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Abstract

The problem of identifying the phase of a given system for a certain value of the temperature can be 
reformulated as a classification problem in Machine Learning. Taking as a prototype the Ising model and 
using the Support Vector Machine as a tool to classify Monte Carlo generated configurations, we show that 
the critical region of the system can be clearly identified and the symmetry that drives the transition can be 
reconstructed from the performance of the learning process. The role of the discrete symmetry of the system 
in obtaining this result is discussed. A finite size analysis of the learned Support Vector Machine decision 
function allows us to determine the critical temperature and critical exponents with a precision that is 
comparable to that of the most efficient numerical approaches relying on a known Hamiltonian description 
of the system. For the determination of the critical temperature and of the critical exponent connected 
with the divergence of the correlation length, other than the availability of a range of temperatures having 
information on both phases, the method we propose does not rest on any physical input on the system, 
and in particular is agnostic to its Hamiltonian, its symmetry properties and its order parameter. Hence, 
our investigation provides a first significant step in the direction of devising robust tools for quantitative 
analyses of phase transitions in cases in which an order parameter is not known.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

Phase transitions (a basic overview of which can be found e.g. in [1]) are ubiquitous phe-
nomena in Statistical Mechanics, Condensed Matter and Particle Physics systems. In addition, 
applications of the physical concepts related to phase transitions have been proved successful in 
investigating problems in other scientific domains such as the boolean satisfiability problem in 
Mathematics (which is an archetypal example of an NP-complete problem, see e.g. [2]) and can-
cer dynamics. Some applications beyond traditional physical systems are discussed for instance 
in [3].

We say that we are in the presence of a phase transition when there is a point or an hypersur-
face in parameter space that separates two regions of the system with very different properties 
(e.g. the density of ice is significantly different from that of water, and this change happens at 
the freezing point). Mathematically, a phase transition is a singularity in physical observables as 
the number of degrees of freedom of the system goes to infinity. Understanding the dynamics 
of the two phases near the transition point and being able to quantify the location of the latter 
(in addition to establishing the presence of a transition, a question that sometimes has not an 
immediate answer) are wide reaching issues that have been investigated from various angles and 
perspectives since the early days of thermal physics, with invaluable insights that have originated 
some of the most remarkable ideas in theoretical physics. Two related examples of transformative 
ideas originating from the investigation of phase transitions are the concept of the renormalisa-
tion group and the deep connection between the concept of criticality in Statistical Mechanics 
and renormalisability of gauge theories [4].

The current standard approach to phase transitions relies on a first principle knowledge of the 
system. Generally, one investigates a system whose classical or quantum dynamics is in principle 
known and can be worked out from an explicit Hamiltonian or a Lagrangian, respectively. The 
Hamiltonian (Lagrangian) has some manifest symmetry that is spontaneously broken as a func-
tion of some control parameters. Based on this, one builds an order parameter, i.e. an observable 
that is not invariant under the relevant symmetry of the Hamiltonian (Lagrangian). In the phase 
in which the symmetry is implemented à la Wigner, the lack of invariance of the order parame-
ter forces this observable to be zero. Conversely, the fact that the order parameter observable is 
different from zero in a phase is an explicit signal that in that phase the symmetry is not linearly 
realised, i.e. one is in the presence of a spontaneously broken symmetry. A system in which the 
symmetry is spontaneously broken possesses a set of degenerate groundstates that transform into 
each other under the relevant symmetry group rather than a single, symmetric groundstate, as it 
is the case in the symmetric phase.

This ab initio approach, which is by now consolidated and described in detail in various text-
books (e.g. [5]), has produced widely accurate results in a variety of contexts, including Monte 
Carlo simulations of gauge theories (see [6] for a recent example). However, there are rele-
vant physical systems for which the order parameter is hard to identify and currently unknown, 
mainly because the symmetry that drives the phase transition is not manifest in the Hamiltonian. 
Remarkable examples in this class are topological phases [7], in which the phase transition, be-
ing of a topological nature, is driven by a dual order parameter that might not be immediate to 
express in terms of the local variables or indeed might not be known in terms of the latter, and 
Quantum Chromodynamics (the theory of the strong force) at finite quark mass, for which it is 
still debated what is the mechanism that drives the phase transition (when it exists, as a function 
of the constituent quark mass) and whether it is possibly of a topological nature (e.g. [8]).
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Recently, a surge of interest has been generated by the possibility of using Machine Learning 
inspired techniques for identifying phase transitions [9]. The underlying idea is to use clustering 
techniques to identify properties of the phase transitions without any a priori information (a setup 
that in the Machine Learning terminology is referred to as unsupervised learning) or by using 
particular realisations of the system for which the phase is known unambiguously to understand 
whether there is a critical set of parameters for which the phase transition takes place (supervised 
learning). Both supervised and unsupervised learning characterisations of phase transitions have 
produced encouraging first results for identifying and studying phase transitions in Condensed 
Matter, Statistical Mechanics and Quantum Field Theory. An incomplete set of references is 
provided by [9–34], with a recent review given in [35].

To our knowledge, so far all studies have focused on qualitative and semi-quantitative re-
sults using a varying degree of a priori knowledge on the target system. In this paper, we shall 
investigate whether it is possible to identify the critical region and characterise it from a quan-
titative point of view by using Machine Learning with a minimal number of assumptions. To 
be more specific, we will ask whether from the simple knowledge of states of the system at 
various temperatures we can predict whether a phase transition takes place and, in case, extract 
precise values of observables and critical quantities such as the critical temperature and critical 
exponents as the system undergoes the transition. As the system of choice for this analysis we 
have taken the Ising model in two dimensions, which has an exact analytical solution and can 
be investigated numerically with efficient Monte Carlo techniques. From the Machine Learning 
point of view, we do the investigation with a Support Vector Machine (SVM) analysis of Monte 
Carlo generated data. This will be contrasted to a traditional analysis of the same Monte Carlo 
data. One of the characteristics of the SVM that makes it particularly suitable for investigating 
quantitative issues is that its predictions are based on controlled analytical models whose param-
eters are extracted with well-defined optimisation procedures. Once the model reconstructed by 
the algorithm on the data is known, in principle one can use it to get insights on the physical 
phenomenon that drives the transition. Among recent studies of phase transitions with Machine 
Learning techniques, our work share a similar approach with [13]. However, there are significant 
differences between our investigation and the latter reference (for instance, the training strategy), 
on which we shall return later. The main findings of our study are: (a) for the Ising model, the 
critical region is easily identified by training the SVM with two ensembles of 200 configurations, 
each obtained at temperature values that are respectively one deep in the ordered phase, the other 
deep in the disordered phase; (b) information on the symmetry and on the optimal training tem-
peratures can be obtained by optimising the performance of the learned model, the physical case 
corresponding to the best performance; (c) once the algorithm has been optimised, a finite size 
scaling analysis of the classification function (called the decision function for the SVM) yields 
results for the critical temperature and for the critical exponents that are comparable in precision 
to those obtained from finite size scaling of an a priori known order parameter, even if we have 
not informed the process with any previous knowledge on the underlying physics driving the 
phase transition.

The rest of the paper is organised as follows. The formulation of the Ising model and the 
description of its critical properties are the subject of Sect. 2, where we also discuss the Monte 
Carlo method for generating the data that we have processed with the SVM. In Sect. 3 we review 
the mathematical framework underpinning the SVM, with emphasis on the aspects that have been 
used in our work. Our numerical analysis using the SVM will be reported in detail in Sect. 4. 
Finally, our findings are summarised in Sect. 5, where we also outline potential future directions.
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2. The phase transition of the Ising model

Due to the simplicity of its formulation coupled to the non-trivial features it displays, the 
Ising model is commonly used to illustrate key concepts and test new techniques in Statistical 
Mechanics. Its most direct physical counterpart is a ferromagnet in the vicinity of the Curie point, 
but the model can also be reformulated to describe a lattice gas or a binary alloy. More in general, 
the Ising model describes an order-disorder phase transition in dimension two and above. In two 
dimensions, it can be solved analytically in a physically relevant region of parameter space. It 
is both the presence of a non-trivial phase structure and the availability of an analytical solution 
that make the Ising model in two dimensions an ideal test bed for new approaches and ideas in 
Statistical Mechanics, Condensed Matter and Lattice Field Theory. In this work, we shall use the 
model to explore whether a quantitative study of the phase transition (more specifically, critical 
temperature and critical exponents) can be performed using Machine Learning methods. In order 
to provide a comparison of these techniques with a more traditional Monte Carlo approach, in 
this section we present a study with the latter method.

The Ising model is defined by the Hamiltonian

H = −J
∑
〈i,j〉

σiσj − h
∑

i

σi , (1)

with the σ ’s, which take the values ±1, being conventionally referred as spins. Each spin is 
defined on the sites of a two dimensional lattice that we take to be a squared grid with equal 
spacings in the two orthogonal directions and closed with periodic boundary conditions. Each 
side of the lattice has total length L and the total area occupied by the system is given by V = L2. ∑

〈i,j〉 indicates a sum over nearest neighbours. J is the nearest-neighbour spin-spin coupling 
(that we choose ferromagnetic, i.e. J > 0). h is an externally applied field (in the traditional 
ferromagnetic language, which we follow from now on, h is an external magnetic field), coupled 
linearly with each spin.

At vanishing external magnetic field, the state of lowest (internal) energy is easily seen to be 
an ordered state, in which all of the σ ’s have the same value, +1 or −1. A non-zero value of 
h splits the degeneracy of those two states, with the ground state having all spins aligned to h. 
At finite temperature T = 1/(kβ), with k the Boltzmann constant, the probability of finding the 
system in a configuration with spins taking the values {σi} is given by

p({σi}) = 1

Z
e−βH , (2)

where Z is the partition function

Z(β,h) =
∑

{σi=±1}
e−βH = e−βF , (3)

with F the free energy of the system. The sum defining Z is taken over all possible values of the 
spins. For later use, we define the ensemble average of an observable O depending on the spin 
variables σi as

〈O ({σi})〉 = 1

Z

∑
{σi=±1}

O ({σi}) e−βH . (4)

Let us now consider for simplicity the case h = 0. Due to the fact that the weights e−βH/Z are 
positive definite for any realisation of the spin configuration {σi = ±1}, the expression defining 



C. Giannetti et al. / Nuclear Physics B 944 (2019) 114639 5

O has a simple interpretation as the average over the probability distribution provided by the 
normalised Boltzmann factor

P(H = E) = ρ(E)e−βE/Z , (5)

where the function ρ(E), which counts the number of configurations giving H= E, is known as 
the density of states. In terms of ρ(E) we can rewrite

Z(β) =
∑
E

ρ(E)e−βE . (6)

For low temperatures (corresponding to large β), we expect the Ising system to have a sig-
nificant number of spins pointing to the same direction. While this direction is arbitrary, the 
dynamics will force the system to choose one, and tunnelling between the two will be exponen-
tially suppressed with the size of the system. The dynamical selection of a particular state, out of 
a set of symmetrically connected ones with the same energy, realises the key concept of sponta-
neous symmetry breaking. In our model, the Hamiltonian H is invariant under the simultaneous 
transformation of all the spins

σi �→ −σi , (7)

which is implemented by the (global) symmetry group Z2 ≡ {−1, 1}. A Z2 transformation, how-
ever, does not leave invariant the two degenerate groundstates, but interchanges them. For this 
reason, the choice of a groundstate (or more in general of a preferred direction of spin align-
ment) over the other breaks the invariance of the system. The expression spontaneous symmetry 
breaking underlines the crucial fact that the global symmetry of the Hamiltonian is broken by the 
dynamics rather than by some explicit coupling.

In the opposite limit of very high temperature, the energy component of the free energy of the 
system becomes negligible if compared to the entropy term. In this regime, spins are effectively 
randomised, with no clear alignment being visible. In this phase, the Z2 symmetry of the system 
is restored. The phase with spontaneously broken symmetry is separated from the symmetric 
phase by the critical value of the temperature Tc given by

Tc = 2J /
(
k log

(
1 + √

2
))

. (8)

In general, a quantity that allows us to distinguish in which phase we are is called an order 
parameter. The order parameter of the Ising model is the reduced magnetisation m = M/V =
〈∑i σi/V 〉 (M = 〈∑i σi〉 is called the total magnetisation). For this observable, in the limit 
L → ∞, one finds

|m| = ∣∣〈∑
i

σi〉
∣∣/V =

{
= 0 β < βc,


= 0 β > βc .
(9)

Another important quantity is the correlation length ξ , which can be understood as the range 
of the effective interactions or, equivalently, the typical size of a region (cluster) over which spins 
are aligned. ξ is formally defined from the expected scaling of the correlation of two spins σl and 
σm sitting at points l and m as

〈σlσm〉 − 〈σl〉〈σm〉 r→∞∼ e−r/ξ

rp
, (10)

where r is the distance between l and m. p is a calculable exponent that near the critical temper-
ature is given by
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p = d − 2 + η , (11)

where d is the dimension of the system (d = 2 in our case) and η is a dynamical exponent called 
anomalous dimension.

As the critical point is approached, clusters grow in size and, exactly at the critical tempera-
ture, clusters of all sizes are present. At this point, the system is invariant with respect to a scale 
transformation and the correlation length is infinite. The divergence of ξ as t → 0 is observed to 
behave as a power law, i.e.

ξ ∝ |t |−ν , (12)

where t = (Tc − T )/Tc is called the reduced temperature and ν is the thermal critical exponent.
Other thermodynamic quantities sensitive to the phase transition like the magnetisation m and 

the magnetic susceptibility χ = V
(
〈∑i,j σiσj 〉/V 2 − m2

)
have power-low singularities as Tc

is approached:

|m| ∝
t→0+ tβ , χ ∝

t→0
t−γ , (13)

where β and γ are two additional (calculable in our case) critical exponents.
The final two phenomenologically relevant critical exponents, δ and α, are defined from the 

following behaviours:∣∣m∣∣
t=0 ∝ |h|1/δ ; (14)

cV = 1

V

(
〈H 2〉 − 〈H 〉2

)
∝ t−α , (15)

cV being the specific heat of the system.
The power law behaviour of the above or similarly defined quantities (and hence the exis-

tence of critical exponents) is a general feature of second order phase transitions, and not only 
a characteristic of the Ising model. Hence, an essential aspect of any study (numerical or ana-
lytical) of a phase transition is the derivation of its critical exponents. The importance of these 
quantities is highlighted by the phenomenon of universality: systems with very different interac-
tions, but with the same symmetry structure and having the same dimensionality, share the same 
critical behaviour. Therefore, rather than being specific to the model, the set of critical expo-
nents (α, β, γ, δ, ν, η) only depend on the dimensionality of the system and on the symmetry of 
its Hamiltonian, and not on the microscopic structure of the latter. Universality makes the Ising 
model very relevant for studies of systems with more complicated Hamiltonians that display the 
same global Z2 symmetry.

Using the scaling hypothesis, which assumes that the free energy is an homogeneous function 
of t and h with respect to rescaling of lengths by an arbitrary factor of b, one can derive the 
following scaling relations:

Fisher Law: γ = ν(2 − η) ,

Widom Law: γ = β(δ − 1) ,

Rushbrooke Law: α + 2β + γ = 2 ,

Josephson Law: νd = 2 − α ,

(16)

which show that only two of the critical exponents are independent, while the others can be 
derived. The two critical exponents that are directly related to the rescaling of t and h are respec-
tively ν and η. Hence, based on this physical motivation, these two exponents are considered 
fundamental, while the others are considered secondary.
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While in the specific case of the two-dimensional Ising model the availability of an explicit 
solution allows us to compute the critical exponents and the critical temperature, in more gen-
eral settings one has to resort to first-principle numerical techniques. In a Monte Carlo based 
numerical approach, two aspects would need to be considered: (i) the generation of a sample 
of configurations of the system according to the Boltzmann weight Eq. (5), in order to compute 
observables in a controlled way; and (ii) the extraction of critical exponents from the scaling of 
key observables with the size of the system.

For the first step above, a Markovian process is defined that allows one to obtain a chain of 
configurations distributed according to the Boltzmann weight computed at the target temperature. 
The physics of the system plays a crucial role in designing an efficient Markov process. In the 
case of the Ising model, the Wolff algorithm [36] provides the most suitable method for exploring 
the configuration space. According to this algorithm, in order to generate a configuration from a 
preceding one, we start from a randomly chosen spin, called seed, from which a cluster is grown 
by adding to it neighbour spins with the same orientation with probability 1 −e−2βJ . The growth 
process proceeds by exploring the neighbourhood of the newly added spins and applying the 
same growth rule until all equally oriented spins connected to the seed have been proposed for 
addition, at which point the whole cluster is flipped. This process defines a new configuration that 
becomes the next element of the Markov chain. If one starts from a random configuration, general 
principles of Markov processes guarantee the convergence to the equilibrium distribution given 
by (5). With a chain of N thermalised configurations Cj , the thermal average of an observable 
O can be written as

〈O〉 

∑
j

O(Cj )e
−βH(Cj )/

⎛
⎝∑

j

e−βH(Cj )

⎞
⎠ , (17)

where the convergence of the approximated value to the exact one is O(1/
√

N). Since the latter 
is a statistical controllable error, the method is first principles, in the sense that there is a rig-
orous way for approximating the exact result at any specified level of precision. While this is a 
general fact, we remark for completeness that in practical applications of Monte Carlo methods 
systematic errors may arise. The most common ones are due to thermalisation (i.e. if not enough 
configurations are discarded before the Markov process reaches the stationary distribution), au-
tocorrelation (characterised as lack of enough information in the sample due to slow dynamics 
of the Markov process) and lack of ergodic exploration of the configuration space (due, e.g., to 
the presence of disconnected topological sectors). The systematics is well under control in the 
two-dimensional Ising model, thanks to the availability of efficient algorithms that have been 
tested against the known solution. Powerful general tests also exist for systems where an analytic 
solution is not known, although these tests (often based on comparisons with semi-analytic or 
perturbative approaches) are only as good as our prior knowledge of the broad physical proper-
ties of the system.1

In general, the values of the critical exponents can be obtained from the use of finite size 
scaling, whereby the size of the system L enters scale-invariance arguments as a renormalisation 
group relevant quantity with length dimension one. Given that one can build the adimensional 
ratio ξ/L, we can trade the correlation length ξ with L, which does not introduce new scaling 

1 For instance, if we do not know about the existence of specific topological sectors, we will not be able to test for the 
ergodic exploration of the latters.
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exponents. Under the assumption that the finite volume corrections to scaling are analytic in ξ/L, 
one can derive the textbook relation

βc − βc(L) ∝ L−1/ν , (18)

where2 βc(L) = (Tc(L))−1 is the value at which a susceptibility such as χ computed at volume 
V = L2 achieves its maximum.3 This maximum value, which will be referred to as χmax, diverges 
as L → ∞, with its position converging to βc. Using scaling arguments, one can show that

χmax ∝ Lγ/ν . (19)

The whole set of critical exponents can be reconstructed by measuring the value of χmax(L)

and of its position βc(L) and using the asymptotic behaviours provided in Eqs. (18), (19) to 
determine ν and γ . In practical applications, these exponents are extracted through a fit on a set 
of data obtained at different volumes. In this process, one has to consider that these arguments 
are asymptotic. A systematic error can henceforth arise if the volumes explored are not in the 
asymptotic region. This error is generally controlled by repeating the analysis discarding smaller 
volumes and adding larger ones, until a regime of convergence is determined. In the Ising case, 
one can cross-check the results against the analytic solutions. When an analytic solution is not 
available, comparisons with other approaches (e.g. predictions in a 4 − ε expansion, when the 
latter is sufficiently reliable) can be instructive. Another source of systematic errors come from 
scaling violations, which, however, general arguments show to be sub-leading and undetectable 
at the level of precision that can be reached in standard simulations, their identification requiring 
dedicated methodologies. Hence, we neglect them for the remainder of our discussion.

Using conventional analysis of Monte Carlo simulated data based on scaling arguments, we 
extracted numerically the critical temperature and the critical exponents of the model, comparing 
our determination to the known exact results. We stress that this approach is very well established 
and has been used for the study of phase transitions in various Condensed Matter, Statistical 
Mechanics and Field Theory models (including the Ising model) for a long time. The reason why 
we repropose it here is to be able to assess the quality of our SVM analysis, comparing the results 
on the same set of input data.

Our Monte Carlo simulations were run on L2 lattices of linear size ranging from L = 32 to 
L = 1024 and for several values of temperatures between T = 0.5 and T = 5.0. Near the tran-
sition, 3000 Wolff clusters were flipped for thermalisation, in order to allow the system to relax 
to its equilibrium state, and the configurations were recorded once every 15 Wolff updates. Far 
from the transition, the separation between configurations was reduced, as temporal correlations 
of the Markov chain are less severe. For each lattice size and temperature value, we recorded 200
configurations. For the scaling analysis that allowed us to extract βc, ν and γ we used data for 
order 20 equally spaced temperature values T in the critical region, i.e. in a small neighbourhood 
of Tc in which one can verify a posteriori that scaling arguments apply. The simulated values are 
reported in Table 1.

To extract the infinite volume critical coupling and the critical exponents ν and γ /ν, we fitted 
Eq. (18) and Eq. (19) to the data in the critical region using βc(∞) ≡ βc, ν and γ /ν as fitting 
parameters after reweighting the measured observables with the multi-histogram method (see 
Appendix A.1). Errors were estimated using bootstrap (described in Appendix A.2). The results 

2 For simplicity, from now on we set k = 1.
3 Tc(L) is called the pseudocritical temperature.
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Table 1
On the left, scanning windows of temperatures for extracting the pseudocritical temperature Tc(L) at each value of L; 
nsteps indicates the number of simulated values of T , all equally spaced between the two extremes Tmin and Tmax. On 
the right, values of the pseudocritical temperature Tc and the corresponding maximum of the magnetic susceptibility, as 
obtained from the multi-histogram method.

L Tmin Tmax nsteps

64 2.280 2.330 20
128 2.275 2.294 20
240 2.273 2.285 24
360 2.270 2.280 20
440 2.270 2.280 20
512 2.2665 2.2770 22
760 2.27000 2.27400 20
1024 2.27000 2.27300 30

L Tc χmax

64 2.3037(29) 1.284(37) · 102

128 2.28664(74) 4.590(97) · 102

360 2.27528(28) 2.781(65) · 102

440 2.27448(47) 3.97(10) · 103

512 2.27351(29) 5.24(14) · 103

240 2.27892(39) 1.383(28) · 103

760 2.27226(25) 1.035(21) · 104

1024 2.27145(23) 1.757(40) · 104

Table 2
On the left, the extracted values of Tc and ν obtained from fitting Eq. (18) to the data at 
the simulated values of L. On the right, the extracted values of γ /ν obtained from fitting 
Eq. (19) to the data. We also show χ2

r , the χ2 per degree of freedom, of each fit.

Tc ν χ2
r γ /ν χ2

r

2.26922(33) 1.004(48) 0.36 1.7634(68) 0.46
2.26925(11) 1 (exact) 0.3 7/4 (exact) 0.66

can be found in the first row of Table 2.4 In the same table, the second row reports fits in which 
the values of the critical exponents are fixed to their analytically computed values. The fit results 
are visible in Fig. 1.

As expected, the method reproduces well the analytically computable results, with a precision 
of order 10−4 on Tc, and of 10−3 on γ /ν (with the central value in this latter case being compati-
ble with the expected value within two standard deviations, while in the former the compatibility 
is within the statistical error). The critical exponent ν is determined with a precision of the order 
of five percent. More precise results can be obtained by increasing the number of generated con-
figurations and/or the set of simulated temperatures, which in this model can be achieved with 
a moderate increase in computational time. However, we stress that the purpose of the study we 
have discussed is to establish a numerical benchmark for the SVM analysis provided in Sect. 4
using the same input information, rather than performing a high precision investigation of the 
phase transition in the Ising model with finite size scaling techniques, which is by now a classic 
topic in specialised textbooks (see e.g. [37]).

3. Ensemble classification and the Support Vector Machine

The Support Vector Machine (SVM) is a popular supervised learning algorithm used to solve 
classification and regression problems. In the field of Machine Learning, supervised learning 
approaches use labelled training data (i.e. data for which the classification is known) to find a 
model describing the functional relationship Y = f (X) between a response variable Y (where 
most often Y is a label, i.e. a set of discrete values) and input variable(s) X. The learned model 

4 From here onwards, we set J = 1.
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Fig. 1. (Colour online.) Left: behaviour of the pseudocritical temperature with the linear size of the lattice. Right: be-
haviour of the peak value of magnetic susceptibility with the linear size of the lattice. A fit to the expected asymptotic 
functional form is also displayed.

enables one to predict values of Y for previously unseen values of X. Supervised learning is 
often contrasted to unsupervised learning approaches. The goal of unsupervised learning is to 
model the underlying structure of the data to discover patterns (for instance finding clusters 
of observations) and insightful representations rather than predicting a functional relationship. 
Unike in supervised learning, in this case the learning process uses only the input values X, 
assuming no knowledge of any output. Both supervised and unsupervised methods are widely 
used for modelling and prediction for a variety of applications including fraud detection, image 
and speech recognition, quality control and defect or failure prediction. In addition to SVM, su-
pervised learning techniques include Artificial Neural Network, Decision Trees and K-Nearest 
Neighbour, while unsupervised learning can be achieved through clustering (k-means or EM 
Clustering), Kernel Density Estimation, Principal Component Analysis (PCA) and Self Organis-
ing Maps (SOM).

SVM was firstly introduced in 1963 by Vladimir Vapnik and Alexey Chervonenkis, and fur-
ther developed in the 90’s as a general solution to linear binary and multi-class classification 
problems, and as the generalisation thereof to cases in which the target data are not linearly sep-
arable [38,39]. The SVM method can also be modified to solve regression problems when the 
label can take continuous real values instead of categorical values. The SVM method is very 
effective in high dimensional spaces where the number of dimensions is greater than the num-
ber of samples (see e.g. [40]). It also differs from other supervised learning techniques such as 
Artificial Neural Network because it can be expressed as a convex optimisation problem and, if 
a solution exists, it is always found as the unique global minimum of the equivalent optimisa-
tion problem [41]. The simple visual interpretation of the procedure and the possibility to use a 
wide range of functional forms (provided by transformations that in this context are called ker-
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nels) make the SVM an effective method in problems when boundaries that separate the data 
(the decision boundaries) can not be expressed as a linear hyperplane in the space of the input 
variables [42].

In the most straightforward case, an SVM deals with a binary classification problem between 
linearly separable datasets. For this problem, in the space of the input variables, the SVM method 
seeks to find the maximum margin hyperplane separating data belonging to the two classes. Given 
N linearly separable training points (xi, yi), with xi ∈ Rd and yi ∈ {−1, 1}, there are generally 
many possible separating hyperplanes, all specified in d-dimensional space by the equation

�ω · �x − β̂ = 0, (20)

for appropriate values of �ω and β̂ , with �ω the normal vector to the plane and β̂ its offset with 
respect to the origin. For each of these hyperplanes, a margin can be defined as the region of 
space delimited by the two hyperplanes that are parallel to the separating hyperplane and pass 
through the closest data points that lie on either side of it. These points are called support vectors. 
For each support vector, we define the size as the distance between that support vector and the 
separating hyperplane. As the name suggests, a Support Vector Machine is an algorithm that 
seeks to find the maximum margin hyperplane, as determined by its support vectors. This plane 
is identified by the equation

�w · �x − b = 0 , (21)

where �w and b are obtained through a maximisation process as discussed below. Once �w and b
have been found, we are still free to rescale them such that

�w · �x − b = 1, �w · �x − b = −1 (22)

for the support vectors, where we fix the convention that the first equation holds for support 
vectors corresponding to label +1 and the other for those with label −1. The size of the margin
(i.e. the maximum separating slab) will be 2/| �w| and for points {�xi, yi} on either side of the 
maximal margin hyperplane, yi( �w · �xi − b) ≥ 1. A diagram that illustrates the linearly separable 
case is provided in Fig. 2, left.

Finding the maximum margin hyperplane can be reformulated mathematically as the minimi-
sation problem

min
�ω,β̂

|| �ω||2 s.t. yi( �ω · �xi − β̂) ≥ 1, ∀i = 1, . . . ,N , (23)

where N is the total number of training data. The solution of this problem delivers the values of 
�w and b that allow us to define the desired classifier

f (�x) = sign ( �w · �x − b) (24)

assigning a value ±1 to any pervasively unseen �x depending on whether it lays above or below 
the maximal separating hyperplane. The decision function is defined as

d(�x) = �w · �x − b (25)

and its (signed) value determines the distance of �x from the separating hyperplane.
We now proceed to generalise the above picture by relaxing the assumption of strict linear 

separability. We introduce the slack variables ξi defined as

ξi = max( 0, 1 − yi( �w · �xi − b) ) . (26)
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Fig. 2. (Colour online.) Two archetypal examples of distributions of training data in a two-class SVM classification 
problem, taken for simplicity to be bidimensional. Circles with the same shade indicate points in the same known class 
and each axis represents a feature. The separating hyperplane or hypersurface is denoted with a solid line and the margin 
on either side is indicated by a dashed line. The support vectors for each of the two classes are represented respectively 
with stars (corresponding to the lighter points) and with triangles (corresponding to the darker points).

If the data are such that {ξi = 0}, we fall back to the linearly separable case. When some of 
the ξi ’s are non-vanishing, the corresponding data points fall into the margin. In that case, we 
associate a penalty C to each of the non-vanishing ξi’s and we modify condition (23) as

min
�ω,β̂

(
|| �ω||2 + C

N

N∑
i=1

ξi

)
s.t. ξi = max(0, 1 − yi( �ω · �xi − β̂)) ∀i . (27)

For C = 0, the unique solution to the minimisation problem can only be found in the lin-
early separable case, as a hard-margin classifier. For non vanishing C, the solution is called a 
soft-margin classifier. Using Lagrangian language, the problem is to minimise

L = 1

2
|| �ω||2 + C

N

N∑
i=1

ξi +
N∑

i=1

αi

(
1 − yi

(
�ω · �xi − β̂

)
− ξi

)
−

N∑
i=1

ηiξi (28)

with respect to �ω, ξi, β̂ , where αi and ηi are Lagrange multipliers. Note that, as requested by the 
Karush-Kuhn-Tucker conditions,5 αi, ηi ≥ 0. Setting the gradients of L to zero imposing

δ �ω L = 0 , δ
β̂

L = 0 , δ�ξ L = 0 (29)

5 The Karush-Kuhn-Tucker conditions [43,44] are necessary conditions that need to be satisfied in optimisation prob-
lems where inequality constraints are present.
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yields

�ω −
N∑

i=1

αiyi �xi = 0 ,

N∑
i=1

αiyi = 0 ,
C

N
− αi − ηi = 0 . (30)

Plugging these into the original Lagrangian, one obtains

L = −1

2

N∑
i,j=1

αiαjyiyj �xi · �xj +
N∑

i=1

αi s.t.
N∑

i=1

αiyi = 0 and 0 ≤ Nαi ≤ C , (31)

where now the extremisation would need to be performed over the αi . If the unique solution 
exists, we call {ai} the set of the α’s that maximises L.

Eq. (31) expresses the dual formulation of the problem of finding the maximally separating 
hyperplane, which is the starting point to generalize the applicability of the method to cases 
where linear separation is not possible. Indeed, note that L now only depends on the inner product 
between representative vectors of training samples. In cases in which the problem does not appear 
to have a solution in Rd , we might seek one in another space of larger dimensionality. We can 
then consider a more general Lagrangian functional

L̃ = 1

2

∑
i,j

yiyjαiαjK(�xi, �xj ) −
n∑

i=1

αi , (32)

where K(xi, xj ) is referred to as a kernel.6 Note that in writing Eq. (32) we have multiplied the 
natural generalisation of (31) by a global −1, which means that, in order to follow the standard 
convention, we have rewritten our original maximisation problem into a minimisation problem. 
As it is transparent from Eq. (32), the value of the kernel computed on the input data is all the 
information that the minimisation algorithm sees. For this reason, the kernel is often denoted as 
an information bottleneck in this kind of analyses. Thus, the choice of kernel is crucial. Obvi-
ously, the kernel must be symmetric in its arguments, reflecting the symmetry under exchange 
of two training sets. If we require that the minimisation problem above has a unique global so-
lution, then we must also require that K is positive definite (the optimisation problem is then 
convex). According to Mercer’s theorem, there exists then a map � : �x → �(�x), called feature 
maps, such that the kernel can be represented as a dot product in some higher dimensional space, 
K(xi, xj ) = �(�xi) ·�(�xj ). Other than the conditions above, our choice of kernel must be guided 
by our knowledge of the system, performance or computational ease. If a solution is found that 
minimises L̃ in the image space for a given �, we define the decision function as

d(�x) =
N∑

i=1

αiyi�(�xi) · �(�x) + b . (33)

As in the linearly separable case, the sign of the decision function determines the predicted label 
of each input point. An illustrative representation of a non-linearly separable data set in the space 

6 The process of separating the data through a kernel is often called “kernel trick”. We will not use this expression 
any further in this paper, as it would be dangerously misleading. Indeed, as we will discuss in detail for our model, the 
selection of the optimal kernel is not a mere computational expedient, but a posteriori provides powerful insights on the 
physics of the target system.
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of the input data (again, for this purpose assumed to be two-dimensional) is provided in Fig. 2, 
right.

The structure of a kernel that allows us to separate the training data is closely related to the 
dynamics of the system. Henceforth, the selection of a class of kernels embodies assumptions 
about the data to be analysed. The more these assumptions are constraining, the smaller is the 
class of functions among which we can choose our kernel. For a comprehensive and agnostic 
analysis, intuitively, we would be led to choose from a very large class of kernels, in order to 
reduce any bias due to any possible assumption. However, when we try and infer some physical 
behaviour from the ability of a kernel to separate the training set, this latter approach will gener-
ally reflect in a larger number of parameters that need to be optimised for the given data, with a 
correspondingly higher variance in the final result, notably due to fitting noise. There is therefore 
a trade-off between variance and bias that is central in many discussions in Machine Learning.

A set of kernels that will be important for analysis below is the class of polynomial kernels of 
degree n,

K(�xi, �xj ) =
( �xi · �xj

�
+ c0

)n

=
n∑

a=0

(
n

a

)
cn−a

0

( �xi · �xj

�

)a

, (34)

where � and c0 are constants and · is the usual scalar product in the �x space. If c0 = 0 these 
are called homogeneous, otherwise inhomogeneous. The components of the feature map in the 
inhomogeneous case are all the monomials of degree up to n built from the products of the com-
ponents of �xi and �xj , respectively. These form a linear space of dimension 

(
N+n

n

)
. For example, 

in the case n = 2

�n=2(�x) = (x2
1 , . . . , x2

N, x1x2, . . . , x1xN, x2x3, . . . , x2xN, c0x1, . . . , c0xN) . (35)

From the right hand side of Eq. (34) it is apparent that the inhomogeneous polynomial kernel of 
degree n can be obtained as a linear combination of homogeneous kernels of degrees up to n. In 
homogeneous kernels, only monomials of degree exactly n are present in the feature map. Owing 
to the important role of homogeneous polynomial kernels in this work, we denote them as

K(n)(�xi, �xj ) =
( �xi · �xj

�

)n

. (36)

An important aspect of the analysis performed in our study is related to the symmetry prop-
erties of the system. We will restrict to the case of a global internal symmetry with respect to a 
group G, acting on �x as

g �x = (gx1, . . . , gxN) , ∀g ∈ G . (37)

As explained in [45], a symmetry of the system can be interpreted as a prior knowledge on the 
system itself. Indeed if a system is invariant under a symmetry group G, we would expect that 
only features that are invariant with respect to the action of G shown above will play an important 
role. Restricting ourselves to those features forces the kernel to be totally invariant with respect 
to the action of the symmetry group G:

K(�x, �y) = K(g�x, �y) =K(�y, g�x), ∀g ∈ G , (38)

where the last equality is implied by the symmetry of the kernel with respect to the exchange of 
its arguments.
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As is shown in [46], a complete7 set of invariant features for a finite group G of order |G| can 
be obtained by projecting the kernel in Eq. (34) with d = |G| on the group. For a generic function 
f (�x), the projection is realised as an average over all possible transforms of the argument:

f̃ (�x) = 1

|G|
∑
g∈G

f (g�x) . (39)

Similarly, the projection of the inhomogeneous polynomial kernel above reads,

KG(�x, �y) = 1

|G|2
n∑

a=0

(
n

a

)
cn−a

0

∑
g,g′∈G

(
g�xi · g′ �xj

�

)a

. (40)

The transformation law of a polynomial kernel under a symmetry can be rephrased in terms 
of the behaviour of its homogeneous components under that symmetry. Specifically, if, as a 
consequence of the invariance of the physical system we would like to classify, a polynomial 
kernel is invariant under the action of a symmetry group G, it can only contain homogeneous 
terms that are invariant under G. For instance, in the case of a global symmetry under the Z2
group, an invariant kernel only contains even powers, as odd powers are projected out in the 
averaging. Hence, we would expect that a good classifying kernel (i.e. a kernel implementing 
a transformation taking us in a space in which a separating hyperplane can be found) will only 
contain even powers. In the search for a good classifier, our prior knowledge of the symmetry 
has restricted possible candidate kernels. More formally, under general assumptions, for systems 
with a discrete symmetry group, one can prove that the empirical risk is minimised by kernels 
that respect the symmetry of the system.

In a bottom-up approach to phase transitions with SVM methods, we aim to reconstruct 
physical properties (among which, the global symmetry of the Hamiltonian) of the system by 
identifying an appropriate kernel that allows us to separate the two input classes (e.g. known 
phases at two temperatures). Following our previous argument, if such a kernel exists, it must 
respect the symmetries of the system. Hence, by identifying transformations under which this 
kernel is invariant, we can identify the symmetries of the system. However, the problem of finding 
a classifying kernel with a systematic search through a generic space with no a priori knowledge 
is a rather hopeless process, as any arbitrary function respecting the properties of a good kernel 
can be in principle the answer we are looking for. Henceforth, we shall investigate whether, by 
looking at classification properties of a finite set of kernels (e.g. all the monomials up to some 
degree p), one can infer or at least restrict the symmetry properties of the system being studied. 
The naive expectation is that kernels that respect the underlying symmetry will classify better 
than those that don’t. Taking this perspective inevitably leads us to discussing which classifica-
tion should we trust more among all those that separate the data. In the remaining of this section, 
we will discuss a procedure to quantify the reliability of a classification, which will allow us to 
discriminate between bad and good classifiers and to choose the best among the latters.

We will use a model selection technique strongly inspired by structural risk minimisation. To 
perform model selection, which relies on an evaluation of the robustness of the trained model, 
we estimate the expected risk. The probability of test error, or expected risk, of a model f on a 

7 We call a set of invariant features complete if every orbit of the group can be distinguished by using only those 
features. Note that we are not requesting this set to be minimal, i.e. we allow it to contain features that can be expressed 
in terms of others features.
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data sample (X, Y), where X are the data points, Y their class label, which are related according 
to the probability distribution P(X, Y) can be defined as

R[f ] =
∫

dP(X, Y )1 (Y, f (X)) , (41)

where the function 1 is the indicator function, which vanishes when its arguments coincide and 
is equal to 1 otherwise.

If we knew the probability measure P(X, Y) relating X to Y we could compute the expected 
risk for any model f . Intuitively, the expected risk is expected to be higher for models that do 
not correctly predict the class labels of the data points. In practice, however, we do not know 
P(X, Y), and we must evaluate it from the data. The empirical risk can be defined as

Remp[f ] = 1

m

m∑
i=1

1 (Yi, f (Xi)) , (42)

where m is the number of data points.
To evaluate this quantity we use a procedure called cross-validation. In general, this method 

consists in splitting the data in two parts: one is used to train a model and the other to test it, 
for example computing Eq. (42) several times over different divisions. The simplest form of 
cross-validation is Leave-one-out (LOO-CV), in which all but a single data point are used for 
training, and the former for testing. Repeating the computation of the risk for every possible 
choice of the removed data point yields

RLOO[f ] = 1

m

m∑
i=1

1 (Yi, fm−1(Xi)) , (43)

where fm−1 is the model obtained after training on a m − 1 size sample, i.e. with i-th data point 
removed from the sample. The RLOO is shown to be an unbiased estimator (see Theorem 12.9 in 
[47]) of the expected risk evaluated on a sample of size m − 1,

〈RLOO[fm]〉 = 〈R[fm−1]〉 . (44)

A very useful bound for RLOO can be obtained by observing that the removal, from the sample, 
of a data point which is not a support vector cannot alter RLOO, because that point would be well 
classified anyways. Thus

〈RLOO[fm]〉 ≤ 〈nSV〉
m

, (45)

where nSV is the number of support vectors and the average is taken on the LOO sample. There-
fore the number of support vectors found in the learning process is related to the performance of 
the SVM on unseen examples. The comparison between the number of support vectors obtained 
in training various models on the same data will thus provide useful additional information in 
performing model selection.

The are two problems with the LOO estimates described above. The first is that, from a 
computational point of view, they are very demanding, since we have to perform the training 
procedure for a number of times equal to the size of sample. The second problem is that they 
are quite noisy. There are in principle many implementations of cross-validation that can cir-
cumvent both problems. In this work, we will use stratified 10-fold CV estimates. These consist 
in dividing the sample in 10 equal bins, chosen so that the classes are equally represented, and 
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performing the train and test procedure above with each bin removed in turn. This is shown to 
yield an unbiased [48] estimator of RLOO.

Related to model selection is the problem of overfitting. Overfitting occurs when we have a 
large number of parameters to fix that are not constrained enough by the available data. When 
this happens, we say that the model is overfitting the training data. In this case, typically, the 
classifier is significantly affected by the statistical noise of the input sample and will be unable to 
correctly predict the classification of new data. Procedures such as the LOO and the 10-fold CV 
allow one to identify whether overfitting has occurred by returning a low cross-validation score.

4. An SVM analysis of the phase transition

Our aim is to estimate the critical temperature Tc and the critical exponents of the 2D Ising 
model using an approach based on the SVM. For this, we must first select the kernel we will use. 
Following the discussion in the previous section, we will restrict to polynomial homogeneous 
kernels. Secondly, we have to devise a technique to extract the critical temperature Tc and critical 
exponents from the trained model. Before delving into the details of our strategy, let us specify 
some technicalities regarding the application of the theory explained in section 3 to the case of 
our study.

To train the SVM, we will use 200 configurations at temperature T1, labelled as y = −1, and 
200 configurations at temperature T2, labelled as y = 1, with both sets obtained from Monte 
Carlo simulations. While eventually we would like to identify each label with a phase, for the 
moment the label does not carry this meaning: we can simply identify the two classes with the 
two training temperatures T1 and T2. Then, training a SVM at temperatures T1 and T2 means 
running the learning algorithm using the configurations obtained at temperature T1 as the training 
set with y = −1 and those at T2 as the training set with y = 1 (we assume for simplicity T1 < T2). 
Each configuration will consist of a L2 component vector �x, each component corresponding 
to the elementary variable defined on a site of a square L × L lattice.8 When we refer to the 
configurations at a temperature T , we mean a sample of 200 independent configurations obtained 
from Monte Carlo simulations at temperature T . In order to find a separating hyperplane, we will 
be using homogeneous polynomial kernels of degree n,

K(n)(�xi, �xj ) =
( �xi · �xj

�

)n

, (46)

where i and j label the configurations. To fix �, whose value is irrelevant for the minimisation 
algorithm, we require that for a configuration in which �x = (1, 1, . . . , 1), K(�x, �x) = 1. Since 
�x has L2 unit valued components, �x · �x = L2. Thus, � = L2. The corresponding form of the 
decision function will be

d(�x) = 1

L2n

nSV∑
i=1

yiαi (�xi · �x)n + b , (47)

where now i labels the support vectors, their number being nSV. The value of the decision func-
tion d(�x) (whose general form is provided in Eq. (33)) is the signed distance of the configuration 
�x in the image space of the feature map from the maximum margin hyperplane. If we pick an en-
semble of independent configurations {�x}T at temperature T , the average of the decision function 
over these, d(T ) = 〈d(�x)〉T , is a thermodynamic observable that depends on T .

8 The square lattice will be mapped to a linear array in typographical order.
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In order to find whether a second order phase transition occurs and its location, two criteria 
will be required from the model obtained by training a SVM. First, for an appropriate choice of 
kernel, the SVM must be able to separate configurations drawn at any pair of sufficiently sep-
arated temperatures.9 We say that the SVM is able to separate configurations at two different 
temperatures if a maximum margin separating hypersurface can be found that does not over-
fit. Whether this happens can be measured from estimates of the expected risk, Eq. (41). The 
SVM is able to separate configurations at the training temperatures if the estimated expected 
risk is small. This ability will depend on the kernel and on the training temperatures.10 Second, 
if trained at two temperatures, the decision function must be a monotonic function of the in-
termediate temperatures. Indeed, if the temperature is progressively changed from T1 to T2, we 
expect the configurations collected along the change to be at the start very similar to those at T1, 
and to become progressively more similar to those at T2. We expect this general behaviour to be 
reflected in the average value of the decision function as a function of T . This can be restated 
as the request that d(T ) is a monotonic function of T . Heuristically, the reason for requiring 
monotonicity is that if we are to define the critical temperature Tc as the temperature at which 
d has some set value, for example when it becomes compatible with 0, then we must be able to 
associate a unique value of T to each value of d . Thus d(T ) must be invertible over its domain, 
and monotonicity follows. Moreover, since we are analysing different volumes L, we will re-
quire that the direction of variation of d(T ) does not change qualitatively if L is changed. These 
are two independent and necessary criteria that we require from the model in order to be able 
to eventually locate the transition precisely. They will be tested in the next two subsections. In a 
third subsection, we will study the meaning of the decision function that performs best and lastly 
we will use its scaling properties to extract the critical temperature Tc and the critical exponents 
of the transition. The Machine Learning analyses reported in this work have been done using the 
scikit-learn library [49] and, as a cross-check of results, code developed in MATLAB.

Since a priori we do not know the location of the transition, or if the transition is there at 
all, we collected configurations at temperatures Ti = 0.5 + i0.5 with i = 0, . . . , 9 and for the 
same values of L as in the standard analysis above. This rough scan of the temperature range 
from T = 0.5 to T = 5.0 will be refined when we extract the critical temperature and the critical 
exponents. Let us stress that, at this point, our only knowledge on the system comes from its raw 
configurations available at different volumes and temperatures and the fact that its geometry is an 
L × L square with periodic boundary conditions. In particular, any global symmetry that could 
drive the transition is assumed to be unknown to us.

4.1. Monotonicity of the decision function

For this analysis, we train the SVM at the most distant temperatures in our range, T1 = 0.5
and T2 = 5.0 with homogeneous polynomial kernels of degree n = 1, . . . , 4, and we compute 
the average value of the decision function Eq. (47) on sets of 200 configurations collected at 
intermediate values Ti . For convenience, we define a translated and rescaled decision function 
d̃(�x) as

9 Sufficient separation can be defined in terms of standard deviations of a chosen thermodynamic observable. Here we 
will not need to develop further this intuitive concept.
10 The value of the regularisation parameter C will be chosen in each case so that the results do not depend on its value. 
This is not always possible, but in our case results turn out to be independent of C provided its value is bigger than 
∼ 10−2. Note that a different choice has been made in [13].
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Fig. 3. (Colour online.) Behaviour of 〈d̃〉(T ) with a kernel of degree n = 1 (left) and n = 2 (right).

d̃(�x) = 1
2d(�x) − b . (48)

The range of d̃ is [0, 1]. If T1 and T2 are in two different phases, then d̃ resembles an order 
parameter.

The values of 〈d̃〉T are reported in Fig. 3. In the left panel we report the results for the n = 1
polynomial kernel, on the right the results for the n = 2 polynomial kernel. The results do not 
show any qualitatively appreciable variation as long as C > 10−2 and are represented just for 
L < 440 in order to avoid overcrowding the plots. At larger volumes, their qualitative behaviour 
does not change.

For the n = 1 polynomial kernel SVM, the classification at intermediate temperatures is not 
obviously monotonic (in fact, a classification signal seems to be completely absent), and, for the 
same T it also changes drastically for different L’s. Both these features can be consequences of 
a rather noisy nature of the hyperplane finding process in this specific case, where the data for 
〈d̃〉T are mostly compatible with zero. Although this type of kernel fails already at this stage 
and in such a spectacular manner, we will not discard it for the time being and postpone any 
further comment about this and other odd power kernels to the next subsection. On the contrary, 
n = 2 shows the expected monotonic behaviour for all the values of L. In this case, 〈d̃〉T is 
∼ 1 at very low T and goes to 0 for large T . The figure shows how the vanishing of 〈d̃〉T
is concentrated around T = 2.5. Besides, the results are unchanged if other different training 
temperatures are considered, i.e. T1 = 1.0 and T2 = 4.0 (a systematic scan of possible pairing 
of training temperatures will be done in the next subsection). Note, moreover, that the value of 
〈d̃〉(T ) taken at T = 2.5 goes to 0 if L is increased, while far from this value of T , it changes 
minimally. We interpret this as evidence that around the value T = 2.5, the behaviour of the 
system changes in a way that is relevant for the phenomenon we want to observe. This is a first 
sign that the transition might be in a region of T around T = 2.5. Henceforth, the neighbourhood 
of T = 2.5 will be called the critical region.
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The study of kernels of order n = 3 and n = 4 does not add new insights, with the n = 3 kernel 
being similar to the n = 1 case and n = 4 resembling n = 2. A clear pattern starts to emerge that 
shows a separation between even-order and odd-order kernels. This will be even more evident in 
the next subsection.

4.2. Separation ability

In this subsection, using different degree polynomial kernels, we evaluate the ability of the 
SVM to separate data through estimates of the expected risk, as explained in Sect. 3. Specifically, 
we will evaluate the empirical risk for homogeneous polynomial kernels of degrees n = 1, . . . , 4, 
for every value of the size L and for every possible pair of training temperatures T1 and T2 > T1
in the coarse temperature scan discussed above.

In each case, we report estimates of the expected risk, also called the score, and of the ratio 
〈nSV〉/nTP between number of support vectors and the total number of points in the training 
sample. We estimate the latter with its statistical error using a jack-knife procedure that consists 
in computing the running averages after 10% of the points in each training set is removed11; 
hence, in our case, nTP = 360, each complete training set consisting of 200 points. The results 
are represented as heatmaps in Figs. 4, 5 and 6 for three different lattice sizes. In these figures, 
the lower training temperature T1 is reported on the horizontal axis, the higher, T2, on the vertical 
axis. For each pair, the obtained score is reported as the colour of the corresponding rectangle 
in grayscale. A white rectangle maps to the poorest score of 0, while a black rectangle to the 
maximum score of 1. Note that a score of 0.5 is equivalent to a mere guess, and hence provides 
the worst possible classification ability. In addition, the average of the ratio 〈nSV〉/nTP is shown 
as a number in the rectangle together with the measured error (unless the latter is exactly zero).

Let us discuss how to read these heatmaps. In each case, the values reported on the skew 
diagonal correspond to close training temperatures, while, at the opposite end, the values in 
the upper left corner correspond to distant pairs of training temperatures. Columns (resp. rows) 
correspond to scores obtained for various values of T2 (resp. T1) holding T1 (resp. T2) fixed.

Already at a first glance we notice that the SVM with a kernel of even degree (n = 2, 4) yields 
a better score than with kernels of odd degree (n = 1, 3) everywhere on the heatmaps. Let us 
analyse the even and the odd power kernel cases in more detail.

For the even degree kernels, the results seem to change only slightly among the various L
at n = 2 and n = 4. Therefore, we analyse the case n = 2, L = 128 and later comment on the 
differences with respect to n = 4 and for larger L’s. The score is close to 1 for almost every 
choice of the pair T1 and T2, except when they are both smaller than T = 2 or both greater than 
T = 2.5 and very close to each other. Note that in the critical region, the score remains high 
even when T1 and T2 are close. Regarding the ratio 〈nSV〉/nTP, we can divide the heatmap in 
roughly two regions. For 0.5 ≤ T1 ≤ 2.0 and 2.0 < T2 ≤ 5.0, the ratio has a consistently lower 
value than in the rest of the heatmap, the difference being up to ∼ 30%. This is an additional hint 
at the fact that a transition may take place for T ∼ 2.0. We remind the reader that our analysis in 
the previous section has singled out the value T = 2.5, which is the next high up in our coarse 
scanning; hence, we can redefine the critical region as 2.0 ≤ T ≤ 2.5. Once again, for the moment 

11 When we perform this estimates we use stratified sampling, whereby the relative number of configurations in each 
class is preserved. In our analysis, configurations have been ordered according to the Monte Carlo time, i.e., the position 
at which they appear in the generated Markov chain. Note that there is no correlation between the data discarded in each 
set for the jack-knife procedure.
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Fig. 4. (Colour online.) Heatmaps representing the score of the cross-validation test at L = 128 and C = 1.0 with homo-
geneous polynomial kernels of power n = 1, . . . , 4. The numbers in the rectangles are the estimates of 〈nSV〉/nTP.
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Fig. 5. (Colour online.) Heatmaps representing the score of the cross-validation test at L = 240 and C = 1.0 with homo-
geneous polynomial kernels of power n = 1, . . . , 4. The numbers in the rectangles are the estimates of 〈nSV〉/nTP.
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Fig. 6. (Colour online.) Heatmaps representing the score of the cross-validation test at L = 360 and C = 1.0 with homo-
geneous polynomial kernels of power n = 1, . . . , 4. The numbers in the rectangles are the estimates of 〈nSV〉/nTP.
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this is just a convenience name, as we have not shown any evidence of any phase transition yet. 
In the critical region of the heatmap, the ratio 〈nSV〉/nTP reaches its minimum value when T1

and T2 are the farthest possible, in the upper left hand corner, and its maximum value when the 
training temperatures are at their closest, in the bottom right hand corner.

In going to n = 4 the picture is qualitatively the same, as it is for larger values of L. The only 
difference worth a comment is the behaviour of the number of support vectors for T1 = 0.5 and 
T2 = 2.0 at n = 4, which is systematically lower than the value at n = 2. As we can observe, 
however, the difference reduces at growing L and we interpret it as an effect of the finite size 
of the system. Hence, we can infer that the estimate of the ratio 〈nSV〉/nTP remains roughly 
constant even when the number of components of the feature map is increased considerably in 
passing from a quadratic to a quartic kernel. This means that of the new components of the feature 
map, almost none is chosen as support vector.12 This can be interpreted as the signal of the fact 
that the n = 2 kernel already captures the essential properties of the model. It is then no surprise 
that increasing the number of components of the feature map does not lead to an improvement of 
the (already high) score. In that case, the new components of the feature map are actually fitting 
the statistical noise.

For the odd power kernels n = 1 and n = 3, the picture is totally different, the score being 
small over all the pairs T1 and T2. Let us analyse the case n = 1 for L = 128 first. The score 
is ∼ 0.5 over all the heatmap. This means that the classification algorithm classifies incorrectly 
roughly half of the test samples. In passing to n = 3, the score heatmap remains approximately 
the same, but the behaviour of the ratio 〈nSV〉/nTP changes, and becomes almost uniformly 
∼ 1.0. This means that as a consequence of the addition of components to the feature map, 
almost the whole points in the sample become support vectors. Such a behaviour in passing from 
n = 1 to n = 3 is observed at all values of L. We argue that in those cases the minimisation 
algorithm uses the more numerous components of the n = 3 feature map to try to fit to statistical 
noise, i.e. to overfit in order to accommodate a separating hypersurface. Hence, in this case we 
obtain a poorer classification prediction.

We have performed a similar analysis (not reported here) also with the n = 5 and n = 6 ker-
nels, which confirms the conclusion that even power kernels are preferred to odd power kernels 
in terms of their efficiency at separating classes corresponding to temperatures. One can also 
easily see that, among the even degree kernels, the quadratic kernel performs better, in the sense 
of containing already all information on the separating hypersurface with the minimal number 
of features. This set of observations is very powerful at identifying the important symmetry at 
play. In fact, the common symmetry of the better performing kernels is Z2, and among all the 
Z2 symmetric kernels, the n = 2 kernel is the one for which this symmetry is maximal, while all 
the others have higher order symmetries containing Z2 as a subgroup (namely, Z4 for n = 4 and 
Z6 for n = 6). Among the even power kernels, the behaviour of the number of support vectors 
singles out the quadratic kernel as the one that best adapts to the data.

It is worth stressing again at this point that Z2 invariance was not an input: indeed the SVM 
has been only fed with raw configurations, i.e. vectors with L2 components labelled with the 
temperature, whose possible values are ±1. By clearly singling out the quadratic kernel, the 
SVM is giving us a strong hint of a possible global symmetry of the system. Hence, our working 

12 It is worth remarking that, since σ 2
i

= 1, the quartic kernel contains all the terms of the quadratic kernel. More in 
general, a kernel of power n contains all terms of kernels of power m < n, with m having the same parity as n.
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hypothesis that a systematic investigation of a class of kernels can identify the symmetry of the 
system seems to be valid.

4.3. Meaning of the decision function

Given the special role played by the n = 2 kernel, we restrict our analysis to the latter from 
now on. As noted in [13], in the case of n = 2, the meaning of the decision function can be easily 
understood. Its homogeneous part d̃ can be written as

d̃(�x) = 1

2

nSV∑
i=1

yiαi K (�xi, �x) = 1

2L4

nSV∑
i=1

yiαi

(∑
�a

xi(�a)x(�a)

)2

, (49)

where on the right hand side we switched back to a cartesian labelling of the elementary variables, 
�a indicating the position on the lattice and the sum running over the whole lattice. After swapping 
the sums over the positions13 with the sum over the support vectors, Eq. (47) can be rewritten as

d̃(�x) = 1

2

∑
�a,�b

C(�a, �b)x(�a)x(�b) , (50)

where

C(�a, �b) = 1

L4

nSV∑
i=1

yiαi xi(�a)xi(�b) . (51)

The quantity C(�a, �b) can be interpreted as an effective coupling between two spins at positions 
�a and �b (see also [13]). As it can be verified by direct inspection, C(�a, �b) = C(�a − �b), owing 
to the translation symmetry of the system. By studying the average C(�a) obtained by training 
a quadratic SVM at a given pair of training temperatures, we can get a clear insight into the 
nature of the decision function. An illustration of the behaviour of this quantity is provided in a 
normalised (from 0 (lightest colour) to 1 (darkest)) heatmap in Fig. 7 at L = 64 for C = 1.0 at 
four choices of the training temperatures. These can be seen as pictures of the effective coupling. 
Note that periodic boundary conditions are imposed in both directions.

Let us comment on these heatmaps. In all cases except one, the effective coupling is roughly 
uniform. Then

d̃(�x) ∝ 1

L4

∑
�a

x(�a)x(�a) = m2 , (52)

where m is the magnetisation density of the system. The decision function d , in this case, is thus 
linearly related to m2.

If T1 and T2 are respectively smaller and greater than T = 2.5 (bottom right panel) but very 
close to each other, we see that the effective coupling vanishes smoothly in a small neighbour-
hood of the origin and is uniformly 1 everywhere else. When, instead, T1, T2 > 2.5, the shape of 
the effective coupling drastically changes. The decision function becomes now a shorter ranged 
version of m2. These conclusions do not change for larger volumes and as long as C � 10−2. It 
is clear that the distinction between the decision functions learned in each case is related to its 

13 In the quadratic kernel, there are two sums over positions to be performed.
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Fig. 7. (Colour online) Heatmaps representing the effective coupling C(�x) for L = 64 at the indicated values of the pairs 
T1, T2. The axes are the Cartesian coordinates of the lattice.

range on the lattice. The mapping of the decision function into the order parameter provides us 
with an easy a posteriori interpretation on the conclusion (reached in the previous two subsec-
tions) that learning temperatures must be chosen distant enough and on either side of T = 2.5: 
with this choice, the SVM has information from both phases of the model, which enables it to 
learn the order parameter.14

14 The Reader would have noticed that in Sect. 2 we used as an order parameter m, while here we are claiming that the 
order parameter is m2. Indeed, the issue is subtle: strictly speaking, the correct order parameter is m, since a request for 
an order parameter is that it has to transform non-trivially under the symmetry of the system. However, on a finite lattice, 
m is always zero. Hence, the learning process will identify m2 as a classification function, associating the two phases 
respectively with the region of temperatures in which this quantity is of order one and the region in which it is much 
smaller than one.
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4.4. Extracting Tc and the critical exponents

In this subsection, we shall show that the decision function can be used to precisely locate 
the phase transition point and evaluate the critical exponents. The heuristic argument that guides 
our approach is the following. Far from the phase transition, the SVM should easily succeed 
at classifying phases, as configurations will fall far from the separating hypersurface. Near the 
phase transition, we would expect a less clear classification, with configurations falling in the 
separating margin. The critical temperature can be identified with the temperature at which 〈d̃〉
has the maximal change (see e.g. Fig. 3). Hence, by studying the fluctuations of the decision 
function obtained following an appropriate training procedure (which is provided by a measure 
of the classification error), one can identify the critical temperature as the value at which this 
quantity reaches its maximum. Owing to finite size scaling, the shift of this maximal value as a 
function of L is expected to scale with the critical exponent ν of the transition.

For the Ising model, the identification of m2 as the decision function learned for distant 
temperatures on either side of T = 2.5 provides a more rigorous justification of our heuristic 
expectations. Indeed, we know that the fluctuations of m2 reach their peak at the critical temper-
ature. Since d̃ is proportional to m2, its fluctuations should show the same behaviour. Therefore, 
by performing a finer scan of temperatures in the critical region as identified in the procedure 
for calibrating the choice of the kernel, we should be able to find a peak in σd , the susceptibility 
of d , hence uncovering the phase transition. This will allow us to obtain Tc(L) and the critical 
exponents.

Before showing our results, we remark that our discussion of the methodology allows us to 
identify also important potential sources of systematic errors. For instance, when instead of m2

the learned decision function is a shorter range version thereof, as it happens e.g. when both 
training temperatures are in the symmetric phase, the fluctuations of d̃ will not be related to 
criticality, and the outcome of our analysis will be completely dominated by the systematics. 
We have shown that our procedure for choosing the training temperatures reasonably protects 
us from this extreme scenario. Other distortions to the learned decision function from the target 
one will arise if T1 and T2 are chosen too close to the critical region, as shown in the bottom 
right panel of Fig. 7. Although cross-validation and analysis of number of support vectors as 
the training temperatures vary provide reassuring evidence that we can avoid also this case, our 
determination of Tc and of the critical exponents must take it into account as a logical possibility. 
Hence, while for brevity we shall show only results for one set of training temperatures (namely 
T1 = 0.5 and T2 = 5.0), in our study we ensured we are free from systematic errors related to the 
choice of the training points by testing our numerical values for robustness against changes of T1
and T2 in the pre-determined acceptable region.

We now move on to the determination of the critical temperature Tc and of the critical expo-
nents. In order to perform an easier comparison with the results obtained with standard methods 
for the magnetic susceptibility χ , we consider the quantity

V σd = V

√
〈d2〉 − 〈d〉2 . (53)

From Eq. (49), we find

V σd ∝ V

√
〈m4〉 − 〈m2〉2 = V 〈m2〉

√
〈m4〉
〈m2〉2 − 1 . (54)

Note that σd and σ
d̃

are linearly related, owing to the definition of d̃.
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Table 3
Position (Tc(L)) and volume-multiplied value (V σd ) of the 
maximum of the decision function error at each investigated 
lattice size L.

L Tc(L) V σd

64 2.2852(31) 1.426(31) · 103

128 2.2792(12) 4.782(85) · 103

240 2.2753(11) 1.448(24) · 104

360 2.27204(51) 2.995(55) · 104

440 2.27194(46) 4.193(82) · 104

512 2.2712(13) 5.221(87) · 104

760 2.27098(31) 1.068(21) · 105

1024 2.27085(38) 1.740(26) · 105

Let us examine the scaling behaviour of V σd . The choice of � in Eq. (46) ensures that the 
proportionality constant between d̃ and m2 is independent of the volume. Hence, a straightfor-
ward dimensional analysis of Eq. (54) shows that the scaling behaviour of V σd near criticality is 
the same as that of the magnetic susceptibility χ ,

V σd(Tc(L)) ∝ L
γ
ν , (55)

with

Tc − Tc(L) ∝ L1/ν . (56)

To obtain both the pseudocritical temperature Tc(L) and the critical exponents γ and ν, it 
will then be sufficient to find the coordinates of the maximum of Vσd(L) in the (T , V σd) plane 
(which we refer to respectively as Tc(L) and V σd,max(Tc)) for each L and fit Eq. (55) and Eq. (56)
to their behaviour. For each value of L, V σd,max(Tc) and Tc(L) are first roughly estimated and 
then their estimate is improved with a finer scan. To better compare the final results with those 
obtained with the multi-histogram method, we used the same temperatures used for this latter 
analysis, see Table 1.

The results of this procedure are reported in Table 3 and represented in Figs. 8a and 8b. The 
scaling behaviour is fitted to the data using Tc(L), ν and γ /ν as fitting parameters. The results 
of the fit are reported in Table 4 and plotted also in Figs. 8a and 8b. As an additional estimate 
of the critical temperature, also the fits with the critical exponents fixed to their analytical values 
are performed. The results are visible in the same figures and tables. The determined values 
of Tc, ν and γ have good accuracy, which allows us to make meaningful comparisons with 
both the values obtained analytically for the 2D Ising model (γ = 7/4 = 1.75 and ν = 1) and 
with the estimates obtained with the multi-histogram method. As in the conventional analysis, 
all the determined quantities are compatible with the analytical known values within at most two 
standard deviations. The errors on the fitted parameters obtained with the traditional approach are 
smaller by about a factor two to four than in the SVM analysis, possibly owing to the fact that the 
former method combines samples at different values of T through multi-histogram reweighting, 
which can not be used in our Machine Learning analysis (since, for instance, in order to use it, 
we would need to know the Hamiltonian of the system, which is not part of our hypotheses). 
Likewise, the availability of more data for the fitting procedure generated through reweighting 
explains the smaller χ2

r in the case of the conventional analysis, since in this latter case one has 
better resolution around the maximum.
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Fig. 8. Finite size scaling of critical quantities extracted from the SVM decision function error.

Table 4
Results of the fit of the predicted scaling behaviour Eq. (55) and Eq. (56) to the data in 
Table 3. The best fit curves are represented in Figs. 8a and 8b.

Tc ν χ2
r γ /ν χ2

r

2.26968(66) 0.95(18) 0.79 1.733(10) 1.54
2.26954(25) 1 (exact) 0.65 7/4 (exact) 2.06

Hence, to conclude, when applied to the same set of input data, our analysis shows that a 
finite size scaling study of the peak of the decision function susceptibility provides results that 
are quantitatively comparable for precision and accuracy to those obtained with a traditional finite 
size scaling analysis of the order parameter susceptibility using reweighting techniques. We note 
that our analysis for the extraction of Tc and ν has only made use of an implicit connection 
between the decision function and the order parameter, while for the extraction of γ /ν the exact 
relationship has been needed.

5. Conclusions and outlook

In this work, we have provided the first (to the best of our knowledge) precision test of Ma-
chine Learning techniques applied to the study of phase transitions in statistical systems. In 
particular, we have studied the Ising model, benchmarking our findings with more consolidated 
numerical approaches that assume the knowledge of the Hamiltonian and of the order parameter. 
As a Machine Learning tool, we have used the Support Vector Machine, which implements a 
supervised learning technique. Our starting point are sets of configurations (with phase not spec-
ified, or unlabelled, using a Machine Learning language). The first task has been to understand 
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whether a phase transition takes place. In order to perform this task, we needed to optimise the 
Machine Learning process by choosing a kernel to map input data in a space in which they are 
linearly separable. Looking at the performance of the separation process by choosing two arbi-
trary temperatures and giving them two different labels, we have been able to optimise the kernel 
and to deduce where a phase transition takes place. Our procedure of iterating over ordered pairs 
of training temperatures can be seen as a way to perform unsupervised learning using a super-
vised learning tool. Note that our approach is different from that of [13], where the phase was 
assumed to be known at various temperatures. In our case, the phase of the system is an output.

The optimised decision function, which is the learned classification criterium and is obtained 
through a systematic study of kernel performances using the optimal training temperatures, turns 
out to be simply related to the order parameter, with the kernel selection process and the optimal 
kernel pinning down the symmetry driving the phase transition. With the knowledge of the de-
cision function, we have performed a finite size scaling analysis of its susceptibility (related to 
the classification error, expected to be maximal at the phase transition), obtaining results for the 
critical temperature and the critical exponents that are comparable in precision to those extracted 
with the best numerical tool currently available for studying phase transitions in systems with 
known Hamiltonian, namely finite size scaling of the order parameter susceptibility. Our extrac-
tion of the critical temperature and of the critical exponent ν describing the divergence of the 
correlation length has relied on the sole knowledge of the decision function and on the assump-
tion that the latter is related to the order parameter, but not on the precise relationship between 
the two. This explicit relationship has been exploited to determine the combination γ/ν.

Our results pave the way to precise quantitative studies of phase transitions using Machine 
Learning techniques, which are particularly useful in cases in which an order parameter is either 
not known or not existing, such as for topological phases of matters. There are several related 
directions in which this work can be extended. First, one can check whether the method of kernel 
selection we have proposed works in the Potts model, where the transition is driven by a ZN

symmetry, with N ≥ 3. For N = 3, we still expect a second order phase transition, but now the 
best performing kernel should be an homogeneous polynomial of order 3, with homogeneous 
polynomial of order 3n (n > 1) still giving similar performance, while polynomials of order 
3n + 1 and 3n + 2 (n ≥ 0) should have significantly worse performance. In addition, for N > 4, 
the system has a first order phase transition. Hence, in these cases it is not clear a priori if we can 
use the same methodology we have successfully devised for a second order phase transitions. 
Explorations in these directions are currently in progress. Another relevant question is how the 
proposed procedure can be generalised to systems with continuous symmetries, for which we 
would need to optimise the kernel in a wider space. Finally, it will be interesting to test our 
methodology on systems where a bona fide order parameter is absent or not known, like in 
models of topological superconductivity or in QCD with finite quark mass.
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Appendix A. Methodology

In this appendix, we discuss more technical aspects of the data analysis performed in 
Sects. 2 and 4.

A.1. Multi-histogram reweighting

In addition to providing an efficient way for computing thermodynamic observables, Monte 
Carlo simulations give direct information on the density of states ρ(E) of a system, which can 
be extracted from an energy histogram of the generated configurations at a particular value of 
β . If n(E) is the number of recorded events at energy E and N is the total number of generated 
events, the measured probability for the occurrence of energy E is

p(E) = n(E)/N . (A.1)

Since Monte Carlo are first principle methods, in the large N limit this has to be equal to the 
Boltzmann probability. Hence,

ρ(E) = Z

N
n(E)eβE = n(E)

N
eβE−f , (A.2)

where f = βF and F is the free energy of the system.
In principle, determining ρ(E) from a single simulation performed at a particular β allows 

us to compute Z (and then, to extract the thermodynamic properties of the system) at any other 
value of the temperature, since

Z(β ′) =
∑
E

ρ(E)e−β ′E . (A.3)

The approach of reconstructing thermodynamic observables at different β from the density 
of states measured with histograms obtained in a single simulation is called single-histogram 
reweighting [50].

In practice, however, given that E has Gaussian fluctuations around its average, in a simulation 
involving a finite set of configurations ρ(E) can be extracted only in a limited range around the 
average energy, since the entries in the histogram will be unavoidably zero far enough from the 
central value of the Gaussian. On the other hand, this very same fact tells us that only a limited 
number of states with energy sufficiently close to the ensemble average Hamiltonian contributes 
in practice to the thermodynamics of a system at a given value of β . In order to cover the rele-
vant range of energies needed at a particular temperature, one could do simulations at different 
values of β = β1, . . . , βi, . . . , βj for which the target density of states provides a non-negligible 
contribution to thermodynamic averaging of observables. For each of the simulated βi and fixed 
value of the energy Ek , we have

ρi(Ek) = ni(Ek)

Ni

eβiEk−fi , (A.4)

with ρi(Ek) being the density of states at energy Ek measured in the run at βi . Since all values 
of ρi(Ek) are an estimator for ρ(Ek), we can build the improved estimator
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ρ(Ek) =
∑

i

r(i)ρi(Ek) , (A.5)

with the weights r(i) satisfying 
∑

i r(i) = 1. The r(i) can be determined by minimising the 
square of the error in ρ(Ek), which gives

ρ(Ek) =
∑j

i=1 g−1
i ni(Ek)∑j

i=1 Nig
−1
i eβiEk−fi

, (A.6)

with the fi defined self-consistently using the relationship

e−βifi =
∑

k

ρ(Ek)e
−βiEk , (A.7)

ni(Ek) the number of entries at energy Ek recorded in the run performed at βi and Ni the total 
number of configurations generated in the same run. In order to keep into account the autocorre-
lation time of each simulation, we have introduced the autocorrelation factor gi = 1 + 2τi , where 
τi can be calculated e.g. with the Madras-Sokal algorithm [51]. The set of 2j simultaneous equa-
tions (A.6), (A.7) can be solved numerically (for instance, using the Newton-Raphson method). 
The expectation value of an observable O at a reweighted β can be expressed as

〈O〉β =
∑j

i=1

∑Ni

l=1 g−1
i Ol

i e
−βEl

i−fβ∑j
m=1 Nmg−1

m e−βmEl
i+fm

, (A.8)

with

e−fββ =
∑j

i=1

∑Ni

l=1 g−1
i e−βEa

i∑j

m=1 Nmg−1
m e−βmEa

i +fm
, (A.9)

where all the fj (and fβ ) are determined self-consistently. In the previous two equations El
i

indicates the value of the energy measured at Monte Carlo step l in the run performed at βi and 
likewise Ol

i is the value of O at Monte Carlo step l in the run at βi . This method, introduced 
in [52], is known as multi-histogram reweighting.

While multi-histogram reweighting has a wider range of predictability and generally better 
precision than the single-histogram method, there are still technical points to consider in order 
to apply the former technique efficiently. In particular, each density of state value will receive 
contributions only from simulations at which the corresponding energy is sampled with sufficient 
accuracy. Notwithstanding this and other limitations, if carefully implemented, multi-histogram 
reweighting is a powerful tool for extracting to a very high degree of accuracy quantities related 
to phase transitions such as critical exponents and critical couplings from Monte Carlo simula-
tions. While the obtained accuracy depends on the details of the calculations (like the number 
of sampled β’s in the critical region and the number of configurations generated at each β , in 
addition to the chosen Monte Carlo update algorithm), precisions well below the percent level 
on critical exponents and significantly higher on critical couplings are within reach for a wide 
number of statistical systems.

A.2. Bootstrap

The bootstrap technique is a general procedure that can be used to obtain robust estimates of 
the standard error from observations of variables even when the underlying probability distribu-
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tion is unknown. This technique proves particularly convenient when we are interested in general 
functions of a random variable.

Let us assume we have a set of measurements of the variable X, described by the ensamble 
{Xi}, 1 ≤ i ≤ N , with N the total number of measurements. We are interested in the estimator 
of F(X), where F is a function of the variable X. The bootstrap provides the estimator and the 
confidence interval according to the following procedure:

1. build the set of the estimators {Fi = F(Xi)};
2. for each j with 1 ≤ j ≤ NB , with NB integer, construct a bootstrap sample by taking N

random values in {Fi} and call the resulting set {Fj
i } (each of this sets will be referred to as 

a bootstrap resample);
3. for each bootstrap resample {Fj

i }, compute the average as

F
j = 1

N

∑
i

F
j
i ; (A.10)

4. an estimator for F(X) is provided by the bootstrap average

F̄ = 1

NB

∑
j

F̄ j , (A.11)

with the standard error given by

�F̄ =
√√√√ 1

NB − 1

∑
j

(
F̄ j − F̄

)2
. (A.12)

In practical applications, one takes NB of the order of 100-1000, which ensures we fulfil the 
hypotheses of the central limit theorem.

Our discussion so far assumes lack of correlations between the data, which is certainly not 
the case for Monte Carlo generated data. In order to remove correlations from the sample, one 
applies a binning procedure, which consists in computing averages over Nb consecutive values 
of Fi and replace the latter subset of values with this average. This reduces the size of the sample 
of the Fi used in the bootstrap procedure from N to N/Nb. If we choose Nb � τ , with τ the 
autocorrelation time, the data in the reduced set are uncorrelated. We can then apply the bootstrap 
procedure to the sample of the binned values.
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