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1 Abstract

2 Structurally complex habitat is declining across temperate marine environments. This trend has 

3 been attributed to changes in land use and increasing coastal development, which are activities 

4 likely to continue with governments supporting ongoing economic growth within the marine 

5 realm. This can compromise biodiversity, and biodiversity offsetting is increasingly being 

6 heralded as a means to reduce the conflict between development and conservation. Offset 

7 schemes are often evaluated against targets of ‘ecological equivalence’ or ‘like-for-like’ but 

8 these terms can be difficult to define and quantify. Although targets of equivalence have been 

9 generally shown to be feasible in terrestrial environments, the complex and dynamic nature of 

10 the marine and coastal realms present difficulties when aiming for strict equivalence targets as 

11 measures of success. Here, we investigated four intertidal biogenic reef habitats formed by the 

12 tube worm Sabellaria alveolata within, and in proximity to, Swansea Bay (Wales, UK). The 

13 aim was to identify measurable biodiversity components for S. alveolata reef habitat, and to 

14 investigate the natural spatio-temporal variation in these components, to determine whether a 

15 target of equivalence was feasible. We also looked to identify the most important drivers of 

16 species assemblages within the reefs. Results showed that biodiversity both S. alveolata 

17 formation and tube aperture condition showed a significant interaction between site and season  

18 with community composition varying significantly by site only. Site was found to explain the 

19 highest variation in community composition, followed by substrate type, and geographical 

20 position. These results  highlight how widely coastal habitats can vary, in both space and time, 

21 and therefore calls into question a strict target of ecological equivalence when planning 

22 biodiversity offsets in coastal environments. 

23
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28 1. Introduction

29 Loss of structurally complex habitat has been identified as one of the primary causes of 

30 biodiversity loss in coastal environments over the past century, a trend largely attributed to 

31 anthropogenic activities such as pollution, coastal development, climate change and land based 

32 human activities (Millennium Ecosystem Assessment, 2005a; Slingenberg et al., 2009). 

33 Coastal zones are some of the most biologically diverse and productive marine ecosystems, 

34 however they occupy less than 5% of the Earth’s land area (Millennium Ecosystem 

35 Assessment, 2005; Sukhdev, 2008). Yet, they host more than 45% of the global population, 

36 and 75% of the world’s largest urban aggregations (Balk et al., 2009; CIESIN, 2005; Neumann 

37 et al., 2015; Slingenberg et al., 2009; Small and Nicholls, 2003). Projections foretell a more 

38 than twofold increase in ‘ocean economy’ between 2010 and 2030 (European Commission and 

39 Directorate-General for Maritime Affairs and Fisheries, 2012; Halpern et al., 2015; 

40 Organisation for Economic Development, 2016), which indicates an increasing friction 

41 between economic development and biodiversity conservation efforts in coastal areas 

42 worldwide (Allsopp et al., 2009; Broderick, 2015).

43 In an attempt to minimise the implications of such impacts on biodiversity, developments are 

44 subject to regulatory frameworks based on the concept of a ‘mitigation hierarchy’. This 

45 requires demonstration, firstly, that attempts have been made to ensure that negative 

46 biodiversity impacts are avoided, minimised and restored, with the last resort for any residual 

47 impacts to be addressed via biodiversity offsetting measures (BBOP, 2009; Gardner et al., 

48 2013). Biodiversity offsetting can be defined as ‘measurable conservation outcomes resulting 

49 from actions designed to compensate for significant residual adverse biodiversity impacts 

50 arising from project development after appropriate mitigation measures have been taken’ 

51 (BBOP, 2013). They are increasingly heralded as a means to facilitate economic development 

52 whilst maintaining conservation objectives (Madsen et al., 2010). However, the science of 

53 ecological restoration, rehabilitation and creation that underpins offsetting efforts is still 

54 considered to be in its infancy (Quétier et al., 2014; Suding, 2011), with an increasing number 

55 of studies concluding that offsetting efforts are often ineffective (Moreno-Mateos et al., 2012, 

56 2015).

57 In the terrestrial environment, biodiversity offsetting has been subject to a certain level of 

58 academic scrutiny, however, less attention has been devoted to the extension of the practice in 

59 marine environments (Bas et al., 2016; Gonçalves et al., 2015; Niner et al., 2017). This is also 



60 reflected in the lack of specific coastal and marine offsetting policy, with only six countries 

61 (US, Canada, Australia, France, Germany, Columbia) having national offsetting policies that 

62 are directly applicable to the marine environment (Niner et al., 2017). 

63 Biodiversity offsetting differs from other types of compensatory action in that it requires 

64 ‘measureable’ outcomes (BBOP, 2009; Bull et al., 2013; Maron et al., 2012). This requires a 

65 demonstration of equivalence between biodiversity losses and gains (Bull et al., 2013), 

66 however how to measure ecological equivalence is one of the most debated of all technical 

67 offset issues (Gardner et al., 2013; ICMM and IUCN, 2012; Quétier and Lavorel, 2011). 

68 Current best practice recommendations for implementing offsetting suggest that they should 

69 be ‘in-kind’ or ‘like-for-like’ offsets (BBOP, 2012), meaning that gains from the biodiversity 

70 offset must comprise of the same biodiversity components as those impacted (Maron et al., 

71 2012; Bull et al., 2015).

72 In terrestrial environments, a target of ‘in kind equivalence’ or ‘like for like’ has been shown 

73 to often be feasible (Defra, 2012). In contrast, the more complex and dynamic nature of coastal 

74 and marine environments means that it may be less feasible to recreate the physical factors that 

75 govern the distribution and success of certain biotopes (Cook and Clay, 2013). Connectivity 

76 between ecosystems operates in three dimensions, and the high biological and physical 

77 heterogeneity of habitats and species on a range of spatial and temporal scales presents 

78 difficulties when planning offsets in the marine environment (Crowder and Norse, 2008; Niner 

79 et al., 2018). The question remains, whether setting a target of ‘like-for-like’ is realistic to 

80 determine the success of offsetting projects in coastal and marine environments. If not, how 

81 much variation may be acceptable given natural variation in space and time?  

82 Demonstrating equivalence between impacts and offsets requires the identification of a suite 

83 of metrics that accurately describe all biodiversity elements of interest. Adequately defining 

84 the elements of biodiversity that are most important is a crucial element of offset design, but is 

85 often challenging (Bull et al., 2016; Maron et al., 2016). Biodiversity elements can be broadly 

86 categorised into type, component and attribute (New Zealand Department of Conservation, 

87 2014). While other categorisations could be used, this provides an intuitive, tractable and 

88 published framework in which to develop our study. The type of biodiversity to be offset is the 

89 key biodiversity feature of concern, and can be an ecosystem, a habitat or species. Biodiversity 

90 components are characteristics used to describe the biodiversity type and they represent the 

91 elements of biodiversity that are of primary interest for which no net loss is to be achieved. 



92 Biodiversity attributes are the measurable elements which comprise the biodiversity 

93 components. The three levels, biodiversity type, components and attributes, can be used to 

94 collectively describe the biodiversity at both impact and offset sites (Figure 1a).

95 In this study, we decided to investigate the feasibility of reaching a target of ecological 

96 equivalence for the reef building tube worm Sabellaria alveolata. The habitat was identified as 

97 being subject to significant residual impact within the Environmental Impact Assessment of a 

98 proposed tidal lagoon in Swansea Bay, Wales (UK). S. alveolata is classified under ‘reefs’ as 

99 an Annex I habitat in the EU Council Directive 92/43/EEC on the conservation of natural 

100 habitats and of wild fauna and flora (Habitats Directive), and is listed as a ‘marine habitat to 

101 be protected by the designation of Special Areas of Conservation (SAC’s)’ (European 

102 Commission and Office for Official Publications of the European Communities, 2000). It is 

103 generally considered that any biodiversity offset should be carried out on a like-for-like basis, 

104 i.e. non-flexible in that the same type of habitat and measured biodiversity components must 

105 be recreated or restored as the one impacted, in particular if that habitat is designated (Defra, 

106 2012).

107 In order to investigate the feasibility of a target of ‘like-for-like’ equivalence for S. alveolata 

108 habitat, the study had the following objectives:

109 i) Identify biodiversity components and measurable attributes which could be used to 

110 determine ecological equivalence in S. alveolata reefs;

111 ii) Investigate the natural spatio-temporal variation of measured biodiversity 

112 components;

113 iii) Investigate which factors influence species assemblages associated with S. alveolata 

114 reefs;

115 iv) Explore how factors modified by S. alveolata as an ecosystem engineer, as well as 

116 factors external to the influence of S. alveolata (spatio-temporal effects), influence 

117 associated community composition.

118 2. Materials and Methods

119 2.1 Study sites

120 Four S. alveolata reefs were chosen to be sampled, all of which were located along the northern 

121 coastline of the Bristol Channel (Wales, UK) (Figure 2): two sites within Swansea Bay ((A) 



122 Tawe, (B) Port), and two sites along the wider Glamorgan coastline at (C) Porthcawl and (D) 

123 Dunraven. This coastline is often exposed to severe hydrodynamic forces due to strong winds 

124 and tides generated in the Bristol Channel, as well as North Atlantic Swells. Swansea Bay 

125 receives some protection from Mumbles Head, an area of headland which can provide shelter 

126 from prevailing south-westerly wave conditions. S. alveolata within Swansea Bay colonises 

127 glacial till as well as pebble and small stone, while at Porthcawl and Dunraven reefs are 

128 cemented to Blue Lias limestone platforms as well as some mixed cobble substrate.

129 2.2 Identifying suitable biodiversity components for S. alveolata reefs.

130 Best practice guidance on biodiversity offsetting suggests that any Equivalence Assessment 

131 Method (EAM), used to measure biodiversity losses and gains (Bezombes et al., 2017) should 

132 describe all biodiversity components of interest, which should align with clearly stated policy 

133 or conservation objectives (Maseyk et al., 2016). With that logic, we identified biodiversity 

134 components outlined in Severn Estuary SAC conservation objectives for biogenic reef habitats 

135 (Natural England and Countyside Council for Wales, 2009), as they were considered to be 

136 applicable across EU member states and were also in line with the high levels of protection 

137 given to Annex I habitats within the Habitats Directive. The conservation objectives for S. 

138 alveolata are as follows, ‘That the feature will be considered to be in favourable condition 

139 when, subject to natural processes, each of the following conditions are met’:

140 i) The total extent and distribution of S. alveolata reef is maintained;

141 ii) The community composition of S. alveolata reef is maintained;

142 iii) The full range of different age structures of S. alveolata reef are present;

143 iv) The physical and ecological processes necessary to support S. alveolata reef are 

144 maintained.

145 It was decided that the study would focus on three measurable biodiversity components from 

146 the above criteria: a) a measure of extent and distribution; b) a measure of community 

147 composition and c) a measure of the range of age structures. Having identified suitable 

148 biodiversity components, we then looked to identify measurable attributes to describe these 

149 components (Figure 1b). 

150 2.3 Identifying measurable attributes to describe biodiversity components for S. alveolata 

151 reefs



152 a) Measurement of total extent and distribution

153 The distribution of S. alveolata appears to be geographically limited to between Morocco and 

154 the southwest of Scotland (Crisp, 1964). In Great Britain, the vast extent of S. alveolata has 

155 been recorded on the west coast, with isolated records also seen in the south and north of eastern 

156 England (Gubbay, 1998). The distribution of S. alveolata relates to the specific environmental 

157 conditions it requires to colonise an area successfully. S. alveolata exhibits natural temporal 

158 and spatial variability, and can be affected by a number of factors such as extreme cold and 

159 frost events (Firth et al., 2015), burial by sand (Allen et al., 1999), damage through trampling 

160 (Plicanti et al., 2016), competition for space with species such as Mytilus edulis (Cunningham, 

161 1984; Holt et al., 1998) and naturally variable recruitment (Holt et al., 1998). This study looked 

162 to explore spatio-temporal changes in S. alveolata by using percentage cover as a measure of 

163 distribution.

164 b) Measurement of community composition

165 S. alveolata is an ecosystem engineer that builds three-dimensional structures which can 

166 qualify as ‘reefs’ (Holt et al., 1998). Ecosystem engineers modify, create or destroy habitats 

167 that “directly or indirectly modulate the availability of resources to other species” (Jones et al., 

168 1994). For this reason, ecosystem engineers are often reported to host a more diverse range of 

169 species than adjacent non-engineered habitats (Ataide et al., 2014, De Smet et al., 2015). 

170 Physical ecosystem engineering appears to be of particular importance in extreme 

171 environments (e.g., thermic, hydrodynamic stress) such as temperate intertidal areas (Bouma 

172 et al., 2009; Jones et al., 1997). The biogenic reefs created by S. alveolata are recognised as 

173 potential community enhancers and can be seen as biodiversity ‘hotspots’, where species 

174 diversity deeply contrasts with that of surrounding sediments (Jones et al., 2018; Porras et al., 

175 1996; Dubois et al., 2002; Schlund et al., 2016). By creating variation in an otherwise 

176 homogenous environment, and by stabilising loose substrate and restricting water flow to form 

177 pools, they can provide niches for a large array of species (Egerton, 2014).

178 This study explored spatio-temporal changes in the composition of communities associated 

179 with S. alveolata. In addition, in order to investigate the influence of S. alveolata as an 

180 ecosystem engineer in temperate intertidal environments, we also explored how much of the 

181 variation in community composition was as a result of the biodiversity components associated 

182 with the tube worm reefs (extent, formation, condition), as well as additional factors that may 



183 be modulated by S. alveolata as ecosystem engineers. A number of studies have discussed the 

184 effect that engineer species can have on community composition (Ataide et al., 2014; De Smet 

185 et al., 2015, Jones et al., 1997, Stachowicz, 2001) and following a detailed literature search, we 

186 selected 7 variables that could be modified directly by S. alveolata (Table 1).

187  In order to control for spatio-temporal effects external to the influence of S. alveolata, we also 

188 investigated how much variation could be explained by an additional four factors; site, season, 

189 position on the shore and distance to Mean Low Water (MLW) (Table 1).

190 c) Measurement of age structures

191 As the conservation objective refers to the age structure of S. alveolata ‘reef’, this is taken as a 

192 reference to morphological developmental phases of tube aggregations, as opposed to that of 

193 the individual worms. Because S. alveolata larvae prefer to settle on active colonies or the 

194 remains of old colonies, morphology of reefs cannot be directly related to the age of individual 

195 polychaetes (Gruet, 1986). However, S. alveolata colonies follow a well-documented cycle of 

196 growth and decay (Gruet, 1982; 1986; Wilson, 1971; 1974; 1976), of which one or all phases 

197 may be observed at any one time. The cycle is linked in part to larval settlement and 

198 recruitment, but is also influenced by physical factors associated with hydrodynamics (Gruet, 

199 1986). Gruet (1982) divided these growth phases into three types of reef formation: sheet, 

200 hummock and reef. Further work building on this classification by Egerton (2014) added an 

201 additional categorisation of patchy formation. Following initial site visits, we also chose to 

202 include the category of ‘encrusting’ formation, as we felt that based on S. alveolata 

203 communities in our study area that this was missing from the classification. These 

204 classifications of reef formation were used as a proxy for a measure of reef ‘age structure’.

205 d) Measurement of condition of age structures

206 To supplement the measurement of reef age structure, a measure of reef health was also 

207 recorded. Reefs are formed from a coalescence of sand tubes built by individual worms (Le 

208 Cam et al., 2011). Whilst submerged, their head and tentacles protrude from the tube in order 

209 to gather particles for the maintenance of tube structures as well as gathering food (Dubois et 

210 al., 2009). For this reason, it is assumed that individuals in healthy condition will create un-

211 smothered and intact tubes, whereas unhealthy individuals are likely to display worn tube 



212 apertures, or even tubes completely smothered by sediment (Dubois et al., 2003). Tube aperture 

213 condition was used in this study as a proxy for the health of the colony.

214 2.3 Sampling Design

215 All four sites were surveyed between June and September 2016 (Summer) and between 

216 February and April 2017 (Winter). Survey sites were selected from Phase 1 Habitat maps 

217 created by the Countryside Council for Wales (CCW) showing presences of S. alveolata 

218 biotopes around the Swansea and Glamorgan coastlines. Once selected, S. alveolata reefs at 

219 each survey site were divided into a 50 x 50m grid using QGIS. Due to the differences in area 

220 of each of the four sites, a random sample of 30 grid intersections were selected. Each grid 

221 intersect was marked and the coordinates transferred to GPS (Garmin eTrex Legend HCx). The 

222 GPS was used to locate the selected grid intersects at each site and once located a 1m2 quadrat 

223 was placed at random in the area surrounding the point. Within each quadrat, percent cover of 

224 S. alveolata was quantified as a proxy for distribution, and percent formation type and percent 

225 tube aperture condition were recorded as proxies for age structure and health. A photographic 

226 guide to the classification of S .alveolata formation, type and status (Figure 3) was used to 

227 increase accuracy of estimation and standardise recordings. Substrate type associated with S. 

228 alveolata reef was also recorded. Benthic species visible within the quadrats were enumerated 

229 and recorded to the lowest taxonomic level possible, with the same amount of time spent on 

230 each quadrat (approx. 5 minutes).

231 Other S. alveolata reef variables were also recorded within each quadrat, including percentage 

232 cover of macroalgae, standing water and barnacle cover. 

233 2.4 Statistical Analysis

234 Data were analysed using univariate and multivariate methods using the PRIMER v7 software 

235 package with PERMANOVA add on (Anderson et al., 2008; Clarke and Gorley, 2015).

236 Square-root transformed data was used to create a Bray-Curtis dissimilarity matrices for each 

237 of the biodiversity components, a) percentage S. alveolata cover, b) community composition, 

238 c) percentage S.alveolata formation, d) percentage tube aperture condition.

239 Spatial and temporal differences in habitat structure and community composition variables 

240 were tested using a permutation analysis of variance fixed model (PERMANOVA) (Anderson 



241 et al., 2008) (PRIMER v7, Primer-E Ltd, 239 Plymouth, UK). Two-way crossed 

242 PERMANOVA for factors SEASON (Two levels; fixed) and SITE (Four levels; fixed) was 

243 used to examine patterns of variation in habitat structure and associated community 

244 composition, using 9999 permutations. Where significant differences were found, 

245 PERMANOVA pairwise comparisons were used to identify the origin of the differences.

246 Similarity percentages analysis SIMPER was performed to identify species contributing to 

247 differences between sites and seasons, based on Bray-Curtis similarities of square root 

248 transformed abundance data (Clarke and Warwick, 2001).

249 Macrofaunal species diversity was estimated using species richness and Hill’s (1973) 

250 heterogeneity of diversity indices: N1 = exp(H’) and N2 = 1/SI, as recommended by Gray 

251 (2000). N1 is sensitive to the number of medium-density species, whereas N2 is sensitive to the 

252 number of very abundant species (Whittaker, 1972). To investigate differences in diversity 

253 measures between both sites and seasons, two way Analysis of Variance (ANOVA) was used. 

254 Where significant differences were obtained, Tukey’s honestly significant difference (HSD) 

255 post-hoc tests were carried out. All univariate analysis was carried out using R statistical 

256 software (R Core Team, 2013).

257 A distance based linear model (DistLM) was built to identify which factors were significant 

258 predictors for the biodiversity component of community composition. DistLM is a multivariate 

259 multiple regression routine, in which a resemblance matrix of species abundance data is 

260 regressed against a set of explanatory (environmental) variables (Anderson et al., 2008). 

261 Environmental variables were normalised and evaluated using an Euclidean distance matrix. 

262 Permutation methods were used to assess statistical significance of each predictor variable. 

263 DistLM selection was based on the BEST selection procedure with 9999 permutations based 

264 on adjusted R2 selection criteria (Sokalr and Rohlf, 1981). A Draftsman plot was carried out 

265 prior to DistLM regression to avoid multicollinearity among predictor variables that could bias 

266 results (McArdle & Anderson, 2001). If two variables were found to be strongly correlated (R2 

267 > 0.80), one was removed from the analysis (Dormann et al., 2013). To assess the amount of 

268 variation in community composition explained by each set of predictors (reef variables or 

269 spatio-temporal), overall variation was partitioned using a DistLM model that included only 

270 the significant predictors identified in both sets of predictors. Fitted DistLM models were 

271 visualised using the distance-based redundancy analysis (dbRDA) routine (PRIMER v7).



272 3. Results

273 3.1 Spatio-temporal variation in biodiversity components

274

275 a) Total extent and distribution of S. alveolata (percentage cover)

276 During the summer sample season, average percent cover of S. alveolata ranged from 33.40 ± 

277 2.14% at the Port site to 42.77 ± 3.31% at the Dunraven site. Percent cover increased marginally 

278 at each site during the Winter sample season, with the highest increase recorded at the 

279 Porthcawl site from 35.53 ± 1.32% in summer to 45.37 ± 4.31% in the winter (Appendix 1). 

280 Permutational analysis of variance (PERMANOVA) found no significant difference in percent 

281 cover S. alveolata between sites or between seasons (Table 2). 

282 b) Community composition of S. alveolata

283 PERMANOVA identified a significant difference in community composition between sites, 

284 but not between seasons (Table 3). Post-hoc pairwise PERMANOVA tests indicated 

285 significantly different community composition among all sites (Table 4). SIMPER analysis 

286 showed that species assemblages at Tawe and Porthcawl sites were most dissimilar at 89.59% 

287 (Table 5). The gastropods Littorina littorea and Steromphala umbilicalis  accounted for 46.7% 

288 of the dissimilarity, although dissimilarity/SD of below 1 indicates that L. littorina would have 

289 been distributed unevenly within sites; e.g. they were abundant in some quadrats but absent 

290 from others. S. umbilicalis and L. littorea were also the highest contributing species to 

291 dissimilarity between Tawe and Dunraven as well as Porthcawl and Dunraven sites. High 

292 abundance of the invasive gastropod Crepidula fornicata at the Port site caused dissimilarity 

293 when compared with the other three sites, although the species also had a dissimilarity/SD 

294 value below 1, indicating it was patchy in its distribution. 

295 Two way Analysis of Variance (ANOVA) found a significant difference in species richness 

296 and both Hill’s indices (N1 and N2) between sites (P < 0.001), but not between seasons (Figure 

297 4; Table 6 ). Post-hoc comparisons using Tukey HSD test indicated that species richness was 

298 significantly different between all sites (P < 0.001), except between Tawe and Dunraven sites 

299 (P = 0.438). Kruskall Wallis pos- hoc analysis found that this was also true of Hill’s N1 between 

300 sites (all sites, P < 0.05, apart from Tawe and Dunraven, P = 0.138), but not of Hill’s N2, where 

301 non-significance was reported between Tawe and both Port (P = 0.057) and Dunraven (P = 



302 0.425) sites. However, Hill’s N2 was found to be significantly different between all other sites 

303 (P < 0.001) (Table 7).

304 c) Range of age structures 

305 Formation assemblages showed location specific trends, with sites grouped in closest proximity 

306 (Port and Tawe; Porthcawl and Dunraven) to each other displaying similar changes over 

307 sampling seasons (Figure 5). Port and Tawe sites both saw decreasing percentage cover of 

308 encrusting and reef formations between summer and winter sample seasons, as well as increases 

309 in percentage cover of patchy, hummock and sheet formation types. In contrast, between 

310 summer and winter sample seasons, Porthcawl and Dunraven saw increasing percentage cover 

311 of encrusting formation as well as decreases in patchy formation. Dunraven was the only site to 

312 show an overall increase in percentage reef cover, and a decrease in sheet formation in the 

313 winter. No hummock formation was recorded at Porthcawl in either sample season. 

314 Two factor PERMANOVA analysis showed a significant interaction between site and season 

315 (Table 8) indicating that all variables analysed showed a temporal pattern depending on site. 

316 The presence of a significant interaction generally indicates that the tests of the main effects 

317 may not be meaningful (Underwood, 1997). As suggested by Anderson (2001) we then 

318 performed Post hoc pairwise PERMANOVA which found that only Port and Tawe and Tawe 

319 and Dunraven had significantly different formation assemblages during the Summer sample 

320 season, however, during the Winter sample season, these were the only site pairings to not show 

321 significant differences (Table 9).

322 d) Tube aperture condition

323 Tube aperture condition showed overall seasonal trends, with each site showing decreases in 

324 the percentage cover of both crisp and worn tube apertures from summer to winter sample 

325 seasons. This was matched with increases in the average percent cover of both dead and newly 

326 settled tubes apertures from summer to winter seasons (Figure 6). 

327 PERMANOVA analysis found a significant interaction between site and season with regards 

328 to tube aperture condition (Table 10). Post hoc PERMANOVA analysis found that all sites 

329 were significantly different during the winter sample season, however tube aperture condition 



330 at Port and Tawe and Tawe and Porthcawl were not significantly different during the summer 

331 sample season (Table 11). 

332 3.2 Variation in community assemblages in relation to environmental factors.

333 Distance-based linear models (DistLM) were constructed to quantify the degree to which one 

334 or more of the environmental variables, including biodiversity components a, c and d, 

335 explained the associated species community structure. The overall best model explained 32.4% 

336 of the variation and contained all of the included variables (% S. alveolata cover, % formation, 

337 % condition, % macroalgal cover, % standing water cover, % barnacle cover, geographic 

338 position, distance to mean low water, site, season and substrate). Of all variables retained in 

339 the BEST model, site explained the most variation (19.7%, P = 0.001), followed by substrate 

340 (10.0%, P = 0.001) and geographical position (9.3%, P = 0.001). Of the S. alveolata 

341 biodiversity components, % S. alveolata cover explained 0.9% of the variation and was not 

342 found to be significant (P = 0.06). Both % formation and % condition were found to be 

343 significant predictors (P < 0.05), explaining 3.2% and 7.6% of the variation respectively. The 

344 full model was visualised via dbRDA ordination (Figure 7) and broadly groups the samples by 

345 site. The first two axis explained 79.2% of the fitted variation and 31.1% of the total variation. 

346 Species assemblages tended to be structured according to site, which aligns with the results of 

347 the DistLM. 

348 The partitioning of variance showed that factors modified by S. alveolata explained 27.3% of 

349 variation, whereas factors external to the influence of S. alveolata explained 26.5% of the total 

350 variation in the biological community composition. Both were found to be significant (P = 

351 0.001). The shared effects of the two groups accounted for 26.6% of the variation (Figure 8).

352 4. Discussion 

353  A key element of Biodiversity Offsetting is the concept of ‘ecological equivalence’. The term 

354 has no universally agreed definition (Rayment et al., 2014), however it is generally accepted 

355 that an offset is considered ‘equivalent’ when it is ‘in-kind’ (EC, 2000; Defra, 2012), and 

356 provides habitat, functions or other attributes similar to those impacted (BBOP, 2009; Bennett 

357 and Gallant, 2017). Accurate assessment of equivalence requires a suite of measurable 

358 biodiversity components to account for losses and gains in biodiversity (Maseyk et al., 2016). 

359 In this study, we identified two measureable biodiversity components suitable to assess 



360 equivalence for the Annex I reef habitat, S. alveolata, and investigated how they varied 

361 naturally in space and time. S. alveolata extent was not found to differ between site or season. 

362 However, significant interactions between site and season were found for both formation and 

363 tube aperture condition. Species composition was found to vary significantly between sites 

364 only. The findings of this study suggest high natural variability in the structure and condition 

365 of the S. alveolata habitat, as well as associated species assemblages. This calls into question 

366 the feasibility of a strict like-for-like target of ecological equivalence as a measure of success, 

367 for coastal offset projects carried out in highly dynamic coastal environments. It suggests that 

368 it would be unlikely that recreated or relocated habitat would reach a strict target of equivalence 

369 naturally, and could be deemed as having failed, although they may support a unique and 

370 persistent ecosystem that may be equally as ‘valuable’ in its biodiversity outside of the 

371 constraints of a strict ‘like-for-like’ framework of evaluation. 

372 Determining which elements of biodiversity to offset is key to project design, but is often 

373 challenging to clearly define (Bull et al., 2016; Maron et al., 2016). Measures tend to be 

374 conceived at local or regional levels, on a case-by-case basis, making it difficult to compare 

375 the performance of offsetting projects in relation to one another (Gonçalves et al., 2015). In the 

376 absence of an agreed suite of components for S. alveolata reefs, we based our selection on the 

377 conservation objectives stated in SAC guidelines for S. alveolata, to ensure they aligned with 

378 the broader conservation objectives of the EU Habitats Directive, as has been recommended in 

379 guidance literature (BBOP, 2009; Slingenberg et al., 2009). This method can then facilitate a 

380 certain level of standardisation between projects, as they are evaluated against a common goal 

381 of maintaining the ‘favourable conservation status’ of the habitat as outlined in the Habitats 

382 Directive. 

383 A measure of habitat structure is included as a biodiversity component in many EAM’s due to 

384 its influence on associated community compositions (Gonçalves et al., 2015). This relationship 

385 is supported by our results, which showed S. alveolata formation and condition had a 

386 significant influence on community composition. It is well documented that S. alveolata reefs 

387 in degraded condition are often found to have higher diversity and species richness than 

388 actively growing reef structures (Porras et al., 1996; Dubois et al., 2002; Desroy et al., 2011), 

389 although these studies differ from this study as they refer primarily to infaunal assemblages. 

390 This relationship was true of the Swansea Port reef, which had the highest diversity and species 

391 richness across all sites and was characterised by high percentage cover of patchy and 



392 encrusting formations in worn and dead condition. However, this was in contrast to Porthcawl 

393 reef, which was also characterised by degraded reef features but was found to have the lowest 

394 diversity and abundance of species across sites. This could be explained by the difference in 

395 exposure between the two sites, as Swansea Port is largely sheltered from prevailing winds and 

396 wave action by a large breakwater, as opposed to Porthcawl which is the most exposed of all 

397 four sites. Exposure has been observed as influencing community structure within S. alveolata 

398 in a number of studies (Gruet, 1971, 1982; Schlund et al., 2016), which report higher species 

399 and taxonomic richness of species in more sheltered areas compared to those subject to higher 

400 energy hydrodynamic conditions. Our results suggest that the influence of S. alveolata habitat 

401 structure on associated community composition seems to vary across a gradient of exposure, 

402 where a lack of more robust reef formation to provide protection at sites of high wave exposure 

403 can lead to lower species richness and diversity. Whereas, at medium to low exposure sites, 

404 large reef structures can dominate and outcompete other species for space, resulting in reduced 

405 species richness and diversity.

406 This highlights some of the difficulty involved in recreating habitats in such a dynamic 

407 environment as the coastal zone. Even if an exact copy of what was lost in terms of habitat 

408 structure were to be recreated elsewhere, the influence of external factors may prevent an exact 

409 replication of species composition unless adequately addressed (Hannan and Freeman, 1977). 

410 This is in contrast to a common assumption in some habitat creation and restoration projects 

411 that high similarity in the physical template of a particular ecosystem, would naturally lead to 

412 a higher similarity in associated species assemblages (Rosgen, 1994, 1998) . The concept of 

413 self-design or ‘build it and they will come’ is an appealing approach to practitioners looking to 

414 implement biodiversity offsets within limited time and budgets. However, it must be 

415 considered that intertidal communities will be subject to strong abiotic gradients such as those 

416 of vertical, wave, sediment and salinity, all of which are abiotic filters that drive species 

417 assemblages at each site (Lhotsky et al., 2016; Török and Helm, 2017) and which will vary 

418 between impact and offset sites.

419 This also challenges another assumption often made when planning biodiversity offsets, that 

420 increasing proximity to the impact site increases the likelihood of ecological equivalence being 

421 reached (BBOP, 2009; Brownlie and Botha, 2009; Kiesecker et al., 2009; McKenney and 

422 Kiesecker, 2010; Salzman and Ruhl, 2000). The present study did find that sites in closest 

423 proximity (Port and Tawe) were found to be most similar, in terms of their associated 



424 community composition, but were not most similar in terms of their habitat structure. 

425 Furthermore, the similarity in species composition with proximity did not hold true as the 

426 distances increased between sites, which may suggest a non-linear relationship. Sites in close 

427 proximity may be subject to similar environmental conditions and have access to the same 

428 species pool on a regional scale, yet at a local scale, potential recolonising species are further 

429 subject to both abiotic and biotic filtering, and so it would be unwise to assume that a similar 

430 assemblages will always be established (Hobbs and Norton, 2004). This is likely the reason 

431 that our results showed ‘site’ to have the largest influence on community composition, 

432 emphasising the importance of suitable site selection to reaching equivalence in species 

433 composition. 

434 Conversely to species composition, our observations show that both formation and tube 

435 aperture condition differed more as a result of seasonal effects (Figure 3). The structural 

436 development of reefs has been shown to be dependent on a precarious balance between 

437 biological and physical forces, the main of which is that of hydrodynamics, which can have 

438 both positive and negative effects on reef growth and condition (Gruet, 1986). In the current 

439 study, the primary differences in habitat structure between seasons were two fold. Firstly, Port, 

440 Tawe and Porthcawl sites all showed decreasing percentage cover of reef formation in winter 

441 surveys, although the opposite occurred at Dunraven where reef formation was shown to almost 

442 double (Table 3). Low temperatures (Pawlik, 1988; Wilson, 1971) coupled with increasing 

443 frequency of storm events during winter months have been shown to contribute to degradation 

444 and fragmentation of reef structures (Gruet, 1986). This hypothesis is further supported by the 

445 increase of dead tube apertures across all sites between summer and winter seasons, indicating 

446 that mortality rates of S. alveolata increase winter months, which could lead to a weakening of 

447 the reef structure. Secondly, all sites showed an increase in newly settled tube apertures from 

448 summer to winter surveys. Enhanced metamorphosis of S. alveolata larvae has been shown to 

449 occur with increasing agitation (Wilson, 1968), which may have been facilitated by the 

450 increased wave action in winter months. The shown increase in mortality of adult worms during 

451 the winter season may have also led to increased settlement, as the gregarious nature of S. 

452 alveolata larvae means that conspecific tube sand is the preferred substrate, with dead reef 

453 lacking the competition for space with adult worms being the optimum (Wilson, 1968). 

454 Temporal variation in habitat structure is an important aspect to consider when planning a 

455 monitoring and evaluation period for any coastal or marine offset site, with temporal changes 



456 in structure evident across a number of habitats (Koch et al., 2009). Basing equivalence 

457 calculations on, for example, winter survey results could result in non-equivalence being 

458 concluded, whereas, as in this case, survey results from a summer sample season could indicate 

459 much higher similarity. This suggests that sampling timings should be as consistent as possible, 

460 and that both summer and winter sampling may need to be carried out to gain an accurate 

461 assessment of habitat dynamics. Another solution may be the use of multivariate statistical 

462 frameworks such as in this study, which have been proven as a robust strategy for assessing 

463 losses and gains against baseline conditions (as in multivariate before and after/control impact 

464 (M-BACI) methodologies (Downes et al., 2002; Underwood, 2000), whilst allowing for the 

465 control of natural variation. Such methods can also allow for detailed comparisons to be made 

466 through time and the use of ordination means that samples can be visualised through time by 

467 charting their changing positions in ‘ordination space’ summarised as a ‘change vector’ 

468 (Halpern, 1988; McCune et al., 2002; Smith and Urban, 1988). This allows for both a visual 

469 and quantitative assessment to be made of direction (towards or away from) and magnitude 

470 (length of vector) of any progress made by offset against baseline conditions (for further 

471 discussion see McCune et al., 2002; Urban, 2006) which can aid in the interpretation of results, 

472 and to the understanding of results to a variety of different stakeholders, with varying technical 

473 knowledge.

474 The use of ‘species composition’ as a biodiversity component is apparent in many EAMs 

475 (BBOP, 2013; ICMM, 2012). However, our results highlight how its inclusion must be 

476 carefully considered. Factors such as the presence of invasive species in the species pool of the 

477 impact site, as was the case for the Swansea Port site, raise the question of whether a strict like-

478 for-like restoration of the impacted species composition is a sensible direction to pursue. An 

479 offset could be deemed to be unsuccessful if a similar community composition to that impacted 

480 is not recreated. However, in this case, the offset could have a more natural composition than 

481 that of the impact site. This is also true of the use of diversity indices as measures of success, 

482 as high abundances of invasive species can be masked by high levels of diversity and species 

483 richness at a site. The identification of a set of ‘key reference species’ native to the impacted 

484 habitat may be a better way of evaluating success in the recreation of equivalent community 

485 composition in offset sites.

486 In practice, no two components of biodiversity will ever be precisely equivalent (Salzman and 

487 Ruhl, 2000) and so all offsets are ‘out of kind’ to some degree (Moreno-Mateos et al., 2015). 



488 This logic has led to some academics to call for further investigation into the effect of 

489 incorporating more flexibility into offset design (Bull et al., 2015; Habib et al., 2013). The 

490 difficulties in achieving ecological equivalence, as well as the uncertainty of being able to re-

491 establish some habitats elsewhere, raises the question of whether ‘trading up’ could be an 

492 option to pursue. In the case of protected features of Special Areas of Conservation (SAC’s), 

493 biodiversity offsets must legally be ‘like-for-like’ as outlined in the Habitats Directive. 

494 However, outside of these protective provisions, the option of creating or enhancing a habitat 

495 that has equivocal or higher ‘value’ could be considered as an ‘out of kind’ offset and has been 

496 suggested as an option in some pilot biodiversity offset schemes (Defra, 2012). Habitats such 

497 as seagrass beds or bivalve reefs, which may support similar or more diverse species 

498 assemblages than those recorded within S. alveolata reefs, may provide functions and services 

499 in addition to biodiversity, such as carbon sequestration and water filtration (Barbier et al., 

500 2011; Filguera et al., 2015; Vaughn, 2017). Restoration of bivalve reefs habitats has been 

501 explored by a number of studies in the UK and overseas (McLeod et al., 2012; Peterson et al., 

502 2003; Roberts et al., 2011) and so could be considered less uncertain and of higher value in 

503 terms of services it provides. However, regional ecological priorities should be considered 

504 before ‘trading up’ is agreed, as it could lead to habitats that are easier to recreate being chosen 

505 over more difficult habitats, which could endanger those habitats in the longer term (Bull et al., 

506 2015). A more relaxed, out-of-kind type of biodiversity offsetting raises questions about how 

507 habitats are assigned biological ‘value’ and how that value is likely to be different depending 

508 on the stakeholder.

509 5. Conclusion

510 This paper outlines the complex nature of biodiversity offsetting, and the difficulty in attaining 

511 a target of ecological equivalence in S. alveolata habitat, due to its naturally high spatial and 

512 temporal variation. It brings forward the question of what is it we are offsetting? Is it the loss 

513 of the specific impacted habitats themselves or their associated species? If it is the habitats 

514 specifically then offsets must focus on like for like equivalence in type and area. However, if 

515 the aim is to provide equivalent habitat for other species, then an ‘out of kind’ offset may be 

516 more feasible. Our results have shown that achieving equivalence in both factors will be 

517 difficult and a target set within the constraints of strict like-for-like carries considerable 

518 uncertainty and is likely to fail. In particular, this study enforces the on-going need for solid 

519 guidance and policy frameworks to be developed around biodiversity offsetting. When 



520 determining a methodology for biodiversity offsetting in highly dynamic coastal environments, 

521 our findings point to the strong influence of location and timing on targets of ecological 

522 equivalence.  

523
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873 Figures

874

875 b)

Biodiversity Type Biodiversity Component Biodiversity Attribute
a) Extent and Distribution % cover S. alveolata

b) Species Composition Abundance of associated 
species
% Hummock formation
% Sheet formation
% Reef formation
% Patchy formation

c) Range of age structures

% Encrusting formation
% Newly Settled tube 
apertures
% Crispy tube apertures
% Worn tube apertures

Sabellaria alveolata habitat

d) Tube aperture condition

% Dead tube apertures
876 Figure 1 (a) Conceptual diagram of the hierarchy levels used to categorise biodiversity in the 
877 design of offsets based on the Guidance of Good Practice Biodiversity Offsetting in New 
878 Zealand (Department of Conservation, 2014), with hypothetical example (b). Modified from 
879 Maysek et al. (2016). Collectively, this hierarchy describes ‘biodiversity’ in the context of the 
880 offset. In this example, the proposed tidal lagoon development in Swansea Bay will impact 
881 on S. alveolata habitat ‘type’ of biodiversity.
882
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Biodiversity 
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Component

Biodiversity 
Attribute

Biodiversity type can be 
an ecosystem, habitat or 
species and refers to the 

feature that will be 
impacted.

Biodiversity components 
are the elements of 

primary interest that 
make up the biodiversity 

type. It is these 
components for which no 
net loss will be achieved.

Biodiversity Attributes are 
the measurable elements 
that collectively comprise 

the biodiversity 
component.
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Swansea Bay

884 Figure 2 Study site Swansea Bay, South Wales, UK. Black dots indicate the location of the four S. 
885 alveolata reefs surveyed (A. Tawe (potential impact site), B. Port, C. Porthcawl, D. Dunranven). 

886



a) Formation categories
Reef Hummock Sheet Patchy Encrusting

Large mounds which are 
greater than 1m2

Raised mounds which are 
greater than 30cm2

Flat crusts which are 
greater than 30cm2

Small crusts or mounds 
which are less than 30cm2

Flat crusts which are less 
than 30cm2

b) Tube aperture health categories
Crisp Apertures Worn Apertures Dead Apertures Newly Settled

New growth of tubes can be seen, 
the apertures are crisp with a 
‘porch’ over the tube opening. 

There is no clear porch over the 
tube opening, however apertures 
can still be seen. Lacking the light, 

Tubes have merged into a block of 
sediment. Can often be detached from 

the substratum.

Very small apertures between 
1mm and 4mm. Are often found 

in filling around larger, older 



Figure 3. Classification of the a) S. alveolata formation categories and b) S. alveolata tube aperture health categories. Modified from Egerton 
(2014) and Gruet (1982).

Tend to be a light, sandy colour 
when compared with worn tubes.

sandy colouring. Often covered in 
silt or fine sediment.

apertures.
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887

 A.

 B.

 C.

888 Figure 4 (A) Variations of species richness and Hill’s indices (N1, N2) according to site sampled 
889 (Port, Tawe, Porthcawl and Dunraven) and sample season, summer (S), winter (W).
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890

891
892 Figure 5 Mean proportion of S. alveolata formation, for each site in both summer (S) and Winter (W) 
893 sample seasons. Width of each bar indicates the overall mean percentage cover of S. alveolata, scaled 
894 within standard width boxes. 
895
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896
897 Figure 6 Mean proportion of S. alveolata tube aperture condition for each site in both summer (S) and 
898 Winter (W) sample seasons. Width of each bar indicates the overall mean percentage cover of S. 
899 alveolata, scaled within standard width boxes. 

900

901

902
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903

904

905 Figure 7 Distance based redundancy analysis (dbRDA) ordination of BEST fitted model for the 
906 community composition associated with S. alveolata reef habitat, based on Bray-Curtis similarities 
907 after square root transformation of abundances. Visualised according to sample season: sum – 
908 summer, wint – winter. Habitat characteristics significantly linked and showing correlation > 0.3 to 
909 the variation in the data are superimposed.

910

911

Unexplained
46.2%

Explained by factors modified by S. 
alvoelata 27.3%

Explained by factors external to influence of S. 
alveolata

26.5%

Com
mon 
effec

t
26.6

%

912 Figure 8 Schematic of variance partitioning distance-based linear model (DISTLM) showing the 
913 relative effects of reef variables and spatio-temporal variables on the composition of associated reef 
914 species.

915



Tables

Table 1. Factors that influence community composition in temperate, intertidal communities including 
a) those that can be modified by the ecosystem engineer S. alveolata and b) those factors which are 
external to the influence of S. alveolata

Effects on associated community composition

a) Factors modified by S. alveolata

% cover S. alveolata

Species richness is often found to be higher within S. 
alveolata aggregations than that of surrounding sediments 
(Jones et al., 2018; Mettham et al., 1989). However, can 
dominate and outcompete species for space (Cunningham et 
al., 1984). 

% S. alveolata formation 

Species assemblages has been shown to vary according to S. 
alveolata formation, due to differences in surface topography 
and spatial heterogeneity (Dubois et al., 2002; La Porta and 
Nicoletti, 2009; Porras et al., 1996) 

% S. alveolata tube aperture condition

Tube aperture condition is indicative of the health of S. 
alveolata and clearing/fliter feeding (La Porta and Nicoletti, 
2009; Dubois et al., 2003)
Healthy S. alveolata have high filtration rates and are 
consumers of newly settling larvae (Andre et al., 1993), 
which can influence the ability of other species to colonise 
certain areas.

% associated macroalgal cover
S. alveolata provide a hard substrate on which macroalgae can 
attach. Macroalage can influence species assemblages, in 
particular grazing species (Wells et al., 2007) 

% associated barnacle cover

Barnacle species have been shown to competition with S. 
alveolata for space (Fodrie et al., 2014) and food (Dubois and 
Colombo, 2014) and therefore S. alveolata will have an 
influence on their distribution. Barnacles are a key food 
source for a number of intertidal species (Paine, 1966) and are 
also ecosystem engineers (Mendez et al., 2015) and so any 
modification of their distribution is likely to influence species 
assemblages. 

% standing water

Ecosystem engineers can modify hydrological regimes and 
act as barriers and breakwaters (Borsje et al., 2011; Bouma et 
al., 2014), restricting drainage of the lower shore, creating 
rock pools and therefore increasing associated species 
diversity (Holt et al., 1998) 

Substrate type

As Ecosystem engineers, S. alveolata stabilise loose sediment 
and substrate, which in turn can increase heterogeneity in the 
surrounding benthos, which has been shown to influence 
structure of species assemblages (Ambrose and Anderson, 
1990; Barros et al., 2001; Cusson and Bourget, 1997)



b) Factors external to influence of S. alveolata

Site
Spatial differences in intertidal species compositions are well 
documented, as a result of factors such as abiotic and biotic 
filtering (Hobbs and Norton, 2004)

Geographical position (lat/long)
It is well documented that a number of gradients influence the 
composition of organisms on temperate, rocky shores 
(Menge, 2000)

Season Temporal differences in intertidal species compositions have 
been found in a number of studies (Menconi et al., 1999)

Distance to MLW

This is taken as a proxy for time spent exposed to air This is 
known to result in vertical zonation of species, depending on 
their tolerance to exposure (Dayton et al., 1971; Menge, 
1976)

Table 2 Results of multivariate permutational analysis of variance (PERMANOVA) based on Bray-
Curtis dissimilarities (square root transformed) of percent cover of S. alveolata reefs between sites 
and seasons in Swansea Bay, UK.

Source DF MS Psuedo-F Unique Perms p (perm)
Season 1 555.7 1.2943 9940 0.2577
Site 3 954.1 2.2221 9945 0.072
Season x Site 3 155.2 0.36154 9954 0.8396
Residual 232
Total 239

Table 3 Results of multivariate permutational analysis of variance (PERMANOVA) based on Bray-
Curtis dissimilarities (square root transformed) of community composition of S. alveolata reefs 
between sites and seasons in Swansea Bay, UK.

Source DF MS Psuedo-F Unique Perms p (perm)
Season 1 3069.2 1.9049 9940 0.0885
Site 3 31305 19.429 9934 0.0001
Season x Site 3 2010.5 1.2479 9918 0.2299
Residual 232
Total 239

Table 4 Results of post hoc pairwise PERMANOVA analysis of the differences in community 
composition of S. alveolata reef habitat between sites (Port, Tawe, Porthcawl and Dunraven).

Group T Unique perms P(perm) Average % 
similarity

Port, Tawe 2.671 9945 0.0001 40.26
Port, Porthcawl 6.8979 9942 0.0001 30.73
Port, Dunraven 4.463 9950 0.0001 36.84
Tawe, Porthcawl 4.4197 9940 0.0001 38.95
Tawe, Dunraven 2.5478 9958 0.0001 39.81
Porthcawl, Dunraven 4.7372 9950 0.0001 39.76



Table 5 Percentage contribution of species to pairwise dissimilarities between each of the sample 
sites, based on Bray-Curtis similarity indices (SIMPER). 

Mean±SE Dissimilarity/SD Contribution 
to dissimilarity %

Total dissimilarity 
between sites %

Port Tawe 71.69

Crepidula fornicata 5.0 ± 1.0 2.0 ± 0.6 0.92 19.67

Littorina littorea 4.0 ± 1.1 6.8 ± 2.3 1.03 19.16

Steromphala umbilicalis 2.5 ± 0.4 3.5 ± 0.6 1.18 15.76

Nucella lapulis 3.6 ± 0.7 1.9 ± 0.3 1.04 15.71

Port Porthcawl 88.57

Crepidula fornicata 5.0 ± 1.0 0.1 ± 0.1 0.92 21.45

Nucella lapulis 3.6 ± 0.7 1.1 ± 0.6 1.11 18.33

Littorina littorea 4.0 ± 1.1 0.1 ± 0.0 0.89 15.95

Steromphala umbilicalis 2.5 ± 0.4 1.4 ± 0.4 1.11 15.27

Port Dunraven 75.45

Steromphala umbilicalis 2.5 ± 0.4 6.1 ± 0.9 1.15 18.63

Crepidula fornicata 5.0 ± 1.0 0.1 ± 0.0 0.90 18.07

Littorina littorea 4.0 ± 1.1 3.3 ± 1.2 1.03 16.21

Nucella lapulis 3.6 ± 0.7 1.2 ± 0.3 1.08 15.38

Spirobranchus triqueter 1.7 ± 0.3 0.2 ± 0.1 0.91 10.88

Tawe Porthcawl 89.59

Littorina littorea 6.8 ± 2.3 0.1 ± 0.0 0.90 25.34

Steromphala umbilicalis 3.5 ± 0.6 1.4 ± 0.4 1.01 21.36

Nucella lapulis 1.9 ± 0.3 1.1 ± 0.6 0.97 14.87

Crepidula fornicata 2.0 ± 0.6 0.1 ± 0.1 0.57 11.25

Tawe Dunraven 76.59

Steromphala umbilicalis 3.5 ± 0.6 6.1 ± 0.9 1.05 26.55

Littorina littorea 6.8 ± 2.3 3.3 ± 1.2 1.01 21.63

Nucella lapulis 1.9 ± 0.3 1.2 ± 0.3 0.86 13.47

Crepidula fornicata 2.0 ± 0.6 0.1 ± 0.0 0.56 9.06

Porthcawl Dunraven 86.88

Steromphala umbilicalis 1.4 ± 0.4 6.1 ± 0.9 1.22 37.12

Littorina littorea 0.1 ± 0.0 3.3 ± 1.2 0.82 16.82

Nucella lapulis 1.1 ± 0.6 1.2 ± 0.3 0.65 12.56

Actinia equina 0.1 ± 0.1 0.6 ± 0.2 0.57 7.67

Table 6 Results of two way Analysis of Variance (ANOVA) for measures of a) species richness, b) 
Hill’s Indices (N1) and c) Hills Indices (N2)

a) Species richness
Source DF SS MS F P
Season 1 2.80 2.82 1.32 0.251
Site 3 235.50 78.50 36.86 < 0.001
Season x Site 3 5.50 36.86 0.86 0.464
Residual 232 494.10 0.86

b) Hill’s Indices (N1)
Source DF SS MS F P
Season 1 0.32 0.32 0.31 0.581
Site 3 71.32 23.77 22.77 < 0.001
Season x Site 3 2.30 0.77 0.767 0.533
Residual 232 242.23 1.04

c) Hill’s Indices (N2)



Source DF SS MS F P
Season 1 1.45 1.45 1.27 0.262
Site 3 81.57 27.19 23.69 < 0.001
Season x Site 3 0.98 0.33 0.28 0.837
Residual 232 266.31 1.15

Table 7. Results of Tukey’s RSD post hoc test of the differences in a) species richness, b) Hill’s 
indices (N1) and c) Hill’s diversity indices (N2) between study sites. 

a) Species richness
Group diff P (adj)

Port, Tawe -1.050 < 0.001
Port, Porthcawl -2.767 < 0.001
Port, Dunraven 1.450 0.438
Tawe, Porthcawl 1.717 <0.001
Tawe, Dunraven 0.400 <0.001
Porthcawl, Dunraven -1.317 < 0.001

b) Hill’s Indices (N1)
Group diff P (adj)

Port, Tawe - 0.548 0.020
Port, Porthcawl -1.49 < 0.001
Port, Dunraven 0.950 < 0.001
Tawe, Porthcawl 0.941 < 0.001
Tawe, Dunraven 0.403 0.138
Porthcawl, Dunraven -0.538 0.020

c) Hill’s Indices (N2)
Group diff P (adj)

Port, Tawe -0.500 0.057
Port, Porthcawl -1.606 < 0.001
Port, Dunraven 0.794 < 0.001
Tawe, Porthcawl 1.11 < 0.001
Tawe, Dunraven 0.298 0.425
Porthcawl, Dunraven -0.813 < 0.001

Table 8 Results of multivariate permutational analysis of varience (PERMANOVA) based on Bray-
Curtis dissimilarities (square root transformed) of the formation of S. alveolata reefs between sites 
and season in Swansea Bay, UK.

Source DF MS Psuedo-F Unique Perms p (perm)
Season 1 3202.2 1.0445 9969 0.3707
Site 3 17459.0 5.6945 9931 0.0001
Season x Site 3 7289.6 2.3777 9927 0.0142
Residual 232
Total 239



Table 9 Results of post hoc pairwise PERMANOVA analysis of S. alveolata formation of S. alveolata 
reef habitat between sites (Port, Tawe, Porthcawl and Dunraven), across each sample season (summer, 
winter).

Summer WinterGroup
t Unique 

perms
P(perms) t Unique 

perms
p 
(perm)

Port, Tawe 2.0134 6171 0.0093 1.2994 493 0.1568
Port, Porthcawl 1.3618 1483 0.1424 3.3377 72 0.0004
Port, Dunraven 0.88712 1997 0.5012 1.7991 226 0.0265
Tawe, Porthcawl 1.4592 2382 0.0943 3.3072 962 0.0001
Tawe, Dunraven 1.834 2778 0.0218 1.4237 1279 0.0987
Porthcawl, Dunraven 1.4973 269 0.0921 2.227 290 0.0044

Table 10 Results of multivariate permutational analysis of varience (PERMANOVA) based on Bray-
Curtis dissimilarities (square root transformed) of the % tube aperture condition of S. alveolata reefs 
between sites and season in Swansea Bay, UK.

Source DF MS Psuedo-F Unique Perms p (perm)
Season 1 41843 39.323 9960 0.0001
Site 3 15883 14.927 9947 0.0001
Season x Site 3 6582.2 6.1858 9945 0.0002
Residual 232
Total 239

Table 11 Results of post hoc pairwise PERMANOVA analysis of S. alveolata tube aperture condition 
of S. alveolata reef habitat between sites (Port, Tawe, Porthcawl and Dunraven), across each sample 
season (summer, winter).

Summer WinterGroup
t Unique 

perms
P(perms) Average 

% 
similarity

t Unique 
perms

p 
(perm)

Average 
% 
similarity

Port, Tawe 1.6581 9967 0.0785 54.16 2.6697 9972 0.0036 58.48
Port, Porthcawl 2.4336 9961 0.0013 45.40 4.4008 9961 0.0001 47.95
Port, Dunraven 2.884 9967 0.0006 53.77 1.8492 9970 0.0464 63.03
Tawe, Porthcawl 1.5602 9948 0.0835 51.82 3.2434 9971 0.0001 56.82
Tawe, Dunraven 2.7872 9974 0.0032 56.62 5.6128 9961 0.0001 52.92
Porthcawl, Dunraven 2.8085 9964 0.0002 50.13 6.392 9958 0.0001 43.01

Appendices
Appendix 1. Mean percentage cover calculated for each of the surveyed condition status metrics. 
Results are shown for each site, for both summer and winter surveys with standard error (SE).

Port Tawe Porthcawl DunravenReef 
Condition

Status metrics
Summer Winter Summer Winter Summer Winter Summer Winter

Overall % 
Cover

33.40 ± 2.14 33.86 ± 
2.04

34.47 ± 3.56 38.46 ± 
2.80

35.53 ± 1.32 45.37 ± 4.31 42.77 ± 3.31 42.93 ± 2.83

Formation
Encrusting 22.22 ± 4.02 16.67 ± 

3.60
16.91 ± 4.40 5.88 ± 2.87 31.37 ± 6.56 49.02 ± 7.07 15.49 ± 5.64 20.42 ± 4.77



Patchy 64.44 ± 4.52 69.35 ± 
4.36

46.47 ± 5.83 55.94 ± 
5.94

41.18 ± 6.96 25.88 ± 6.14 59.58 ± 5.72 50.70 ± 5.89

Hummock 2.73 ± 1.48 2.87 ± 1.49 4.41 ± 2.51 9.31 ± 3.48 0 ± 0 0 ± 0 2.39 ± 1.51 2.82 ± 1.98
Sheet 5.56 ± 2.11 9.72 ± 2.83 6.91 ± 3.02 15.15 ± 

4.27
15.69 ± 5.14 23.14 ± 5.91 13.52 ± 3.93 9.86 ± 3.56

Reef 4.12 ± 1.77 1.39 ± 1.03 23.82 ± 5.11 13.72 ± 
4.15

9.80 ± 4.21 1.96 ± 1.96 9.01 ± 3.32 16.20 ± 4.35

Condition
Crisp 33.06 ± 3.29 38.91 ± 

2.59
30.07 ± 3.94 18.63 ± 

2.76
30.14 ± 4.65 5.06 ± 1.61 56.06 ± 4.03 47.61 ± 3.26

Worn 53.10 ± 3.20 18.24 ± 
2.22

41.84 ± 4.18 20.91 ± 
2.36

23.96 ± 3.87 20.78 ± 2.55 24.04 ± 2.93 10.94 ± 2.03

Dead 12.00 ± 2.11 28.01 ± 
2.06

25.29 ± 3.05 28.88 ± 
2.31

36.39 ± 4.68 60.47 ± 4.02 18.49 ± 3.22 31.59 ± 2.86

New 
Settlement

1.85 ± 1.30 14.94 ± 
1.73

2.94 ± 2.06 30.35 ± 
2.25

9.41 ± 3.39 13.00 ± 3.02 1.14 ± 1.41 8.94 ± 2.22
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