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Abstract

This paper proposes a new methodology for the solution of two dimensional

linear elastic problems in domains with curved boundaries. The proposed

method exploits the advantages of the hybridisable discontinuous Galerkin

method to obtain an accurate approximation of both the displacement and

the stress fields by solving a global problem that only involves the displace-

ment field on the element edges as unknown. In addition, the methodology

incorporates the exact boundary representation of the domain by means of

the so-called NURBS-enhanced finite element method. Numerical examples

are used to illustrate the three main advantages of the proposed method,

namely the reproducibility of polynomials in domains with curved bound-

aries, the super-convergence of the solution even for linear approximation

and the effectiveness and reliability of degree adaptive processes driven by

displacement or stresses.
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1. Introduction

For the last two decades, the interest in high-order methods has grown

considerably in many areas of science and engineering [1, 2, 3, 4]. High-

order methods usually offer a substantial reduction in the number of degrees

of freedom necessary to achieve a desired accuracy when compared to low-

order methods [5, 6, 7, 8, 9, 10] and, in some occasions, also a reduction in

the required computational time [11, 12].

In addition, high-order methods on unstructured meshes offer a better

geometric representation of complex geometries [13, 14, 15] due to the pos-

sibility to employ curved elements. However, to exploit the benefits of high-

order methods, the use of coarse meshes with large curved elements is manda-

tory and, very often, the accuracy of the resulting numerical methodology

is compromised by the accuracy provided by the approximated boundary

representation of curved elements [16, 17].

The so-called NURBS-enhanced finite element method (NEFEM) was in-

troduced in [18] to remove the geometric uncertainty present in isoparametric

elements and guarantee that the element size used in a finite element simula-

tion is dictated by the requirements of the physics and not by the geometric

complexity of a model. Its application to heat transfer, electromagnetic and

fluid flow problems has been extensively studied in the last decade [18, 19],

but its application to solid mechanics problems remains unexplored.

In this paper NEFEM is considered, for the first time, for the solution

of solid mechanics problems. The two dimensional linear elastic case is con-

sidered and NEFEM is combined with a hybridisable discontinuous Galerkin

(HDG) formulation [20, 21, 22, 23, 24, 25]. The proposed HDG-NEFEM
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rationale presents three advantages compared to standard HDG methods.

First, HDG-NEFEM is able to reproduce polynomial solutions of arbitrary

order in domains with curved boundaries. Second, HDG-NEFEM enables to

obtain a super-convergent approximation of the displacement field in domains

with curved boundaries even for linear approximation, contrary to the stan-

dard HDG approach based on isoparametric elements. Third, HDG-NEFEM

enables to devise degree adaptive procedures with no communication with

a CAD system during the degree adaptive iterations, contrary to standard

HDG methods with isoparametric elements. Two error indicators, based on

the displacement and stress field respectively, are considered. The former

has been explored for wave propagation and fluid flow problems whereas the

latter has not been exploited in an HDG framework.

The rest of the paper is organised as follows. In Section 2 the elastic

problem is introduced using the traditional Voigt notation. The HDG vari-

ational formulation is recalled in Section 3. The numerical solution strategy

is discussed in detail in Section 4, with special emphasis in the differences

between the traditional HDG method and the proposed HDG-NEFEM ap-

proach from a theoretical and a computational standpoint. The strategy to

perform the degree adaptivity by using the super-convergent properties of the

HDG formulation is recalled in Section 5, together with a novel alternative er-

ror indicator of the stress field by exploiting the mixed formulation employed

in HDG. Four numerical examples are considered in Section 6 to illustrate

the three main advantages of the proposed HDG-NEFEM approach and to

illustrate its applicability in a setting involving a more complex geometry.

Finally, Section 7 presents some concluding remarks.
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2. Problem statement

The linear elastic behaviour a solid Ω ⊂ R2, whose boundary ∂Ω has been

split into the non-overlapping Dirichlet, Neumann and symmetry boundaries,

ΓD, ΓN and ΓS respectively, is governed by the boundary value problem

−∇ · σ = f in Ω,

u = uD on ΓD,

n · σ = g on ΓN ,

Pnu+ Ptn · σ = 0, on ΓS,

(1)

where σ denotes the Cauchy stress tensor, f denotes an external force, u

is the displacement field, n is the outward unit normal vector to ∂Ω and

the normal and tangent projection matrices are defined over the symmetry

boundary as Pn = n ⊗ n and Pt = I2 − n ⊗ n respectively. The boundary

conditions are given by the imposed displacements on the Dirichlet boundary,

uD, and the traction vector on the Neumann boundary, g.

Assuming that the medium is linear elastic, the stress-strain relation given

by the Hooke’s law is used, namely σ = C :ε(u), where C is the fourth order

elasticity tensor and the linearised strain tensor is ε(u) :=
(
∇u+ ∇uT

)
/2.

In this context, it is common to employ the so-called Voigt notation [26]

to reduce the order of the stress and strain tensors by exploiting their sym-

metry. In two dimensions, the strain and stress vectors are defined as

εV := [ε11, ε22, γ12]T and σV := [σ11, σ22, τ12]T respectively. The strain

vector is defined in terms of the displacement vector as εV = ∇Su, where the
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symmetric gradient matrix operator is given by

∇S :=

∂/∂x1 0 ∂/∂x2

0 ∂/∂x2 ∂/∂x1

T . (2)

Using the Voigt notation, the linear relation between strain and stress

given by the Hooke’s law is also simplified and it can be written as σV = DεV,

where D is a symmetric and positive definite matrix that is dependent on

the hypothesis used to simplify the problem from three to two dimensions

(i.e. plane strain or plane stress) and the material properties of the medium.

This matrix is given by

D :=
E

(1 + ν)(1− ϑν)


1 + (1− ϑ)ν ν 0

ν 1 + (1− ϑ)ν 0

0 0 (1− ϑν)/2

 , (3)

where ϑ takes value 0 or 1 for a plane strain or plane stress model respectively,

E is the Young modulus and ν is the Poisson ratio.

Finally, the linear elastic problem can be written in strong form with the

Voigt notation as 

−∇T
SσV = f in Ω,

u = uD on ΓD,

NTσV = g on ΓN ,

Pnu+ PtN
TσV = 0 on ΓS,

(4)

where

N :=

n1 0 n2

0 n2 n1

T . (5)
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3. Hybridisable discontinuous Galerkin formulation

A regular partition of the domain Ω in triangular disjoint elements Ωe

with boundaries ∂Ωe is considered and the set of interior edges Γ is defined

as

Γ :=

[
nel⋃
e=1

∂Ωe

]
\ ∂Ω. (6)

It is assumed that the triangles have, at most, one edge on the boundary,

which is assumed to be described by a collection of NURBS curves [27].

The following discrete element spaces are introduced

Vh(Ω) :=
{
v ∈ L2(Ω) : v|Ωe ∈ Pke(Ωe)∀Ωe

}
, (7a)

V̂h(S) :=
{
v̂ ∈ L2(S) : v̂|Γj

∈ Pkj(Γj) ∀Γj ⊂ S ⊆ Γ ∪ ΓS
}
, (7b)

where Pke(Ωe) and Pkj(Γj) denote the spaces of polynomials of degree at

most ke in Ωe and kj on Γj respectively. It is worth noting that, similar

to other DG methods, the proposed approach easily allows to use different

degree of approximation in different elements.

Finally, the standard internal products of vector functions in L2(Ωe) and

L2(Γi) are also defined

(p, q)Ωe :=

∫
Ωe

p · q dΩ, 〈p̂, q̂〉∂Ωe :=
∑

Γi⊂∂Ωe

∫
Γi

p̂ · q̂ dΓ. (8)

3.1. Local and global problems

Following the standard HDG rationale [20, 28, 23, 24, 29, 30, 31], a mixed

formulation of the strong form of the elastic problem given by Equation (4)
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is considered in each element, namely

L+ D1/2∇Su = 0 in Ωe, and for e = 1, . . . , nel,

∇T
S D1/2L = f in Ωe, and for e = 1, . . . , nel,

u = uD on ΓD,

NTD1/2L = −g on ΓN ,

Pnu−PtN
TD1/2L = 0 on ΓS,

Ju⊗ nK = 0 on Γ,

JNTD1/2LK = 0 on Γ,

(9)

where J�K = �e +�l denotes the jump over an interior edge shared by two

elements and the last two equations in (9), usually referred to as transmission

conditions, enforce the continuity of the solution and the normal stress across

all the interior edges of the mesh.

Remark 1. The matrix D1/2 has been introduced in Equation (9) to en-

sure that the resulting formulation leads to a symmetric system of equations

after the spatial discretisation is introduced. This matrix is computed as

D1/2 = VΛ1/2VT , where V and Λ are the matrices resulting from the eigen-

decomposition of D .

The HDG method splits Equation (9) into two problems. The so-called

local problem is used to express the primal and dual variables in each element

(i.e. ue and Le) in terms of a hybrid variable defined over the interior edges
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û, namely

Le + D1/2∇Sue = 0 in Ωe, and for e = 1, . . . , nel,

∇T
S D1/2Le = f in Ωe, and for e = 1, . . . , nel,

ue = uD on ∂Ωe ∩ ΓD,

NTD1/2Le = −g on ∂Ωe ∩ ΓN ,

ue = û on ∂Ωe \ (ΓD ∪ ΓN).

(10)

Remark 2. The local problem in Equation (10) incorporates the Neumann

boundary conditions. This approach, proposed in [31], differs from the com-

mon practice in HDG methods [20, 28, 23, 24, 29, 30]. The main implication

of this choice is that the hybrid variable û does not exist over the boundary of

the computational domain. As this work is concerned with the approximation

of solutions in domains with curved boundaries, the choice made implies that

the hybrid variable is defined over straight internal edges only.

Second, the so-called global problem is solved in order to obtain the ap-

proximation of the hybrid variable ûPnue −PtN
TD1/2Le = 0 on ΓS,

JNTD1/2LeK = 0 on Γ,
(11)

where the equation imposing the continuity of the displacement field in the

interior edges is automatically satisfied due to the Dirichlet condition ue = û

imposed in the local problems and the uniqueness of the hybrid variable in

the interior edges.

3.2. Weak formulation

The discrete weak form of the local problem corresponding to Equa-

tion (10) is: given f in Ω, uD on ΓD, g on ΓN and û on Γ ∪ ΓS, find
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(Lhe ,u
h
e ) ∈ [Vh(Ωe)]

3 × [Vh(Ωe)]
2 such that

−(v,Lhe )Ωe + (∇T
S D1/2v,uhe )Ωe − 〈NT

e D1/2v,uhe 〉∂Ωe∩ΓN

= 〈NT
e D1/2v,uD〉∂Ωe∩ΓD

+ 〈NT
e D1/2v, ûh〉∂Ωe\(ΓD∪ΓN ),

(12a)

−(∇Sw,D
1/2Lhe )Ωe + 〈w,NT

e D̂1/2Lhe 〉∂Ωe = (w,f)Ωe , (12b)

for all (v,w) ∈ [Vh(Ωe)]
3× [Vh(Ωe)]

2 and for each element Ωe, e = 1, . . . , nel.

After performing a second integration by parts of the first term in Equa-

tion (12b) and introducing the numerical trace of the stress, defined by

NT
e D̂1/2Lhe :=


NT
e D1/2Lhe + τ e(u

h
e − uD) on ∂Ωe ∩ ΓD,

−g on ∂Ωe ∩ ΓN ,

NT
e D1/2Lhe + τ e(u

h
e − û

h) elsewhere,

(13)

the discrete weak formulation of the local problem becomes: given f in Ω,

uD on ΓD, g on ΓN and û on Γ ∪ ΓS, find (Lhe ,u
h
e ) ∈ [Vh(Ωe)]

3 × [Vh(Ωe)]
2

such that

−(v,Lhe )Ωe + (∇T
S D1/2v,uhe )Ωe − 〈NT

e D1/2v,uhe 〉∂Ωe∩ΓN

= 〈NT
e D1/2v,uD〉∂Ωe∩ΓD

+ 〈NT
e D1/2v, ûh〉∂Ωe\(ΓD∪ΓN ),

(14a)

(w,∇T
S D1/2Lhe )Ωe − 〈w,NT

e D1/2Lhe 〉∂Ωe∩ΓN
+ 〈w, τ euhe 〉∂Ωe = (w,f)Ωe

+ 〈w, τ euD〉∂Ωe∩ΓD
+ 〈w, g〉∂Ωe∩ΓN

+ 〈w, τ eûh〉∂Ωe\(ΓD∪ΓN ),

(14b)

for all (v,w) ∈ [Vh(Ωe)]
3× [Vh(Ωe)]

2 and for each element Ωe, e = 1, . . . , nel.

The stabilisation tensor in Equation (13), τ e, is introduced to ensure

the stability and convergence of the resulting numerical scheme [20, 32]. The

influence of this parameter in the accuracy of the method has been extensively
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studied in [25, 33, 34]. Following [35], the stabilisation tensor is selected as

τ e = (E/`)I2, where ` is a characteristic length and I2 is the identity matrix

of dimension two.

Analogously, the discrete weak form of the global problem corresponding

to Equation (11) is: find ûh ∈ [V̂h(Γ ∪ ΓS)]2 such that

nel∑
e=1

{
〈ŵ,NT

e D1/2Lhe 〉∂Ωe\∂Ω − 〈ŵ,PtN
T
e D1/2Lhe 〉∂Ωe∩ΓS

+ 〈ŵ, τ euhe 〉∂Ωe\∂Ω

− 〈ŵ,Ptτ eu
h
e 〉∂Ωe∩ΓS

− 〈ŵ, τ eûh〉∂Ωe\∂Ω + 〈ŵ, (Pn + Ptτ e) û
h〉∂Ωe∩ΓS

}
= 0,

(15)

for all ŵ ∈ [V̂h(Γ ∪ ΓN)]nsd .

4. Numerical solution

4.1. Spatial discretisation

The traditional isoparametric formulation defines the approximation of

the primal and mixed variables, uhe and Lhe , in a reference element, with

coordinates ξ = (ξ1, ξ2) as

uh(ξ) =
nen∑
j=1

uIso
j N Iso

j (ξ), Lh(ξ) =
nen∑
j=1

LIso
j N Iso

j (ξ), (16)

where uIso
j and LIso

j denote the nodal values of the primal and mixed variables,

nen = (k + 1)(k + 2)/2 is the number of element nodes and N Iso
j are the

Lagrangian polynomials of order k defined in the reference triangle [17].

The proposed HDG-NEFEM approach differs from the classical isopara-

metric approach in the treatment of the elements in contact with curved

boundaries [18, 36]. In those elements, the approximation of the primal and
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mixed variables is defined directly in the physical space, with coordinates

x = (x1, x2) as

uh(x) =
nen∑
j=1

uPhy
j NPhy

j (x), Lh(x) =
nen∑
j=1

LPhy
j NPhy

j (x), (17)

where uPhy
j and LPhy

j denote the nodal values of the primal and mixed vari-

ables and NPhy
j are the Lagrangian polynomials of order k defined in the

physical element. For the elements with at most one node on the curved

boundary, the HDG-NEFEM approach considers the same approximation as

for an isoparametric element.

It is worth noting that, due to the HDG formulation considered here,

with the Neumann boundary conditions introduced in the local problem of

Equation (10) as detailed in Remark 2, the hybrid variable is not defined

on curved boundaries. Therefore, for both the isoparametric HDG and the

proposed HDG-NEFEM, the approximation of the hybrid variable, ûh, is

defined in a reference interval, with coordinates ξ as

ûh(ξ) =
nfn∑
j=1

ûjN
1D
j (ξ), (18)

where ûj denotes the nodal values of the hybrid variable, nfn = (k + 1)

is the number of edge nodes and N1D
j are the one-dimensional Lagrangian

polynomials of order k defined in the reference face.

By introducing the approximations given by Equations (16) and (18) or

Equations (17) and (18), for isoparametric or NEFEM respectively, in the

discrete weak formulation of Equation (14), the following system of equations

is obtained ALL ALu

AT
Lu Auu


e

Le

ue

 =

fL

fu


e

+

ALû

Auû


e

ûe, (19)
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for each element Ωe, e = 1, . . . , nel.

Analogously, introducing the approximations given by Equations (16) and

(18) or Equations (17) and (18), for isoparametric or NEFEM respectively, in

the discrete weak formulation of Equation (15), leads to the following system

of equations

nel∑
e=1

{[
AT
Lû AT

uû

]
e

Le

ue

+ [Aûû]e ûe

}
=

nel∑
i=e

[fû]e. (20)

Finally, by using Equation (19) to express the nodal values of the primal

and mixed variables in terms of the nodal values of the hybrid variable and

introducing these expressions in the discrete form of the global problem, the

following system of linear equations is obtained

K̂û = f̂ , (21)

where

K̂ = Anel

e=1

[
AT
Lû AT

uû

]
e

ALL ALu

AT
Lu Auu

−1

e

ALû

Auû


e

+ [Aûû]e (22a)

and

f̂ = Anel

e=1[fû]e −
[
AT
Lû AT

uû

]
e

ALL ALu

AT
Lu Auu

−1

e

fL

fu


e

. (22b)

Remark 3. The symmetry of the local and global systems is guaranteed due to

the use of the eigendecomposition of the matrix D introduced in Equation (9).

4.2. Computational aspects

To illustrate the differences between the standard isoparametric and the

proposed NEFEM approaches, the computation of two terms of the weak
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formulation involving an integral in a curved element and an integral in a

curved edge are considered.

The term ALL, involving the integral (v,Lh)Ωe , is considered first. For a

curved isoparametric element, the integral is computed as

(
v,Lh

)
Ωe

=
(
v,Lh|Jϕ|

)
ΩRef

=
nen∑
j=1

(M(ξ),M(ξ)|Jϕ|)ΩRef
LIso
j

≈
nen∑
j=1

nRef
eip∑
g=1

M(ξRef
g )MT (ξRef

g )|Jϕ(ξRef
g )|wRef

g

LIso
j ,

(23)

where M(ξ) = [N Iso
1 (ξ)I3, N

Iso
2 (ξ)I3, . . . , N

Iso
nen

(ξ)I3]T , Jϕ denotes the Jaco-

bian of the isoparametric mapping, used to transform the integral to the

reference triangle ΩRef, and {(ξRef
g , wRef

g )} is the set of nRef
eip integration points

and weights in ΩRef.

For the proposed HDG-NEFEM, the term ALL, is computed as

(v,Lh)Ωe =
nen∑
j=1

(M(x),M(x)j(x))ΩeL
Phys
j

≈
nen∑
j=1

n
Phys
eip∑
g=1

M(xPhys
g )MT (xPhys

g )wPhys
g

LPhys
j ,

(24)

where M(x) = [NPhys
1 (x)I3, N

Phys
2 (x)I3, . . . , N

Phys
nen

(x)I3]T and {(xPhys, wPhys
g )}

is the set of nPhys
eip integration points and weights in Ωe, constructed using the

strategy proposed in [37].

The term Auu, involving the integral 〈w, τ euhe 〉Γe is considered next. For
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a curved isoparametric edge, the integral is computed as

〈w, τ euhe 〉Γe = 〈w, τ euhe‖Ψ′‖〉ΓRef
=

nfn∑
j=1

〈m(ξ, I2),m(ξ, τ e)‖Ψ′‖〉ΓRef
uIso
j

≈
nfn∑
j=1

nRef
fip∑
g=1

m(ξRef
g , I2)mT (ξRef

g , τ e)‖Ψ′(ξRef
g )‖ωRef

g

uIso
j ,

(25)

where m(ξ,A) = [N1D
1 (ξ)A, N1D

2 (ξ)A, . . . , N1D
nfn

(ξ)A]T , Ψ denotes the isopara-

metric mapping used to transform the integral to the reference edge ΓRef, and

{(ξRef
g , ωRef

g )} is the set of nRef
fip integration points and weights in ΓRef.

For the proposed HDG-NEFEM, the term Auu, is computed as

〈w, τ euhe 〉Γe =
nen∑
j=1

〈m(x, I2),m(x, τ e)〉Γeu
Phys
j

≈
nen∑
j=1

n
Phys
fip∑
g=1

m(ξPhys
g , I2)mT (ξPhys

g , τ e)ω
Phys
g

uPhys
j ,

(26)

where m(x,A) = [NPhys
1 (x)A, NPhys

2 (x)A, . . . , NPhys
nen

(x)A]T and {(xPhys
g , ωPhys

g )}

is the set of nPhys
fip integration points and weights in Γe, constructed using the

strategy proposed in [37].

Remark 4. There are two important differences between the classical isopara-

metric approach and the proposed NEFEM rationale. First, in NEFEM, the

shape functions in NEFEM are constructed directly in the physical space,

rather than in a reference element. This means that the quality of the ap-

proximation is less sensitive to element distortion because the Jacobian of

the isoparametric mapping does not feature in the integrals. There is also

more flexibility when placing the nodes in a NEFEM elements [36], but to
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ensure a fair comparison the nodes for both isoparametric and NEFEM ele-

ments are always placed in the same position. In addition, this implies that

the summation in the edge integrals include all element nodes and not just

the edge nodes as it is common in the isoparametric formulation. Second,

the quadratures in NEFEM are tailored to the element by accounting for the

NURBS boundary description of the computational domain.

5. Degree adaptivity

Two strategies for driving the degree adaptive process are described here.

The first one is based on the super-convergent properties of the HDG method

and has recently being exploited in order to devise cheap and reliable error in-

dicators for fluid and wave problems [38, 39, 40]. The second option proposed

in this paper relies on the mixed formulation employed by HDG methods and

is more attractive when the quantity of interest is the stress field rather than

the displacement field.

5.1. Degree adaptivity driven by the displacement field

An attractive feature of the HDG method is the possibility to perform an

element-by-element postprocess of the solution to obtain a better approxima-

tion of the displacement field [20, 28, 29, 30, 41]. The postprocess considered

here solves the following problem in each element∇T
S D1/2∇Su

?
e = −∇T

SLe in Ωe, e = 1, . . . , nel,

NTD1/2∇Su
?
e = −NTLe on ∂Ωe.

(27)
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where u?e is the postprocessed solution. To ensure the uniqueness of the

solution, the two conditions∫
Ωe

u?e dΩ =

∫
Ωe

uhe dΩ. (28)∫
Ωe

∇× u?e dΩ =

∫
∂Ωe

ûh · te dΓ, (29)

are enforced to remove the translation and rotational modes respectively,

where te denotes the tangent vector to the boundary of the element. The

second condition, introduced for the first time in [35], guarantees the super-

convergence of the solution for any order of approximation k ≥ 1.

The ability to produce a better approximation of the primal variable has

recently being exploited in order to devise cheap and reliable error indicators

for fluid and wave problems [38, 39, 40]. The main idea consists of building

an error indicator in each element as

Eu
e =

[
1

|Ωe|

∫
Ωe

(u? − u) · (u? − u) dΩ

]1/2

, (30)

and utilise the local a priori error estimate, valid for elliptic problems, de-

scribed in [42], namely

εue = ‖u− uh‖Ωe ≤ Chke+2
e , (31)

in two dimensions, where C is a constant, he is the characteristic size of the

element Ωe and ke is the polynomial degree of approximation employed in

Ωe.

A simple Richardson extrapolation can then be applied to estimate the

change in the degree of approximation required in each element to guarantee

that the estimated error is below a desired error εu, namely

∆kue =

⌈
log(εu/Eu

e )

log(he)

⌉
, (32)
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where d·e is the ceiling function.

5.2. Degree adaptivity driven by the stress field

The second exploits the fact that the primal and mixed variables, u and

L respectively, are treated as independent variables but they are related by

the first Equation in (9) due to the mixed formulation employed in HDG.

The main idea is to exploit the better approximation properties of L,

approximated with polynomials of degree k, when compared to −D1/2∇Su,

which is approximated with polynomials of degree k− 1. Therefore, an error

indicator for the stress in each element is given by

Eσ
e =

[
1

|Ωe|

∫
Ωe

(
D∇Su+ D1/2L

)
·
(
D∇Su+ D1/2L

)
dΩ

]1/2

, (33)

By utilising the local a priori error estimate in [42] and Richardson ex-

trapolation, the following expression for the change in the degree of approx-

imation required in each element to guarantee that the estimated error is

below a desired error εσ, namely

∆kσe =

⌈
log(εσ/Eσ

e )

log(he)

⌉
. (34)

The main advantage of the indicator based on stress is that the element

by element postprocess of the displacement described in Equation (27) is

avoided. In addition, it is worth noting that a third error indicator could be

devised by combining both the indicators presented in this Section.

6. Numerical examples

6.1. Patch tests

The first example is used to demonstrate the ability of the proposed HDG-

NEFEM method to pass the low and higher order patch tests (i.e. to exactly
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Figure 1: Coarse mesh used in the patch tests.

reproduce polynomials) in domains with curved boundaries.

A coarse mesh with 28 triangular elements is considered to discretise the

domain Ω, as shown in Figure 1. The model problem of Equation (4) is

solved imposing Neumann boundary conditions on the bottom part of the

boundary, which corresponds to a circle with centre [0.5,−0.5] and radius
√

2/2, and Dirichlet boundary conditions in the rest of the boundary.

Two cases are considered with linear and quadratic analytical solution,

namely u(x) = (x1 + 2x2, x2 − x1) and u(x) = (x2
1 + x2

2, x2
2 − 2x1 + 4),

respectively.

Figure 2 shows the evolution of the error of the displacement and the

stress fields as a function of the degree of the functional approximation for

both isoparametric HDG and HDG-NEFEM. The results clearly demonstrate

that with an approximation of degree k, HDG-NEFEM is able to approxi-

mate polynomial solution of degree k with machine accuracy, whereas the

isoparametric HDG approach is not able to reproduce polynomial solutions

in domains with curved boundaries. This is due to the inability of isopara-

metric elements to describe the circular boundary exactly and, for quadratic
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Figure 2: Patch tests: Convergence of the error of the displacement and stress in the

L2(Ω) norm as a function of the degree of approximation for isoparametric HDG and

HDG-NEFEM for a problem with analytical solution being a linear and quadratic function.

or high-order elements, due to the definition of the polynomial approximation

in the reference element rather than in the physical space. The non-linear

character of the isoparametric mapping leads to an approximation in the

physical space that avoids to exactly reproduce polynomials.

6.2. Lamé problem

The next example, usually referred to as the Lamé problem [43, 44, 45],

considers a thick-walled infinite cylinder under uniform pressure. Using the

symmetry of the problem, only a quarter of the two dimensional section is

considered, as depicted in Figure 3. Neumann boundary conditions, corre-

sponding to a uniform pressure pi and po, are applied on the inner (r = ri)

and outer (r = ro) part of the boundary respectively. Symmetry boundary

conditions are considered on the boundaries aligned with the axis. A mate-

rial with Young modulus E = 1 and Poisson ratio ν = 0.3 is considered and
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x1

x2

pi

po

ri

ro

Figure 3: Lamé problem.

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 4: Lamé problem: Four triangular successively refined meshes.

the plane strain hypothesis is assumed. The dimensions of the domain are

given by ri = 1 and ro = 2 and the imposed pressure is pi = 1 and po = 0.5.

This classical test case is used to check the optimal approximation prop-

erties of the proposed HDG-NEFEM methodology and to compare the accu-

racy against the classical HDG with isoparametric elements. To this end, a

series of successively refined triangular meshes are considered. The first four

meshes are represented in Figure 4. The high-order curved isoparametric
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(a) Radial displacement (b) Von Mises stress

Figure 5: Lamé problem: HDG-NEFEM solution on the triangular mesh of Figure 4(d)

with k = 1.

meshes are generated using the strategy described in [46, 47] with an extra

constraint to ensure that the internal triangular edges are not deformed. The

NEFEM meshes are generated using the technique proposed in [48].

The radial displacement and Von Mises stress, computed using the pro-

posed HDG-NEFEM approach on the fourth mesh with a linear approxima-

tion (k = 1) of the solution, are represented in Figure 5. The computed

solution is in excellent agreement with the analytical solution, with the rel-

ative error of the displacement field and the stress field in the L2(Ω) being

1.1× 10−4 and 1.4× 10−3 respectively.

Figure 6 shows the L2(Ω) norm of the error of the displacement field as a

function of the characteristic element size h for both isoparametric and NE-

FEM elements and for a degree of approximation k = 1, 2, 3. The expected

optimal rate of convergence (i.e, k+1) is observed in all cases. It is worth

noting the extra accuracy provided by the NEFEM rationale when a linear

approximation of the solution is considered. This difference is attributed to

21



log10(h)
-2 -1.5 -1 -0.5 0

lo
g
1
0
(|
|E

u
||
L
2
(Ω

))

-9

-8

-7

-6

-5

-4

-3

-2

-1

2.0
1

3.0
1 4.0

1

k=1
k=2
k=3

(a) HDG isoparametric

log10(h)
-2 -1.5 -1 -0.5 0

lo
g
1
0
(|
|E

u
||
L
2
(Ω

))

-9

-8

-7

-6

-5

-4

-3

-2

-1

2.0
1

3.0
1

4.0
1

k=1
k=2
k=3

(b) HDG-NEFEM

Figure 6: Lamé problem: h-convergence of the L2(Ω) norm of the error of the displace-

ment field as a function of the characteristic element size h for different values of the

approximation degree k.

the polygonal description of the curved boundaries employed in the isopara-

metric formulation. For higher order approximations, the geometric error is

lower than the interpolation error and the accuracy of both isoparametric

and NEFEM elements is almost identical.

Figure 7 shows the L2(Ω) norm of the error of the stress field as a function

of the characteristic element size h for both isoparametric and NEFEM ele-

ments and for a degree of approximation k = 1, 2, 3. For linear elements, the

isoparametric formulation leads to a suboptimal rate of convergence whereas

the incorporation of the exact geometry with NEFEM allows to recover the

optimal rate of convergence of the error on the stress field. In this example,

for the finest mesh with k = 1, NEFEM provides one order of magnitude

more accurate results than the standard linear elements. This sizeable differ-

ence is attributed to the geometric error and to the non-physical singularity
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Figure 7: Lamé problem: h-convergence of the L2(Ω) norm of the error of the stress field

as a function of the characteristic element size h for different values of the approximation

degree k.

that a polygonal approximation of the boundary induces on the stress field.

It is worth noting that the extra loss of accuracy on the stress field is par-

tially attributed to the non-physical singularities introduced by a polygonal

representation of the boundary because this is effect is only observed on the

stress field and not on the displacement field, which converges optimally. For

quadratic elements both the isoparametric and the NEFEM formulations

provide similar accuracy and almost the optimal rate of convergence k + 1.

Finally, for cubic elements almost the same accuracy is provided by isopara-

metric and NEFEM elements, despite a marginal loss on the convergence

rate is observed for the isoparametric approach.

Finally, Figure 8 shows the L2(Ω) norm of the error of the post-processed

displacement field as a function of the characteristic element size h for both

isoparametric and NEFEM elements and for a degree of approximation k =
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Figure 8: Lamé problem: h-convergence of the L2(Ω) norm of the error of the post-

processed displacement field as a function of the characteristic element size h for different

values of the approximation degree k.

1, 2, 3. The results show that with linear isoparametric elements it is not

possible to recover the optimal rate of convergence k + 2, whereas the NE-

FEM approach provides the optimal convergence. The sub-optimal rate of

convergence of the isoparametric approach is due to the polygonal approx-

imation of the boundary. In this case, the geometric error converges with

order 2, preventing the error of the numerical solution to converge faster.

For higher orders of approximation almost identical accuracy and nearly the

optimal rate of convergence is observed for both isoparametric and NEFEM

elements. In this case the geometric error introduced in the isoparametric

approach converges with order 2k which, for k ≥ 2 is greater than or equal

to k + 2.
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Figure 9: Kirsch problem.

6.3. Kirsch problem

The next example considers another classical test case for linear elastic

solvers, the so-called Kirsch’s problem [43, 44, 45]. This example involves

the computation of the displacement and stress fields in an infinite plate

with a circular hole loaded under a uniform tension σ0 in the horizontal

direction. Using the symmetry of the problem, only a quarter of the plate

is considered, as depicted in Figure 9. Homogeneous Neumann boundary

conditions are imposed on the circular part of the boundary and Neumann

boundary conditions, corresponding to the analytical tension, are imposed

on the right and top part of the plate to avoid any effect from the truncation

of the infinite plate. Symmetry boundary conditions are considered on the

boundaries aligned with the axis. A material with Young modulus E = 1

and Poisson ratio ν = 0.3 is considered and the plane stress hypothesis is
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assumed. The dimensions of the domain are given by L = 4, a = 1 and the

imposed traction is σ0 = 10.

This test case is used to show the advantages of the proposed HDG-

NEFEM formulation within a degree adaptive process driven by the displace-

ment based error indicator in Section 5.1. A coarse mesh is fixed and the

degree of approximation in each element is automatically changed to guaran-

tee that the error of the computed displacement field is below a pre-defined

tolerance.

Figure 10 shows the evolution of the estimated and exact error as a func-

tion of the number of iterations of the degree adaptive process for both stan-

dard HDG and HDG-NEFEM. For the standard HDG approach three differ-

ent cases are analysed corresponding to a linear (q = 1), quadratic(q = 2) and

cubic (q = 3) description of the curved boundary respectively. As described

in [40], this initial choice of the boundary representation of the curved bound-

ary is required to avoid communication with the CAD and mesh generation

systems in each iteration of the degree adaptive process.

The results clearly demonstrate that with the standard HDG method,

there is a significant discrepancy between the estimated and the exact er-

ror. In this case, the exact error stagnates after one or two iterations of the

adaptive process whereas the estimated error converges to the desired value,

leading to a final solution where the indicator does not reflect the true error

of the computation. To better illustrate the discrepancy between the esti-

mated and exact errors, Figure 11 shows the final degree of approximation

as dictated by the adaptive process and the exact and the estimated errors

for an HDG computation with a cubic representation of the curved boundary
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Figure 10: Kirsch problem: evolution of the estimated and exact errors as a function of the

number of iterations of the degree adaptive process for standard HDG and HDG-NEFEM.

The desired error is εue = 0.5× 10−3.

(q = 3). It is worth noting that the discrepancy between exact and estimated

errors is not restricted to the elements in contact with the curved boundary.

In contrast, with HDG-NEFEM, the estimated and exact error are ex-

tremely close in each iteration of the adaptive process and, with only three

iterations, the computed solution provides the desired accuracy. Figure 12
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(a) Degree distribution (b) Exact error (c) Estimated error

Figure 11: Kirsch problem: HDG adaptive computation with a cubic representation of the

curved boundary for a desired error of εue = 0.5× 10−3.

shows the final degree of approximation as dictated by the adaptive pro-

cess and the exact and the estimated errors for the HDG-NEFEM computa-

tion. The good correspondence between the estimated and exact error can

be clearly observed. The final computation of the degree adaptive process

(a) Degree distribution (b) Exact error (c) Estimated error

Figure 12: Kirsch problem: HDG-NEFEM adaptive computation for a desired error of

εue = 0.5× 10−3.

with HDG-NEFEM exhibits a maximum elemental error of the displacement

field is 0.33× 10−3, below the specified tolerance of εue = 0.5× 10−3.

The stress field computed with HDG-NEFEM and the degree of approx-
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imation distribution shown in Figure 12 (a) is depicted in Figure 13. It is

(a) σ11 (b) σ22 (c) σ12

Figure 13: Kirsch problem: computed stress field with the HDG-NEFEM approach and

the degree of approximation distribution shown in Figure 12 (a).

worth noting the ability of the proposed HDG-NEFEM approach to capture

the variation of the stress field near the curved boundary, with only curved

element.

Finally, to better illustrate the benefit of the proposed HDG-NEFEM,

Figure 14 shows the evolution of the maximum stress σ11 as a function of the

number of iterations of the degree adaptive process for the standard HDG

with linear (q = 1), quadratic(q = 2) and cubic (q = 3) description of the

curved boundary and for the proposed HDG-NEFEM. The results show that

an excellent agreement with the exact value if achieved with HDG-NEFEM

whereas the maximum stress is overestimated with a polynomial representa-

tion of the boundary. The overestimated value obtained with the standard

HDG approach is caused by the lack of C1 continuity of the boundary repre-

sentation. At the mesh vertices situated on the curved boundary, the poly-

nomial representation (for any degree q) is continuous but the derivative is

discontinuous, creating a corner that induces a singularity in the stress field.
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Figure 14: Evolution of the maximum stress σ11 as a function of the iterations of the

degree adaptive process for the standard HDG approach with a linear, quadratic and

cubic representation of the curved boundary and for HDG-NEFEM.

The NURBS boundary representation incorporated in the HDG-NEFEM ap-

proach ensures a smooth boundary representation and leads to a high fidelity

stress field computation. It is worth recalling that the problem solved here

considers only a quarter of the plate, as shown in Figure 9. Therefore if

the normal to the curved boundary at points (a, 0) and (0, a) is not parallel

to the x and y axis respectively, as it happens in the isoparametric HDG,

the problem simulated in the domain using a symmetry boundary condition

represents a problem with a non-smooth boundary representation with sin-

gularities. This also explains why in the adaptive process with isoparametric

elements there is one element with only one node on the boundary with an

extremely high degree of approximation, k = 10.

6.4. Flying wheel

The last example considers a more complicated geometry corresponding

to a flying wheel, as depicted in Figure 15. The wheel is subject to an imposed
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traction of magnitude 104 Pa on the outer boundary and it is fixed on the

largest inner circle, whereas free traction is considered on the remaining part

of the boundary. The material properties, corresponding to aluminium, are

E = 70 GPa and ν = 0.33.

Figure 15: Flying wheel.

This test case is used to demonstrate the potential of the proposed HDG-

NEFEM formulation within a degree adaptive process driven by the stress

based error indicator in Section 5.2. The mesh shown in Figure 16 (a), with

16,651 triangular elements, is considered. The process starts with a uniform

linear approximation of the solution and the desired error is εσe = 0.5× 10−3.

After five iterations the degree of approximation required in each element to

guarantee that the error is below εσe is represented in Figure 16 (b). The

solution computed on this mesh requires the solution of a global system of

52,168 equations and the computed components of the stress field are shown

in Figure 17.
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Figure 16: Flying wheel: degree distribution for an HDG-NEFEM adaptive computation

with εσe = 0.5× 10−3.

(a) σ11 (b) σ22 (c) σ12

Figure 17: Flying wheel: computed stress field with the HDG-NEFEM approach and the

degree of approximation distribution shown in Figure 16.

The maximum computed values of the stress components σ11, σ22 and σ12

are 1.1816×104 Pa, 1.2312×104 Pa and 0.6323×104 Pa respectively. As no

analytical solution is available, a reference solution is computed on a very

fine mesh, with 113,539 triangular elements and with a uniform degree of ap-

proximation k = 6. The simulation required the solution of a global system
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of 347,190 equations and the maximum computed values of the stress com-

ponents σ11, σ22 and σ12 are 1.1820×104 Pa, 1.2311×104 Pa, and 0.6323×104

Pa respectively. This example demonstrates the ability of the proposed de-

gree adaptivity process driven by the stress field to provide highly accurate

results by combining the exact boundary representation of NEFEM.

7. Concluding remarks

A combined HDG-NEFEM methodology for the solution of two dimen-

sional linear elastic problems has been presented. The proposed methodology

considers the application of the NEFEM rationale to solid mechanics prob-

lems for the first time. The combined HDG-NEFEM approach enables to re-

produce polynomial solutions of any degree and to obtain a super-convergent

solution when a linear approximation of the solution is considered. In con-

trast, the isoparametric HDG is not able to reproduce polynomial solutions

in domains with curved boundaries and it shows a sub-optimal convergence

of the post-processed variable due to the dominance of the geometric error.

The application of the proposed HDG-NEFEM methodology in a de-

gree adaptive process is also presented. The exact boundary representation

considered with a NEFEM rationale provides reliable error indicators for do-

mains with curved boundaries and, contrary to standard isoparametric HDG

elements, enables the computation of the solution with the required accuracy

without communicating with a CAD system. Numerical examples are used

to demonstrate the advantages of the proposed HDG-NEFEM approach com-

bined with an error indicator for the displacement field and a new strategy

to estimate the error on the stress field.
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The extension to three dimensional problems does not introduce a con-

ceptual difficulty but extra attention must be paid to the NEFEM mesh

generation [48]. Finally, the extension to non-linear problems only needs

a standard linearisation but it requires a careful selection of the stability

parameter of the HDG formulation [49].

Acknowledgements

This work is partially supported by the European Union’s Horizon 2020

research and innovation programme under the Marie Sk lodowska–Curie ac-

tions (Grant number: 675919).

References

[1] K. Christodoulou, O. Laghrouche, M. Mohamed, J. Trevelyan, High-

order finite elements for the solution of Helmholtz problems, Computers

& Structures 191 (2017) 129–139.

[2] R. Sevilla, A. J. Gil, M. Weberstadt, A high-order stabilised ALE finite

element formulation for the Euler equations on deformable domains,

Computers & Structures 181 (2017) 89–102.

[3] D. Xu, Y. Yang, H. Zheng, A. Wu, A high order local approximation free

from linear dependency with quadrilateral mesh as mathematical cover

and applications to linear elastic fractures, Computers & Structures 178

(2017) 1–16.

34



[4] E. Brodal, J. S. Hesthaven, F. Melandsø, Numerical modeling of double-

layered piezoelectric transducer systems using a high-order discontinu-

ous Galerkin method, Computers & Structures 86 (2008) 1747–1756.
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