For the inclusion criteria, participants needed to be between the ages of 18-35, have 

completed the consent form, were English speaking, and not experiencing any form of 

musculoskeletal complaint.  Participants were excluded if they did not complete the consent 

form, did not attend the initial session, took part in contact sports, or had received a HVLA 

thrust three days prior to any of the sessions. 

 Five participants were excluded from the study. Three were excluded due to not 

meeting the inclusion criteria stipulated in the brief and consent documents (i.e., they were 

experiencing musculoskeletal pain), and two were excluded due to not consenting to the 

study.  

 

----------------------------------------------Insert Figure 1 here------------------------------------------- 

 

Research Design 

This experimental design method consisted of a triple-blind, randomised, placebo-controlled, 

within subjects (repeated measures), crossover study design. 

 

Ethical approval 
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Ethical approval was obtained through Swansea University College of Human and Health 

Science.  

 

Examiner Repeatability 

Intra-rater reliability tests in the form of Intraclass Correlation Coefficients (ICC) were 

conducted to ensure examiner reliability of the ROM measures.  This was conducted as 

described by Fleiss (Fleiss, 2011).  The classification system of Shrout and Fleiss (Shrout & 

Fleiss, 1979) was utilised, where: >0.75 was determined as excellent; 0.6-0.75 as good; 0.4-

0.59 as fair; and <0.04 as poor.  

 

Internal validity 

Blinding 
 
 
This was a triple-blind study which included the participants and two examiners (E1 and E2).  

Participants were blinded to which intervention they received (first blinding) on entering the 

laboratory and were given no information about the other study conditions.  The osteopathic 

practitioner (E1) was absent from the room when the pre and post ROM measures were 

obtained from examiner two (E2), thus E1 was blinded to ROM readings (second blinding). 

The examiner recording the ROM (E2) left the room during the intervention and was 

therefore blind to which condition the participant was in (third blinding).  The order of 

interventions were randomised (see randomisation).  

 

Randomisation 

The simple sealed envelope method (Schulz, 1995) was used to ensure random allocation, 

and this method has been validated by Suresh (2011).  This involved placing a sequenced 

intervention code (i.e., control =3; sham = 2; HVLA = 1) (e.g., 2,1,3) into a sealed envelope 
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and only the practitioner (E1) knew of the condition assignment.  All combinations of 

condition orders were included in this repeated design (e.g., 1, 2, 3/ 3, 2, 1/ 2, 3, 1 etc.) which 

was produced through a Latin square design. This ensured that order effects were balanced.  

 

Materials  

 

ROM measurements were obtained utilising a digital inclinometer (Acumar Digital 

Inclinometer) which are known to have good inter-rater reliability (ICC = 0.6–0.9) 

(MacDermid, Arumugam, Vincent, & Carroll, 2014; MacDermid, Arumugam, Vincent, 

Payne, & So, 2015; Prushansky, Deryi, & Jabarreen, 2010).  

Interoceptive accuracy (IAc) was measured through an electrocardiogram (ECG) 

analysis BioPac which has been used in other studies (Buttagat, Eungpinichpong, 

Chatchawan, & Kharmwan, 2011). The current study used the BioPac MP160 version. 

 

Experimental Conditions 

HVLA manipulation of the TLJ 

The practitioner (E1) positioned the patient side-lying, in the ‘lumbar roll’ position 

(Gudavalli, DeVocht, Tayh, & Xia, 2013), palpated the spinal segments at T12 and L1, then 

administered a HVLA thrust at the TLJ segments T12-L1 (see Figure 2).   

 

Sham Intervention 

The technique mimicked a visceral osteopathic technique directed at the epigastrium for two 

minutes by E1, however, no therapeutic barrier was engaged (see Figure 2).   

 

Control  
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E1 instructed the participants to lay supine on the plinth with their head on a pillow for two 

minutes (see Figure 2).   

 

----------------------------------------Insert Figure 2 around here------------------------------------- 

 

Dependent Variables 

ROM 

ROM, i.e., tolerable stretch, has been argued to be one of the most applicable clinical 

outcome measures in manual therapy.  It has been used extensively, and this includes studies 

which have utilised the HVLA thrust (Martínez-Segura et al., 2006).   In addition to this, the 

relation between reduced pain and increased ROM has been established (Rudolfsson et al., 

2012). As there were several definitions of where exactly the TLJ spanned from, this study 

utilised a broader definition of T10-L2 in compliance with Benson et al. (Benson et al., 

1992).  As in previous studies, the inclinometer was positioned directly between this 

designated area. The measurers were taken via forward flexion and accounted for angular 

changes at each functional unit.  It should be noted that the actual HVLA thrust was 

conducted at a more limited area of the TLJ, that being T12-L1.   

 

Interoceptive accuracy (IAc) 

 In terms of the best possible way to determine interoception, heartbeat detection has emerged 

as the dominant method (Brener & Kluvitse, 1988; Critchley, Wiens, Rotshtein, Öhman, & 

Dolan, 2004; Mandler & Kahn, 1960; Schandry, 1981; Whitehead, Drescher, Heiman, & 

Blackwell, 1977).  This involves using a formula; 1 − |𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝|
(𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎+𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)/2

 (D. J. 

Edwards, H. Young, & R. Johnston, 2018; Mallorqui-Bague et al., 2014) to calculate actual 

beats vs. perceived beats.  Typically, heart beats are recorded for a period of approximately 
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30 seconds (actual beats) and the individual must guess how many beats there were 

(perceived beats).  This is typically repeated three to six times and the interoceptive accuracy 

score is that which is computed through the formula for each of the three trials and then 

divided by the number of trials to get an average.  In the present study, this was averaged by 

three as there were three trials.   

 

 

Procedure 

Communication between practitioner and participant was limited to gaining consent and brief 

instructions.  Before each intervention (control, sham, and HVLA thrust), the spinal segments 

of T10 and L2 were palpated, then marked with a washable marker.  The digital inclinometer 

was placed directly within the plane of these markings and the participant was then asked to 

flex forward as far as comfortably possible.  After this, the reading on the inclinometer was 

noted to establish the baseline ROM. This was repeated an additional time to assess intra-

rater reliability of the inclinometer measurements. This procedure was then repeated post 

condition (control, sham, or HVLA thrust).  See the blinding and randomization sections for 

these specific procedures.   

 

Data Analysis 

A Shapiro-Wilk test was used to confirm that the data was normally distributed (p > 0.05), 

thus justifying the use of parametric tests.  A general linear model, consisting of a one-way 

univariate Analysis of Variance (ANOVA) was used to compare differences in ROM as well 

as IAc between the control, sham, and experimental conditions.  In addition to this, 

comparisons were made between pre and post ROM measures for all three conditions using 
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paired samples t-tests.  Finally, a series of bivariate correlations were conducted between 

baseline-IAc and post ROM, as well as between baseline-IAc and change in ROM. 

 

Results 

 

Demographic results 

Table 1 shows the demographical data for age, height, weight, and body mass index.  As 

these were the same individuals tested over the three condition (repeated measures, crossover 

design) homogeneity tests were not needed.   

 

------------------------------------------Insert Table 1 about here---------------------------------------- 

 

ICC results 

Intra-rater reliability tests in the form of intraclass correlations were used to measure the 

repeatability validity of the ROM and heart rate (ECG) measures, which were shown to be 

excellent (see Table 2).                    

 

------------------------------------------Insert Table 2 about here---------------------------------------- 

 

Descriptive statistics 

Table 3 shows the pre-post change ROM scores and participant number for each condition. 

As can be seen, the mean change in ROM is larger for the HVLA thrust condition when 

compared against the sham and control conditions.  Table 4 shows the pre and post IAc 

scores and participant number for each condition.  As can be seen, there seems to be only 

small differences between the pre and post condition IAc measures. 
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------------------------------------------Insert Table 3 about here---------------------------------------- 

------------------------------------------Insert Table 4 about here---------------------------------------- 

 

 

Inferential statistics 

Range of Motion (ROM) 

A one-way univariate Analysis of Variance (ANOVA) was utilised comparing the control, 

sham, and HVLA thrust conditions, and using change data (delta value) from the post 

subtracted by pre-ROM data.  This was significant, with a large effect size according to 

Cohen’s classification (Cohen, 1992) (F(2) = 13.234, p< 0.001, 2
pη   = 0.398) and included a 

large observed power of 0.99. In addition to this, post-hoc Bonferroni Pairwise comparisons 

were conducted comparing Control vs. HVLA thrust which was significantly different (p < 

0.001), as well as Sham vs. HVLA thrust which was also significantly different (p < 0.001).   

As expected, the Control vs. Sham comparison was not significantly different (p = 0.626) 

(also see Table 3). 

Paired samples t-tests were also conducted comparing differences between the pre and 

post ROM measures for the Control, Sham, and HVLA thrust conditions, which showed 

significant differences for all three conditions; Control (t(20) = -2.633, p< 0.05, CI -3.414, -

0.396) ; Sham (t(20) = -3.399, p < 0.01, CI -2.382 to -0.570); HVLA (t(20) = -8.041, p< 

0.001, CI -7.317 to -4.302).  However, crucially, given the ANOVA, the HVLA manipulation 

condition increased ROM significantly more than the control and sham conditions.   

 

IAc relationships 

 



13 
 

In addition to this, the relationship between IAc and ROM were explored for each condition 

as well as any change in IAc due to the interventions (see Table 4 for IAc pre and post 

scores).  A significant negative correlation was identified between baseline-IAc and post-

ROM for the HVLA thrust condition (r = -0.357, p < 0.05), but not for the sham condition (r 

= -0.292, p = 0.10) (though this was negative) nor the control condition (r = 0.181, p = 0.22).  

There were no significant associations between baseline IAc and change in ROM for any of 

the conditions (all p > 0.05). There were also no significant changes in IAc for any of the 

conditions.   

  

 

Discussion 

 

This study sought to investigate four separate outcomes; (1) whether there would be a greater 

increase in ROM over the TLJ area after a HVLA thrust and in comparison to a sham and a 

control. (2) Whether there would be an association between baseline-IAc and post-ROM 

outcomes. (3) Whether there would be an association between baseline-IAc and change in 

ROM for any of the conditions. (4) Whether the HVLA thrust intervention would lead to a 

change in IAc, and whether this would be greater than that of the sham and control.   

The findings revealed that the HVLA thrust did significantly increase ROM more than 

the sham and control conditions.  It also showed that there was a significant negative 

association between baseline-IAc and the post-ROM outcome.  However, there were no 

significant associations between  baseline-IAc and change in ROM, and there was no 

significant change in IAc after any of the conditions. 

 This work provides support for the use of the HVLA thrust on the TLJ which had 

been previously ignored.  It also supports other work which has used the HVLA thrust on the 
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cervical spine to increase ROM more generally (Martínez-Segura et al., 2006).  In addition to 

this, the findings provide some support for the use of a baseline-IAc measure to predict post-

ROM outcomes.  This area of work is particularly novel and should be explored further in the 

future.   

One possible explanation for the significant increase in ROM caused by the HVLA 

thrust may be that as mechanical thrust influences are inputted into the vertebral column and 

surrounding structures, it induces augmented vertebral movement (Cramer et al., 2002).  

HVLA manipulation is theorised to have efficacious modulatory neurophysiological effects 

via the modification of the inflow of sensory signals received from paraspinal tissues to the 

brain which may account for the augmentation of physiological functioning, i.e., the increase 

in ROM (Currie, Myers, Durso, Enebo, & Davidson, 2016; Pickar, 2002; Reed, Long, 

Kawchuk, & Pickar, 2014).  Similarly, spinal manipulation has been shown to modify the 

discharge of Group I and II afferent fibres (Pickar, 1999) and reduce the mechanosensitivity 

at the mechanoreceptive nerve endings such as proprioceptors (e.g., muscle spindles, Golgi 

tendon organs) (Behm et al., 2013; Pickar & Wheeler, 2001) which, again, could account for 

the increase in ROM.  

Another possible explanation is that the HVLA thrust could have stimulated the 

thoracic splanchnic nerves which can activate the sympathetic component of the autonomic 

nervous system (ANS) and the sympathetic adrenal medullary system (SAM) (Furquim, 

Flamengui, & Conti, 2015; McBride et al., 2001).  As this is an excitation response, this may 

have led to the increase in ROM as the adrenal system may have allowed for greater mobility 

and therefore ROM.  

In terms of the baseline-IAc predicting the post-ROM outcomes, this relates to the set 

of neuroanatomical pathways which allow bodily signals to travel through to the insular 

cortex to form bodily awareness (Craig, 2004; Garfinkel & Critchley, 2013; Garfinkel et al., 
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2015). Some researchers (Pollatos et al., 2012) have observed that individuals with higher 

interoceptive accuracy had lower pain thresholds and tolerance, higher pain perceptual 

experience, and higher levels of anxiety.  This seems to be consistent with the present finding 

which demonstrated that there was a negative association between baseline-IAc and post-

ROM outcomes, as higher IAc would mean greater sensitivity, lower pain tolerances, and 

therefore lower mobility expressed in the form of ROM.  

The role of the interoceptive system seems to be complex as it combines both the 

physiological and psychological structures.  It seems to determine the intensity of pain and 

other experiences such as related anxiety and ROM.  This means it is likely to be a useful 

variable in predicting individual ROM outcomes after spinal manipulation. This, therefore, 

may become a useful measure in the diagnosis of patients of osteopathic practice.  An 

example of this could be where a patient with back pain is given some advice about how 

likely spinal mobility (ROM) may increase given manipulation and based on their baseline 

interoceptive state. So, this could be used as a diagnostic measure to assess potential clinical 

effectiveness given their individual differences around baseline interoceptive states. 

However, more confirmatory RCTs are needed and with clinical populations to be certain of 

the effectiveness of this measure in prediction of patient post ROM outcomes.  

In addition to this, psychological variables which may impact on the outcomes of any 

intervention are important to consider.  One theoretical example of this is pain gate theory 

(Melzack & Wall, 1965) which explained a psychophysiological mechanism for pain 

modulation from non-noxious sensory input.  Other examples of psychological variables 

include placebo effects and expectation bias which have been explained by Bialowsky et al. 

(Bialosky, Bishop, Price, Robinson, & George, 2009), who suggested that manual therapy 

initiates a neurophysiological cascading response through peripheral and the central nervous 

system (CNS) leading to psychological biases.  Psychological biases such as expectation bias 
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may have led to the global (i.e., in all conditions) increases in ROM found in this present 

study as well as in others (McCoss, Johnston, Edwards, & Millward, 2017; Whelan, 

Johnston, Millward, & Edwards, 2018).   

This work on interoception within the area of osteopathy could be further expanded 

upon through further exploration of cognitive components such as categorization and 

interoception (Petersen, Schroijen, Molders, Zenker, & Van den Bergh, 2014), as well as 

other areas of perceptual biases (Edwards, Perlman, & Reed, 2012; Edwards & Wood, 2016; 

Pothos, Edwards, & Perlman, 2011).  Further research could use these approaches to 

understand how cognitive expectation biases and placebo effects emerge to from conscious 

perceptions within brain regions such as the claustrum of the neocortex  (Crick & Koch, 

2005) and interoceptive awareness of the insular cortex (Craig, 2004) through the use of 

neuroimaging techniques. This seems consistent with work of  Bialosky et al. (Bialosky et al., 

2009) who is seeking to develop a unified model of psychological and physiological 

properties which explain the pain experience more detail.  

 

Limitations 

In terms of limitations, it is recognised that an asymptomatic population has been used 

and this study would have benefited from a clinical population to improve ecological validity.  

In addition to this, the study could have benefited from a greater number of participants to 

improve the overall power of the results. This was also called a triple-blind study, but it is 

unclear as to whether the participants understood the different conditions they participated in. 

For example, they may have known that when they received the HVLA thrust, this was a 

study about spinal manipulation.  So, the degree to which they were truly blind may be 

questioned. Finally, it should be noted, the intervention was taken at T10-L1 and referred to 
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as the TLJ, however many other studies have used different segments usually involving the 

L2.   

 

Conclusion 

In summary, the findings of this study demonstrated that the HVLA thrust led to a 

significant increase in ROM when compared with the sham and control conditions.  In 

addition to this, the baseline-IAc was negatively associated with post-ROM outcomes. This 

provides some exciting avenues of research for the future which can explore the use of IAc as 

a possible predictor for ROM and pain outcomes perhaps in clinical populations. IAc maybe 

therefore be a useful tool for osteopaths in the future as part of their clinical diagnosis.  

 

Clinical relevance 

• This provides evidence that a HVLA thrust may be effective at increasing ROM at the TLJ.  

• Baseline-interoception may be a useful means to assist with diagnostics in terms of 

identifying the likelihood of improvement in ROM across the TLJ.  

• Psychological components need to be explored more thoroughly in the future in relation to 

patient expectation and outcomes.  
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Figure 1.  
CONSORT Flow Diagram with three groups and with immediate effects recorded. 
 

 

 

 

 

 

 

 

 

 

 

 

Assessed for eligibility 
 Excluded (n=5) 

¨   Not meeting inclusion criteria 
(n=3) 

¨   Declined to participate (n=2) 
     

Analysed (n=21) 
¨ Excluded from analysis (n=0) 

Immediate follow up recording.   
Lost to follow-up (n=0) 
Discontinued intervention (n=0) 

Control. 
Allocated to intervention (n=21) 
¨ Received allocated intervention (n=21) 
¨ Did not receive allocated intervention 

(n=0) 

Immediate follow up recording.   
Lost to follow-up (n=0) 
Discontinued intervention (n=0)  

Sham. 
Allocated to intervention (n=21) 
¨ Received allocated intervention (n=21) 
¨ Did not receive allocated intervention 

(n=0) 

Analysed (n=21) 
¨ Excluded from analysis (n=0) 
 

Randomised (n=21) 

Enrolment 

HVLA manipulation. 
Allocated to intervention (n=21) 
¨ Received allocated intervention (n=21) 
¨ Did not receive allocated intervention 

(n=0) 

Immediate follow up recording.   
Lost to follow-up (n=0) 
Discontinued intervention (n=0)  

Analysed (n=21) 
¨ Excluded from analysis (n=0) 
 

Allocation 

Analysis 

Follow up 



23 
 

Figure 2: 
Top left, lying supine (control); Top right (sham); bottom, HVLA manipulation of the TLJ.   
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Table 1. 
Demographic data. 
 
Measurement           Total                  Mean       SD        SE             Range 
                       Participant           
                       Minimum      Maximum    
 
Age  (Years)                21 22.71 5.10       1.11              17 35 

Height (CM)                21 77.43               18.38     4.01              52.00          140.00 

Weight (KG)                21 178.52              9.17       9.17       157.00        198.00                         

BMI     21 24.21              5.09       5.09       18 43.70 

 
SD=Standard Deviation; Age=years; Weight=kilograms; Height=Centimetres; BMI= Body Mass Index. 
Male (N=11), Female (N=19). Total N = 30 
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Table 2. 
Intra-rater reliability ROM. 
 
                    Interclass           95% Confidence interval        Level of           p 
                    Correlation            Lower         Upper                reliability 
                   bound bound 
 
Pre-control   
ROM                       0.992                    0.981            0.997                 Excellent         <0.001 
 
Pre-control  
Heart Rate               0.982                   0.955           0.993                   Excellent        <0.001 
   
 
Note: Shrout and Fleiss (1979) classification reliability>0.75, excellent; 0.6-0.75, good; 0.4-0.59, fair; and <0.4, poor.   
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Table 3.   
Mean, standard deviation (SD) and standard error (SE) of the  
Pre-post change Range of Motion scores and participant number for each condition. 
 
Study 
Condition              N  Mean   SD             SE       Range 
 

Control change      21           1.90           3.315       0.723               15 

Sham change         21           1.48           1.990       0.434               9 

HVLA change       21           5.81           3.311      0.722                11 
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Table 4.   
Mean, standard deviation (SD) and standard error (SE) of the pre and post 
IAc scores and participant number for each condition. 
 
Study 
Condition              N  Mean   SD             SE       Range 
 

Baseline-Control   21           0.97           0.29          0.06               1.39 

Baseline-Sham      21           0.89           0.18          0.41               0.78 

Baseline-HVLA    21           0.87           0.26          0.06               1.23 

Post-control           21           0.92          0.21          0.04                1.10 

Post-sham              21           0.88          0.17          0.04                0.83 

Post-HVLA           21           0.79           0.13          0.03               0.56  


