=
&

Swansea University ‘C I'OIlfa

Prifysgol Abertawe Setting Research Free

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:
Fundamenta Informaticae

Cronfa URL for this paper:
http://cronfa.swan.ac.uk/Record/cronfa50304

Paper:

Muller, B. & Betts, J. (2014). Engineering MAS - A Device Integration Framework for Smart Home Environments..
Fundamenta Informaticae, 135(4), 341-353.

http://dx.doi.org/10.3233/FI1-2014-1127

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms
of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior
permission for personal research or study, educational or non-commercial purposes only. The copyright for any work
remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium
without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the
repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa50304
http://dx.doi.org/10.3233/FI-2014-1127
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Fundamenta Informaticae 135 (2014)
341-353 DOI 10.3233/FI-2014-1127
10S Press

Engineering MAS — A Device Integration Framework for Smart
Home Environments

Jack Betts

University of South Wales
Pontypridd, CF37 IDL
United Kingdom

Jjack.betts @ southwales.ac.uk

Berndt Miiller
University of South Wales
Pontypridd, CF37 1DL
United Kingdom

bertie.muller @ southwales.ac.uk

Abstract. We introduce a layered approach to multi-agent programming and motivate this with
a perspective to smart home environments. Apart from the core layer, layer components can be
updated at runtime to reflect, e.g., attributes like credibility and the addition of proprietary function-
ality. The Layered Agent Framework (LAF) is defined by interfaces and organised into layers. This
approach minimises system fragmentation while allowing developers to create and maintain mean-
ingful and effective agents. A Petri net model is provided to visualise and execute prototypes of the
agents. Although fully functional, the Petri nets will later be translated into dedicated programs with
a smaller footprint and more efficient execution.

Keywords: Multi-Agent Systems, Home Automation, Smart Home, Layered Architecture.

1. Introduction

341

The paper discusses a flexible, dynamic, and software-developer friendly framework for the development
of multi-agent systems with the application domain of home automation and assistance in mind. The
resulting framework will be easily adaptable for other domains, since the smart home encompasses a

342 J. Betts, B. Miiller / Engineering MAS — A Device Integration Framework for Smart Home Environments

multitude of technologies and has many requirements - such as real-time interaction - also found in other
areas. The framework is initially implemented in C++ but the interfaces are designed to allow software
to be developed in any language capable of communicating with framework’s backbone. We will provide
adapters for some major languages, including agent-specific programming languages, in a future version.

The remainder of this section gives an introduction to the application domain and the problems we are
addressing with our approach. Section 3 presents a layered agent-based framework for the integration of
devices in the home-automation domain. Some notes on the implementation can be found in Section 3.3.
We close with an outlook on the next steps and possible further developments in Section 4.

1.1. What is a Smart Home?

When reading about smart devices or smart solutions, usually very little is revealed about the actual
methodology used to make them ‘smart’. In some cases this may be due to the fact that the developer
wants to conceal the fact that they are using agent technology, in other cases the marketing of a ‘smart’
service may distract from reality and from the fact that the smartness of the service is just an added timer
or a simple remote control on a mobile phone. When we think of a smart home, we use the term ‘smart’
to denote the use of intelligent solutions that would help organise our everyday life in and around the
home. So, what would be involved? Rather than a timer giving the illusion of an intelligent system agent
technology should be utilised to enable the ‘smart home’ to learn from the user and adapt to better help
the user. This learning should be unobtrusive from the perspective of the user. User interaction will be
encouraged but not enforced in order for the system to learn quicker.! The following is a (probably not
exhaustive) list of areas affected by smart-home technology:

e energy systems and power consumption

e entertainment systems (audio, video, and text)
e health support systems

e household appliances

e shopping and banking transactions

e cducation and reference sourcing

® news provision

From this list it becomes clear that a wide range of areas have to be covered and many different
requirements have to be addressed. Our aim is to provide an infrastructure to enable reasoning and
communication amongst all entities involved in these areas. This includes stationary and mobile entities
situated within the home and mobile entities that may enter and leave the home environment. A change
of environments may require different representation of data or data dependencies [8] and this has to be
supported by the framework.

'In this paper we are not concerned with the actual learning or the provision of the intelligence, but rather with an architecture
to support the development of such systems.

J. Betts, B. Miiller / Engineering MAS — A Device Integration Framework for Smart Home Environments 343

1.2. The role of Al in a Smart Home

Focussing on smart home applications, we are faced with a variety of Al techniques that can be employed
to assist the user in an unobtrusive, reliable, and helpful way. Our main focus is on agent orientation and
the use of multiple (mobile) agents. To achieve the level of integration required to address all (or at least
most) of the challenges, we have to allow for different types of communication and different types of
actions. Communication and stored data have to be encrypted where necessary and to an appropriate
standard. Access to parts of the system has to be authenticated and regimented.

1.3. Core Areas

The core areas supported by our system architecture are
e cooperation by communication
o fault tolerance
e user experience
o intelligent unobtrusiveness.

Communication is a foundation for all of these core areas. Unobtrusive assistance can only be
achieved if the information to be provided is available everywhere at any time?, so that the optimal
(or near optimal) moment and place can be chosen to convey this information to the user (or agent).
Fault tolerance also requires communication in order to re-schedule tasks while a device is unavailable.
Methods to support the core functionality are part of a core layer in our design.

1.4. What is new in our approach?

The methodology introduced in this paper is designed to help the software developer by supplying fa-
miliar concepts from the world of object orientation to that of agent orientation without having to make
everything behave like an agent. We introduce several layers with notions of inheritance and overriding
as known from established object-oriented frameworks. Components and patterns are encouraged for the
supply of common agent functionality. For example, agent or task generation can be accomplished by
instantiation from a blueprint, much alike the creation of an object from a class.

The architecture is designed to support dynamic systems and to be able to provide an excellent user
experience. Adding or changing functionality as necessary within a running system is provided by layers
on top of an agent core. These layers can be modified dynamically without the need of restarting the
system, hence integrating seamlessly into the user’s workflow. The architecture supports agents keeping
previous copies of protocols, roles, and layer-specific functionality in case an update fails. Hereby, an
immediate rollback to a previous version of a layer is possible and a report that the update has failed can
be communicated without making the system inoperative. For the smart home environment, this means
unobtrusive updates and structural changes are possible without noticeable interruptions of the overall
system’s functionality.

2This is an idealised vision. In practice it will be sufficient to have the possibility of the information being made available at
many locations in the home most of the time.

344 J. Betts, B. Miiller / Engineering MAS — A Device Integration Framework for Smart Home Environments

2. Summarising the status quo

We briefly summarise some existing work on smart home automation. This is not meant to be a full
account of the literature, but serves as an indication of different approaches. Section 2.1 discusses Al
techniques used in various flavours of home automation. Section 2.2 gives an overview of agent-based
approaches. In both sections, we point out which aspects have influenced the design decisions for the
model presented in Section 3.

2.1. General Approaches

In the past decade, home automation has been discussed at various levels. Some approaches involve Al
techniques [4, 6], others are looking at home integration from a predominantly (electrical-)engineering
perspective (e.g. [11]) or from a sociological viewpoint (e.g. [2]).

Many approaches tackle only one aspect of home automation, e.g. the heating system or power
consumption.

2.2. Agent-based Approaches

A multitude of papers discuss energy management or other specific home automation systems. One of
these, [10], makes the point that the home automation market is fragmented. Different technologies
compete, are incompatible and co-exist rather than cooperate. It is argued that interoperation can be
achieved by means of an abstraction layer that would allow access to different home automation devices
in a uniform and generic way, independent of the underlying technology. [1] is concerned with resource
allocation and optimisation using an abstract negotiation protocol. Agents negotiate near optimal set-
tings for minimising power consumption to reduce the greenhouse effect by integrating appliances and
heating systems, but the discussion remains at an academic level in that no solutions are offered for an
implementation in a real-world situation.

Other approaches are more general and in line with the present endeavour, but remain unspecific. [7]
describes a home automation system called HORUS, which is based on an agent architecture including
managers, 1O handles, video-camera handlers, and alarm communicators. The IP-communication-based
system remains rather vague about the format of rules and their interpretation in a setting with existing
appliances. The system is said to have adaptive capabilities that would allow learning.

3. Our Approach

The centrepiece of our approach is a component-based and software-developer friendly system architec-
ture that will allow legacy systems to be integrated into a multi-agent-based framework built around the
requirements of smart home automation. As such it will allow the developer to dynamically incorporate
many aspects required of such systems, including learning of behavioural patterns, handling of sensitive
data, unobtrusive conveyance of information and general assistance, and monitoring of various sensors.

The software development approach is based on object orientated design, but does not simply replace
objects with agents as some approaches in the past have®. Instead, we use agents alongside traditional

3«“Agents can be seen as the successors of objects and classes ...”, http://aose. org

J. Betts, B. Miiller / Engineering MAS — A Device Integration Framework for Smart Home Environments 345

objects to reflect different capabilities of the various system components. In doing so, we avoid having
to discard legacy components and re-design them for an all-agents system. Also, we avoid unnecessary
communications complexity that an all-agents approach would incur.

The main reason for focusing our approach on the smart home environment is that future real-world
use of agent technology will only be of benefit when technologies and requirements meet and a (more or
less) seamless interaction is guaranteed. This is of foremost importance and means that isolated studies
are generally not scalable. By providing the interfaces for the use of modern agent-based interaction we
open up possibilities without restricting the use of more traditional software and hardware paradigms.
For the home environment, this entails that new devices and appliances can be integrated by adding
inexpensive hardware/software components while legacy components may be integrated by simple plug-
ons (software and hardware), such as a communications-enabled wall-plug adapter that has some basic
control over an appliance (e.g., switching it on or off or monitoring power draw and detecting usage
patterns of the socket and making this information accessible to the agent network.).

The components introduced in this paper are part of a home-system design consisting of stationary
and mobile devices and learning control systems based on software agents. The stationary devices are
in the main part traditional household appliances whose controls become part of a dynamically learning
distributed control system including both stationary devices (perceptors, like motion and temperature
sensors; control hubs, acting somewhat like servers on which computationally intensive tasks of learning
and other processing of data is done) and mobile devices. The latter can migrate between environments
and allow the overall system to learn behavioural patterns of the users carrying them. Mobile devices
can host agents themselves that can carry out independent tasks.

Our framework is designed to overcome the fragmentation issues described by [10] and facilitate an
architecture to promote the development of resource optimisation algorithms by allowing agent commu-
nication and negotiation as discussed, for instance, in [1] .

3.1. Theoretical Model

When creating multi-agent systems a common platform on which the agents are built is necessary. This
may be a common communication protocol to enable all the agents to talk to each other or it could be
a runtime platform acting as an abstraction layer for agents similar to a Java Virtual Machine (JVM), or
even an operating system providing a common platform for all agents. Previous research has brought
about a common intermediate layer (MCAPL) that executes agents programmed in a variety of agent
programming languages after translation [35, 3].

Common communication elements and interfaces are required to enable agents to work together.
However, different multi-agent systems developed by different development teams generally cannot com-
municate effectively with each other without specific adapters. A simple solution would be to use a
common open communication protocol and declare this a standard for all agent communications*. This
is a solution only if, on the one hand, all agents on all systems followed this standard, and on the other
hand the protocol offered everything that all MAS developers need. Standards are important, but often
take too long to be established in the fast-evolving area of technology, especially when there are many
aspects of technology involved.

This leads to the question: How can it be possible to allow agent developers as much freedom as
possible without imposing too many restrictions on their code, yet achieving inter-operability of de-

*http://www.fipa.org

346 J. Betts, B. Miiller / Engineering MAS — A Device Integration Framework for Smart Home Environments

Layered Agent

Framework (LAF) Agent Role Layers
|- A : = Contain agents’ role protocols in relation to
AA ek % the multi-agent system.
(-~) H i i
- . s = Can also contain functions required to

e yassmet perform the roles assigned to the agent.

) Agent+ Layer

= Enhancements of the agent core abilities.
¥ = Specialised functions that can be accessed

\// without the need of a role.

\ Y - Agent Core Layer
‘ N {
\ — = Generic base functions for all agents.
\ = Some functions defined here can be
overridden.

= Runs on an embedded OS

% / Device Hardware

Figure 1. Layered Agent Framework

vices stemming from a variety of application areas, such as entertainment, traditional home appliances,
healthcare, energy, and telecoms? Our solution is the design of a Layered Agent Framework (LAF, see
Figure 1) providing developers with a generic agent layer that can be specialised in order to fulfil defined
roles. This specialisation is achieved through the addition of further layers. The system is not limited to
one role per agent; Agent Role Layers can be stacked to provide a multi-role agent system. The ordering
of the role layers determines the priorities of an agent. Any role layers that are packaged with the system
are default roles that cannot be dropped by the system or be superseded in priority by non-default role
layers. the default role priority is set by the developer or the system and can therefore be tailored to the
environment. This layered approach loosely couples additional roles to an agent, allowing roles to be
changed, updated or multiplied without requiring the agent as such to be fully restarted. Not only are the
agent roles loosely coupled but so is the entire agent device. This design of a basic agent system can be
viewed as a prototype agent-device system which manufacturers can integrate into their appliances and
simply add their role layer and then ship it as a single unit. If the manufacturer improves a layer, they
can issue an updated layer to devices since the agent roles are entirely software based. Unlike firmware
updates for devices like media centres (Apple TV, TiVo, etc.) thes updates do not require a re-start of
the device or the multi-agent system. We describe the layers of Figure 1 in some detail in the following
paragraphs.

J. Betts, B. Miiller / Engineering MAS — A Device Integration Framework for Smart Home Environments 347

3.1.1. Device Hardware

The Device Hardware is at a basic level a processor, memory, storage, and communications and a Linux
operating system to manage these. Linux grants the Agent Core Layer access to the hardware by handling
hardware drivers and any specialist hardware API (Application Programming Interface) for example of
a GPU or a heating element. APIs are defined in either the Agent+ Layer if the special hardware is
attached to the Agent Device Unit or in the Agent Role Layer if the special hardware is part of the
appliance or utility which the agent device is attached to. For example if a coffee machine has an Agent
Device attached to it, the Agent Role Layer would contain the APIs required for the Agent Core to use
the coffee-machine functionality. The Agent Device can be embedded within an appliance or attached to
one. The hardware layer provides a flag indicating to the agent whether it is embedded or attached.

3.1.2. Agent Core Layer

As the name implies this layer is to be considered the core of the system. This layer is generic across
all implementations to combat system fragmentation® and maintain a high level of agent interoperability.
The Agent Core Layer is an adaptable agent, in that is works to complete tasks with any roles assigned
to it. An agent engine forms the main part of this layer along with an array of layer APIs as well as
a dynamic action cache used to formulate plans based on roles and available abilities. The Agent Core
Layer is not designed for dynamic updates to any functionality. Instead any functionality that requires
an update is to be overloaded in the Agent+ Layer. If an update within this layer is absolutely necessary
(e.g., to provide new security mechanisms) then the agent device will require a restart unlike updating in
any other layer.

By default, the common agent engine provided by the Agent Core Layer creates at least one agent
upon system start. This agent is considered the Master Agent of the system and takes on any default roles
assigned to it. Slave Agents can be created to handle any additional roles assigned to the agent system.
The Master Agent has full control of the system hardware and its Slave Agents. In doing so the Master
Agent will have more responsibilities attributed to it compared to the Slave Agents who will only have to
satisfy their role requirements.

Each agent has access to the Agent+ Layer and assigned roles from the Agent Role Layer. Slave
Agents have access to the hardware but the Master Agent assigns a dynamic and environment-dependent
‘Hardware Need Value’ to each agent dependant on their role. This value represents a proportion of
system resource usage and adds up to 1 across the whole system for each resource. for example, consider
a TV with access to a GPU and TV tuner hardware, and two agents concurrently running on it. One Slave
Agent is tasked with recording a user’s favourite shows and this has a GPU need of 0.2 and a Tuner need
of 0.5. The other agent is the Master Agent for the TV system and is responsible for displaying content,
programming recordings, and responding to user interaction with a GPU need of 0.8 and a Tuner need of
0.5 (assuming the user is watching live TV). With live TV switched off, the Master Agent allocates almost
all GPU and Tuner usage to the Slave Agent based on its needs in the current state of the environment.
This is a centralistic approach of resource management and is intended to demonstrate one of the extra

3System fragmentation refers to parts of a (common) system being incompatible with other parts. E.g., Apple iOS devices have
low levels of fragmentation, since an app written for an iPhone 3 will usually work on an iPhone 5 and (mostly) vice versa.
Compare this with the Android platform where there are huge differences, such that apps will generally come with extensive lists
of supported devices/configurations. For our framework, we endeavour that agents should be able to work together regardless
of the developer, manufacturer, or purpose.

348 J. Betts, B. Miiller / Engineering MAS — A Device Integration Framework for Smart Home Environments

roles (resource management) the Master Agent may be assigned. this can be replaced with a negotiation
protocol in which the relative resource allocation is not fixed, but negotiated amongst the agents. It is up
to the system developer to decide which resource allocation protocol to use, with negotiation-based ones
being computationally more complex and hence to be avoided for the benefit of a smoother real-time
experience.

3.1.3. Agent+ Layer

The Agent+ Layer is an enhancement layer to the Agent Core, designed to provide dynamic updates and
to extend core functionality if required. When an update is applied to the Agent+ Layer the Agent Device
does not need to power down. The layer being updated simply becomes locked while the update occurs
and then — once successful — returns to an operational state. For instance, assume an Agent Device has
a GPU(Graphics Processing Unit) and this Agent Device is attached to a fridge. A traditional fridge will
not have any need for a GPU so the Agent Role Layer will contain no APIs for a GPU. The Agent+ Layer
provides a way for Agent Device developers to add any functionality directly to the Agent Device without
having to create a pseudo role for it. The Agent+ Layer allows for this flexible kind of extension of core
functionality in a dynamic way.

3.1.4. Agent Role Layer

Role specific functionality and APIs are stored the Agent Role Layer. This layer together with the Agent+
Layer are where agent developers will implement custom functionality as these layers define what the
agent is and how it should behave. If the agent role requires a certain type of hardware or proprietary
algorithm, this would be implemented in the Agent Role Layer. An agent can have any number n of
roles (n € N can be 0) provided the hardware is capable of supporting these. This can allow for agent-
network-wide load balancing as roles can be duplicated to numerous compatible Agent Devices. An
Agents compatibility for a role is dependent on hardware requirements for the role. An agent can accept
a role even if specialist hardware is not available to it. In this case, the agent takes on a support role.
For example, a security system might be trying to identify who is in the house. The Home PC is not in
use and neither is the coffee machine, so the security agent asks them to take on a support role and help
process some of the data. The two devices are both in possession of a CPU capable of processing the
data required by the security agent and therefore are compatible for the support role. Once the support
role is no longer required, agents can make the decision to drop any extra roles®).

3.1.5. Types of Agents using the Layered Agent Framework

Agents using the Layered Agent Framework come in three forms:

Standalone device (Agent Device) The agent is not attached to any appliance or utility. This type of
agent acts as an agent controller for a specific area of the agent network, or a worker agent which
can be used by other agents on the network for data processing much like a server.

Attached to an appliance/utility (Attached Agent Device) The agent is attached to an appliance and
is enabled to use the functionality of the appliance. The actual agent device is a separate unit to the

®Security agents can force agents to drop certain roles concerned with security issues.

J. Betts, B. Miiller / Engineering MAS — A Device Integration Framework for Smart Home Environments 349

appliance. This setup is designed to allow current appliances and utilities to be adapted for agent
technology by interfacing the agent unit with the appliance or utility. This also allows the agent
unit to be removed for repairs or to disable the agent capabilities and control over an appliance.

Embedded in the appliance/utility (Embedded Agent Device) These agent devices will be part of the
appliance/utility and cannot be removed. If a hardware fault occurs the system will default back to
a ‘dumb’ unit until repairs are carried out.

3.2. Executable Model

We introduce a Petri net model based on the nets-within-nets paradigm. It builds on the MULAN multi-
agent architecture and is implemented in the RENEW tool. We give a brief overview of MULAN in
Section 3.2.1 and then introduce our model in Section 3.2.2.

3.2.1. Multi-Agent Petri Nets

We focus on the MULAN architecture shown in Figure 2 as introduced in [9]. MULAN separates the
multi-agent system into four parts or layers. The layers are:

e agent network
e agent platform
e agent

e protocol.

Each layer is represented by its own Petri net(s). Protocols specify the agent programs. Agents reside
on a platform that provides internal and external communication facilities and is located in an environ-
ment within the multi-agent network of the multi-agent system. The latter determines the communication
structure available to agents.

Because it is unrealistic to assume legacy products to (fully) support agent communication, we gen-
eralise parts of the MULAN architecture to reflect this scenario. In particular, the agent platform will
become simply a platform and the multi-agent network will be referred to as network facilitating com-
munication between agents, actors, and other simple devices/services.

3.2.2. Multi-Agent Petri Net Components

The Multi-Agent Petri Net Components (MAPNCs) run on a MULAN-based architecture. They con-
stitute the building blocks of agents and protocols, e.g. for agents created at runtime by other agents.
MAPNC:Ss are presently limited in that their ‘template’ or ‘blueprint’ has to be defined — in form of an
object Petri net — prior to run time, as follows.

All possible templates are stored in a place of the agent net similar to the protocols. Whenever an
instance is required, a copy of one of these templates is initialised according to its task and the initialised
copy is then moved onto the platform from on which it operates. As a mobile agent, the generated
instance (of an agent) can then traverse the network to reach other platforms and interact with (agent)

350 J. Betts, B. Miiller / Engineering MAS — A Device Integration Framework for Smart Home Environments

multi-agent system g0l

R0 &

end
N communication afructure

a\’&““ """" .

internal commumcaﬂon ¢

," . P

. e

ll 4
. Ny

:I -
£ :
t .' \
. S N

*+ external communication, - * ~

Figure 2. MULAN agent architecture [9]

nets at remote locations. In the LAF framework this corresponds to the creation of new instances of an
agent class.

Figure 3 shows the structure of the extended MULAN architecture that includes the layer structure
introduced in Section 3.1.

The extended MULAN architecture provides the LAF multi-layer support for agent communica-
tion by providing the layer functionality in an additional place regulating the communication by forcing
synchronisation according to the layer information and allowing only communication based on the spec-
ifications therein. Communication can be ‘negotiated’ to take place on different levels according to the
different layers.

If a method is overridden, this will result in its protocol becoming unavailable for execution in the
Petri net model.”

3.3. An Initial Implementation

This section discusses the implementation of our framework.

"This is easily achieved by removal of a required resource, i.e. an input token to the respective transition and appropriate
transition synchronisation. This is not shown explicitly in the extended model in Figure3, because it is implemented at a
protocol net level and the relevant inscription detail had to be omitted for brevity and readability.

J. Betts, B. Miiller / Engineering MAS — A Device Integration Framework for Smart Home Environments 351

g =

mulﬁ—agem‘ sgsfem

= O
\m\ '@C}

eommumcahon gtructure =
\w‘“ :
; e,
o .. -
infernal communication *+ ag"', [?99,7
: . y

T T~y

i

O

role
attributes

-
@»

exfernal commumcahon -

additional
protocole QH

manage

Figure 3. Extended MULAN agent architecture

3.3.1. Brief implementation History and Roadmap

Designing any system requires an awareness of its implementation. With this in mind design decisions
wee made with consideration towards aspects like available system resources and response times. Our
aim is to provide an architecture for flexible agent-based, object-oriented systems (Layered Agent Frame-
work, LAF). The Agent Core represents the main component that every system using the LAF will be
based on. Elementary communication features and functionality has been implemented in a first proto-
type system. At least one Agent+ Layer is created for testing with the Agent Core. This basic system
setup has been used to test the dynamic update capability of the framework as well as the provision of
simple extensions to the Agent Core functionality. With the test Agent+ Layer implemented and tested,
simple Agent Role Layers have been added. in principle, an arbitrary number of Agent Role Layers can
be developed and deployed to make full use of the flexible design of the Layered Agent Framework. The
framework will eventually be supported by a set of development tools and libraries that will assist the
developer with the development of bespoke solutions, i.e., Agent+ Layers and Agent Roles. The tools
will include templates and components to assist the construction of agent plans, for example, they will
supply action templates and agent creation blueprints. We have successfully experimented with these
concepts in the Petri-net model.

352 J. Betts, B. Miiller / Engineering MAS — A Device Integration Framework for Smart Home Environments

3.3.2. Manual Override

Every system built using LAF must have a manual override in case of user preference or fault, open
the pod bay doors HAL ®. This manual override will place the agent into a temporary disabled state in
which it has no control over its appliance or utility. Such agents can still communicate their state on the
network and attempt to assist other agents (assuming no fault has occurred). Manual override simply (in
software terms) blocks the agent’s control over its appliance/utility, which from then on will need to be
user operated. The agent can be re-enabled by the user by simply flipping a switch or by asking the agent
network to enable the agent again (expressed consent must be given).

3.3.3. The Challenge of Real-Time Responsiveness

There are many challenges facing the final implemented framework and any system based on it. Most
importantly, the system must work in real time. Having a system working in a home environment in
which the user must wait more than a minute for a response is generally unacceptable. A user can expect
and accept delays in the response for processing of some actions or requests, such as “What times are the
buses to Cardiff”, with a response of “one moment ... 1315 and each hour from then until 2115”. This
kind of scenario is acceptable. However if the user asked for the curtain to be drawn and had a 2 minute
wait before the curtain even started to move, this is very undesirable. This poses the question of what
kind and amount of feedback to the user is desirable when there are unavoidable delays® Aside from
real-time responsiveness, the system must have a high fault tolerance and some form of system crash
recovery. A computer crashing is one thing but an entire home of systems crashing could be disastrous
and dangerous. Hence, we need systems with the ability to recover quickly from a major fault or from
system-wide disruption. Any solutions must attempt not to affect the user in a noticeable way. The
perfect recovery solution would be the system completely recovering from a system wide fault without
the user knowing there was ever anything wrong. '’

3.3.4. The Challenge of Agent Security

Security is a major concern in the home, especially considering the amount of personal data that will be
stored on the users’ lives and habits. There are many ways in which data can be protected, ranging from
passwords to strong data encryption. As security measures for data are increased the less dynamic and
freely available those data become and the right balance needs to be found such that some data can be
made accessible to some agents without compromising the required general level of data protection. For
this reason, a mechanism establishing a relational notion of trust that agents have with other agents. The
idea is that agents who have proven they do not pose a threat to the system over time will become trusted
by other agents. An untrusted agents’ request may be rejected. In contrast, trusted agents are more likely
to have requests completed by other agents. Certain agents can be pre-set by developers to have a trust

8The scene from Stanley Kubricks’ 2001 A Space Odyssey in which the AI HAL is asked to open the pod bay doors and HAL
refuses this request with the response ”I’'m sorry Dave, I'm afraid i can’t do that”.

°This is outside the scope of this paper, since it would be the programmer’s duty to supply the feedback. However, the tools
developed for the framework will have templates for a variety of devices and appliances that can be equipped with basic user
feedback functions.

19 Although nothing might be visible to the user, this is — of course — recorded in system log files for troubleshooting and
reporting purposes.

J. Betts, B. Miiller / Engineering MAS — A Device Integration Framework for Smart Home Environments 353

limit for example security systems should only have complete trust in other home security components
with a certified ID. A private trust value held by every agent on every other agent allows new devices to
use the network without compromising the security of data and communications on the network. Trust
levels would range between O to 1, representing the range from untrusted to fully trusted. A new device
will usually start on a neutral trust level of 0.5 (unless otherwise pre-set) unless the new device was a
permanent addition to the smart network (e.g., a cooker) for which exceptions can be made. Trust values
will be updated dynamically at run time and can be influenced by the security system. This kind of trust
relationship has been successfully implemented in the Petri-net model.

4. Conclusion

We have introduced an agent architecture that supports many object-oriented concepts most software
developers are familiar with and that adds component-based agent layers. These layers provide basic and
extended agent reasoning and communications facilities in a maximally flexible way. The architecture is
primarily targeted at smart home automation. For this, it supports dynamic reconfiguration and seamless
integration with non-agent-based systems. This is required because the user experience is of foremost
importance in the smart-home application area. Easily configurable components can be added at runtime
to provide additional features and to configure security features as required by individual sub-systems.

A Petri net implementation has been presented, on which the prototype implementation of the frame-
work is based. The latter uses Linux and SQL databases, and is programmed in C++. It has a small
footprint so that it can be deployed on inexpensive hardware that can be integrated into new appliances
or added to existing devices, e.g. in the form of a simple wall-plug adapter.

Work is now focussing on the provision of a toolkit with components and design patterns to ease the
construction of agents, layers, and roles. Ideally, we would like to link the visual creation of the latter
(by means of agent-based object Petri nets) to the development environment, providing an automated
translation of the Petri-net representation into an agent program. The Petri net model could then be
analysed using existing methods and tools, while the properties are preserved by a verified translation
procedure.

354

J. Betts, B. Miiller / Engineering MAS — A Device Integration Framework for Smart Home Environments

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

Abras, S., Ploix, S., Pesty, S., Jacomino, M.: A multi-agent home automation system for power management,
ICINCO-ICSO (J. Andrade-Cetto, J.-L. Ferrier, J. D. Pereira, J. Filipe, Eds.), INSTICC Press, 2006, ISBN
972-8865-59-7.

Blackwell, A. F., Rode, J. A., Toye, E. F.: How do we program the home? Gender, attention investment, and
the psychology of programming at home, International Journal of Human-Computer Studies, 67(4), 2009,
324 — 341, ISSN 1071-5819.

Bordini, R. H., Dennis, L. A., Farwer, B., Fisher, M.: Directions for Agent Model Checking, in: Specification
and Verification of Multi-agent Systems (J.-J. C. M. M. Dastani, K. V. Hindriks, Ed.), chapter 4, Springer US,
2010, 103-123.

Ceccaroni, L., Verdaguer, X.: Agent-oriented, multimedia, interactive services in home automation, Pro-
ceedings of the 2nd European Workshop on Multi-Agent Systems (EUMAS 2004), 2004.

Dennis, L., Farwer, B., Bordini, R., Fisher, M., Wooldridge, M.: A Common Semantic Basis for BDI Lan-
guages, Proceedings of the International Workshop on Programming Multi-Agent Systems (ProMAS 2007)
(M. Dastani, A. E. F. Seghrouchni, A. Ricci, M. Winikoff, Eds.), May 2007.

Fraile, J. A., Bajo, J., Lancho, B., Sanz, E.. HoCa Home Care Multi-agent Architecture, in: Interna-
tional Symposium on Distributed Computing and Artificial Intelligence 2008 (DCAI 2008) (J. Corchado,
S. Rodriguez, J. Llinas, J. Molina, Eds.), vol. 50 of Advances in Soft Computing, Springer Berlin Heidelberg,
2009, ISBN 978-3-540-85862-1, 52-61.

Giordana, A., Mendola, D., Monfrecola, D., Moio, A.: HORUS: an Agent System for Home Automation,
13th Workshop on Objects and Agents (WOA 2012), CEUR Workshop Proceedings Vol-892 (ISSN 1613-
0073), 2012.

Kohler, M., Farwer, B.: Modelling Global and Local Name Spaces for Mobile Agents Using Object Nets,
Fundamenta Informaticae, 72(1-3), 2006, 109-122.

Kohler, M., Moldt, D., Rélke, H.: Modelling the Structure and Behaviour of Petri Net Agents, in: Applica-
tions and Theory of Petri Nets 2001 (J.-M. Colom, M. Koutny, Eds.), vol. 2075 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2001, ISBN 978-3-540-42252-5, 224-241.

Nunes, R. J. C.: Home Automation - A Step Towards Better Energy Management, 2003, IST — Technical
University of Lisbon / INESC-ID R. Alves Redol, 9, 1000-029 Lisboa, Portugal.

Sriskanthan, N., Tan, F., Karande, A.: Bluetooth based home automation system, Microprocessors and
Microsystems, 26(6), 2002, 281-289.

