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Abstract

By using Malliavin calculus, Bismut type formulas are established for the Lions
derivative of P, f(u) := Ef(X}"), where ¢t > 0, f is a bounded measurable function, and
X1" solves a distribution dependent SDE with initial distribution p. As applications,
explicit estimates are derived for the Lions derivative and the total variational distance
between distributions of solutions with different initial data. Both degenerate and non-
degenerate situations are considered. Due to the lack of the semigroup property and
the invalidity of the formula P, f(u) = [ P, f(x)u(dz), essential difficulties are overcome
in the study.

AMS subject Classification: 60J60, 58J65.
Keywords: Distribution dependent SDEs, Bismut formula, Warsserstein distance, L-derivative.

1 Introduction

The Bismut formula introduced in [4], also called Bismut-Elworthy-Li formula due to [14],
is a powerful tool in characterising the regularity of distribution for SDEs and SPDEs. A
plenty of results have been derived for this type formulas and applications by using stochastic
analysis and coupling methods, see for instance [27] and references therein.

*Supported in part by NNSFC (11771326, 11831014, 11431014,11726627).



On the other hand, because of crucial applications in the study of nonlinear PDEs
and environment dependent financial systems, the distribution dependent SDEs (also called
McKean-Vlasov or mean field SDEs) have received increasing attentions, see [12, 13, 15, 16,
20, 25, 26] and references therein. Recently, this type SDEs have been applied in [6, 11, 19, 22]
to characterize PDEs involving the Lions derivative (L-derivative for short) introduced by
P.-L. Lions in his lectures [7]. Moreover, Harnack inequality, gradient estimates and expo-
nential ergodicity have been investigated in [30] and [24]. In this paper, we aim to establish
Bismut type L-derivative formula for distribution dependent SDEs with possibly degenerate
noise.

To introduce our main results, we first recall the L-derivative. Let 92(R%) be the space
of all probability measures on R?, and let

2uw) = {ue 2 ul-P)i= [ lePutan) < ool

Then 2 (RY) is a Polish space under the Wasserstein distance
%
W)=t ([ e-abatandn)’ e 2
TEE (1,v) RexRd

where € (u, ) is the set of couplings for 1 and v; that is, 7 € € (u, v) is a probability measure
on R? x R? such that 7(- x R?) = p and 7(R? x -) = v. We will use 0 to denote vectors with
components 0, or the constant map taking value 0.

Definition 1.1. Let f : Z(R?) — R, and let g : M x P(R?) — R for a differentiable
manifold M.

(1) f is called L-differentiable at u € 925(R?), if the functional
LARY =R p) 5 ¢ flpo(Id+¢)7")

is Fréchet differentiable at 0 € L*(R? — R? pu); that is, there exists (hence, unique)
v € L*(R? — R%, i) such that

(1.1) i o (Ad+9)™) — fu) — p({3,9)
w(|¢2)—=0 M(|¢|2)

In this case, we denote D¥ f(u) = v and call it the L-derivative of f at p.

=0.

(2) If the L-derivative D f(u) exists for all u € P25(R?), then f is called L-differentiable.
If, moreover, for every pu € P5(R?) there exists a p-version DT f(u)(-) such that
DY f(11)(x) is jointly continuous in (x, 1) € R¥x P, (R?), we denote f € CH0 (2, (RY)).

(3) g is called differentiable on M x P25(R?), if for any (x,pu) € M x P(RY), g(-, p)
is differentiable at x and g(z,-) is L-differentiable at p. If, moreover, Vg(-, u)(x) and
DEg(z,-)(u)(y) are joint continuous in (z, y, 1) € M?x P5(R?), where V is the gradient
operator on M, we write g € CHLO(M x 2,5(R?)).
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As indicated in [22] that for any n > 1, g € CY(R") and hy,--- ,h, € CHR?), the
cylindrical function
M= g(:u(hl)a e 7M(hn))
is in C10 (2, (RY)) with

n

D o)) = 3 (Biglulhn). - ulh))) Vhi(a), (2.p1) € R x Po(R?).

i=1

Obviously, if f is L-differentiable at pu, then

(L2) Dff(u) :=lim flpo(Id + ej)— )~ f(w)

= p((D*f(p), ), ¢ € L*(R? — RY, p).

We may call D(’;; the directional L-derivative along ¢, which was introduced in [1, 23].
When D£ f(p) is a bounded linear functional of ¢ € L?*(R? — R% ), there exists a
unique & € L*(R? — R?, ) such that DJ f(u) = u((§, ¢)) holds for all ¢ € L*(R? — R?, ).
In this case, ¢ — f(puo(Id+¢)~!) is Gateaux differentiable at 0, and we say that f is weakly
L-differentiable at u, since the Gateaux differentiability is weaker than the Fréchet one.
By (1.2), for an L-differentiable function f on £2,(R?), we have

(1.3) IDEf()ll = IID" f(1) (22 = sup | Dg f(p)]-
n(|pl?)<1
For a vector-valued function f = (f;), or a matrix-valued function f = (fi;) with L-

differentiable components, we write

Djf(p) = (D fi(w)), or Dif(u) = (D fiy(n), € Pa(RY).

Let W; be a d-dimensional Brownian motion on the natural filtered probability space
(Q0, Z9 {Z}i0,P). To ensure that for any u € P5(R?) there exists a random variable X
on R? with distribution u, let x° be a probability measure on R¢ which is equivalent to the
Lebesgue measure, and enlarge the probability space as

(Q, F AT }i50,P) = (° x RY, Z° x BRY), {F x BR)} >0, PO x ).
Then
Wi(w) == W), t>0,w:= (W 1) €N

is a d-dimensional Brownian motion on (2, .%#,{.%;}i>0,P). Let .Z; denote the distribution
of a random variable on the probability space (€2,.%,P). In case different probability spaces
are concerned, we write Zp instead of .Z; to emphasize the reference probability measure
P.

Consider the following distribution dependent SDE on R%:

(1.4) dX, = b( Xy, Lx,)dt + 0,( Xy, Lx,)AW,, X € L2(Q — RY, %, P),



where

o :[0,00) x R x 25 (RY) — R b:[0,00) x R? x Py(R?) — R?

are continuous such that for some increasing function K : [0, 00) — [0, 00) there holds

e (2, 1) = 0u(y, V)| + [loe(, 1) = ou(y, V)|

(1.5) < K(t)(|x —y| + Wy(p, 1/)), t>0,2,y € R p, v € Py(RY

and

(1.6) lo¢(0, 60) || + [b¢(0, do)| < K(t), t =0,

where and in what follows, for z € R? we denote by 4, the Dirac measure at x, and || -|| is the

operator norm. For any ¢t > 0, let L?(Q2 — R? .%;,P) be the class of .Z;-measurable square
integrable random variables on R?. By (1.5) and (1.6), for any s > 0 and X, € L*(Q —
RY, Z,,P), (1.4) has a unique solution (X, ;);>s with X, , = X, and

(1.7) IE[ sup |X57t]2] < oo, T >s,

te(s,T)

see, for instance [30], where gradient estimates and Harnack inequalities are also derived
for the associated nonlinear semigroup. See also [18, 20] for weaker conditions ensuring the
existence and uniqueness of solutions to (1.4). For any p € Z(R?) and s > 0, let (X%,):>s
be the solution to (1.4) with Z%, , = p. Denote

(1.8) Plp=Lxn, t>s,pue PR

Let
(L.9) (Psef)(p) = (Poy)(f) = » fA(Plp) = EBf(XL,), t>s,f € B(R), ue Py(RY).

Then for any 0 < s < ¢, Py, is a linear operator from %,(R?%) to %,(P,(R?)).

In this paper, we aim to establish the Bismut type formula for the L-derivative of P, f
for t > s. By considering the SDE for X, := X,,,,t > 0, without loss of generality we may
and do assume s = 0. So, for simplicity, below we only establish the derivative formula for
Pif == Py, f,t > 0. More precisely, for any T > 0, p € P,(R?) and ¢ € L*(R? — R?, 1), we
aim to construct an integrable random variable M}W such that

(1.10) DY(Prf)(p) = E[f(XF)MP?], f € By(RY),

which in turn implies the L-differentiability of Prf. Note that the derivative formula for
(Prf)(x) := (Prf)(d,) along a vector v € R? is derived in [3], which is the special case of
(1.10) with p = 0, and ¢ = v. Moreover, formulas of the L-derivative and integration by
parts have been presented in [9] for the following de-coupled SDE:

AXT¥ = bt X0, P )it + o6, X0, P )W, Xg" = o,
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which is different from the original SDE (1.4) but has important applications in solving
PDEs with Lions’ derivatives, see [6, 19, 22| and references within.

When the SDE (1.4) is distribution independent, i.e. b:(x, 1) = by(x) and o¢(x, p) = o¢(z)
do not depend on p, the Bismut type formula

(1.11) VPrf(z) =E[f(X{)M}], = €R? fe %R

has been well studied in the literature, where M% is an integrable random variable on R,
which is measurable in € R? when it varies, see for instance [2, 17, 28, 29, 31] and references
within. Since the coefficients are distribution independent, we have

(1.12) (Prf)() = / (Prf)(z) p(dz),

R4

so that Prf is L-differentiable with D¥(Prf)(u) = V Prf. Hence, by (1.11) and (1.12) we
obtain

DEPef) ) = n(D*Prf, ) = [ BLFORIOM o))
= E[f(Xp)(M7" 6(X§))].

Therefore, (1.10) holds for M/ = (M;fg, (X))-
However, when the SDE is distribution dependent, as explained in [30] that in general
(1.12) does not hold, so it is non-trivial to establish the Bismut type formula (1.10).

The remainder of the paper is organized as follows. In section 2, we state our main results
on Bismut formulas of D(’;;PT f and applications, for both non-degenerate and degenerate
distribution dependent SDEs. To establish the Bismut formula using Malliavin calculus, we
make necessary preparations in Section 3 concerning partial derivatives in the initial value,
and Malliavin derivative for solutions of (1.4). Finally, complete proofs of the main results
are addressed in Section 4.

2 Main results

Let | - | denote the Euclidean norm in R?, and || - || denote the operator norm for matrices or
more generally linear operators. We make the following assumption.

(H) For any t > 0, b;,0, € CHIO(R?Y x P,(R?)). Moreover, there exists a continuous
function K : [0,00) — [0, 00), such that (1.6) holds and

maX{IIVbt(-,u)(x)H, D by, ) ()], %HV%(-,M)(ZB)HQ,%HDL%(:B,-)(M)HQ}
<K, t>0,2cRpec PR,

where as in (1.3), ||[D* f(p)|| == |D* f(1)(*)||22(u) for an L-differentiable function f at
.



Obviously, (H) implies (1.5) and (1.6), so that the SDE (1.4) has a unique solution for any
initial value X, € L*(Q — R, %, P).

In the following two subsections, we state our main results for non-degenerate and de-
generate cases respectively.

2.1 The non-degenerate case

Due to technical reasons, the following result Theorem 2.1 only works for distribution in-
dependent o;. But some other results (for instance Proposition 3.2) apply to the general
setting. So, in addition to (H) we also assume

(2.1) oi(x, 1) = oy(z) with |loy(2) 7| < A for some A € C(]0, 00) — (0, 00)).

Let € 2,(RY), and let X; solve (1.4) for Xy € L*(Q — RY, %y, P) with Zx, = u. Given
¢ € L2(R? — R% 1), consider the following SDE for v{ on R%:

dvf = { Vb1, L0 (X)) + (B(D il ) (L) (X)), el

22 + {VUfUt(Xt)}th, Ug = (Xo).

By (H), this linear SDE is well-posed with sup,c(q E[vf|? < Cu(|¢|?) for some constant
C =C(T) > 0, see (4.21) below. Denote g, = g, for a differentiable function g of s € R.

Theorem 2.1. Assume (H) and (2.1). Then for any f € By(R?),u € Po(R?) and T > 0,
Prf is L-differentiable at y such that for any g € CY([0,T]) with go = 0 and gr = 1,

T
(23) DEPA) = B|£06) [ (6t am)]. o€ (RS B ),
where Xy solves (1.4) for Lx, = p, and
¢ = (X0 giof + (B(D buly, (L) (X0, 000) |, _, . ¢ € 0,7

Moreover, the limit

Pipo (Id +e¢)~" — Pru
g

(2.4) Dy Py = 1§f€ = P

exists in the total variational norm, where 1 is the unique element in L?>(R? — R, Piu) such

that ¥(Xr) = E( [y (¢/. dW,)|Xr), and (¢ Pju)(A) == [, vdPju, A€ B(RY).

Remark 2.1. When f € C}(R?), (2.3) can be proved as in the distribution independent
case by constructing a proper random variable A on the Cameron-Martin space such that
Dy Xr = VyXp. However, for the L-differentiability of Prf, one has to construct v €
L*(RY — R4, pi) such that (1.1) holds for Prf replacing f, which is non-trivial.
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Moreover, comparing with the classical case where (2.3) for f € C}(R?) can be easily
extended to f € %, (R?), there is essential difficulty to do this in the distribution dependent
setting. More precisely, when b, and o; do not depend on the distribution, we have the
semigroup property Prf(u) = Pi(P.rf)(p) fort € (0,7T), where P, v f(x) := P, f(0,) for the
Dirac measure §, at point z. In many cases, we have P, rf € C}(R?) for f € %,(R?). Then
for any f € %,(R?Y), one may apply the derivative formula (2.3) with (P, P, rf) replacing
(Pr, f) to derive a derivative formula for Prf. However, in the distribution dependent case,
due to the lack of (1.12) we no longer have Prf(u) = P;(Pirf)(u), so that this argument
becomes invalid. To overcome this difficulty we will make a new approximation argument,
see step (a) in the proof of Theorem 2.1 for details.

As applications of Theorem 2.1, the following result consists of estimates on the L-
derivative and the total variational distance between distributions of solutions with different
initial data.

Corollary 2.2. Assume (H) and (2.1) for some increasing functions K and continuous
function .

(1) For any f € By(R?) and T > 0,

ID*(Prf)(u)|)? = (|S¢1|1p DS (Prf)(p)?

(2.5)
<A{(Prf*)(n) )%} / =+ Kt )\fegK”dt.

(2) For any T >0,
|Prf(p) — Prf(v)*

2.6 T 1 2
0 SW&WMWy/(T+m)ﬁW“wgmue%ﬁﬂfe%wﬁ
0

Consequently, for any T > 0 and pu,v € P5(R?),

|Prp = Prv|ie, == sup |(Pru)(A) — (Pro)(A))?
AeB(RT)

27) . [T 1 % 2 8K (1)t
< Wo(u,v) / — 4+ K ) e dt.
2 0 (T t) t

2.2 Stochastic Hamiltonian systems

Consider the following distribution dependent stochastic Hamiltonian system for X, =
(XY, X2y on R™H = R™ x R%:

2.8) {de)zbSNX»du

dX? = bP(X,, Zy,)dt + o, dW,
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where (W})i>0 is a d-dimensional Brownian motion as before, and for each ¢ > 0, oy is an
invertible d x d-matrix,

by = (bgl), bEQ)) R QQ(R’””) _y Rt

is measurable with b\ (z, u1) = b{")(z) independent of the distribution 1. Let V = (V) v(2))
be the gradient operator on R™t? = R™ x R?, where V) is the gradient in the i-th compo-
nent, i = 1,2. Let V2 = VV denote the Hessian operator on R+ We assume

(H1) For every t > 0, b € CZR™ — R™), p? € CLOO(R™H x g7y (R™+) — R?), and
there exists an increasing function K : [0,00) — [0, 00) such that (1.6) and

IVbe(-, 1) (@)]] + [ DO (2, ) () || + [IV2057 (- ) () || < K (2)
hold for all ¢t > 0, (x, 1) € R? x P25(R?).

Obviously, this assumption implies (H) for the SDE (2.8). We aim to establish the
derivative formula of type (1.10) with P, and P;* being defined by (1.8) and (1.9) for the SDE
(2.8). To follow the line of [31] where the distribution independent model was investigated,
we need the following assumption (H2).

For any s > 0, let { K} s}+>s solve the following linear random ODE on R™®™:

d
(29) aKt,s = (v(l)b(l))(Xt)Kt,sv t> S, Ks,s = Ime7

where I« is the m X m-order identity matrix.
(H2) There exists B € %,([0,T] — R™®?) such that
(2.10) (VoY) — B))Bra,a) > —¢|Bfal?, VaeR™

holds for some constant ¢ € [0,1). Moreover, there exists an increasing function 6 €
C([0,T7) with 6, > 0 for t € (0, 7] such that

t
(2.11) / S(T — 8) K1,y BsB: K5 (ds > 0L, t € (0, 7).
0

Example 2.1. Let
b (z) = Az + B2® |z = (2D, z?) € R™H
for some m x m-matrix A and m x d-matrix B. If the Kalman’s rank condition
Rank[B, AB,--- ,A*B] =m

holds for some k > 1, then (H2) is satisfied with 6; = ¢yt for some constant ¢y > 0, see the

proof of [31, Theorem 4.2]. In general, (H2) remains true under small perturbations of this
b(l)

.



According to the proof of [31, Theorem 1.1], (H2) implies that the matrices
t
Q= / s(T — s) K, . VOV (X,)B: K} ds, te€(0,T]
0

are invertible with

1
2.12 < ———, te(0,7].
( ) ||Qt ||—(1_€)0t’ e( ) ]
For (X})iepo,r] solving (2.8) with Zx, = p and ¢ = (gb(l) p?) € LHR™ — R™ 1)), let
Tt t(T —t)B; K5
oy? =7 ¢ (Xo) — o2d X 92 S Ko™ (Xo)ds
(2.13) Jo S
* Tk — T
— (T —t)B; KT’tQTl/O = KTSVW) N )bgU(XS)ds, t€0,7],
and
t
(2.14) alV = K, 06™M(X) + / Ko V000 (X () ds, €0, T].
0 S

Moreover, let (hY, wi)ico,r] be the unique solution to the random ODEs

dh¢
T o [V (X 2) — ()
(2.15) + (B(DE (5, ) (L) (X0 o + 0| L,
Yy t
dwo‘ / o o
L = Vaphi( L) (X0) + (0, (), g = wf =0,

Let (D*, 2(D*)) be the Malliavin divergence operator associated with the Brownian motion
(Wt)te[o,T}, see Subsection 3.2 below for details. Then the main result in this part is the
following.

Theorem 2.3. Assume (H1) and (H2). Then h® € 2(D*) with E|D*(h*)|P < oo for all

p € [1,00). Moreover, for any f € By(R™ ) and T > 0, Prf is L-differentiable at p such
that

2.16) DE(Prf) () = E[£(Xr) D (h)].
Consequently:
(1) (2.4) holds for the unique v € L*(R™¢ — R, Pju) such that (Xr) = E(D*(h®)| X7).

(2) There exists a constant ¢ > 0 such that for any T > 0,

@17) (IDHPeR) G < ox/PrITPG) = <PTf>2<u>%, f € BR™)
@18)  Ph— Pivlher < Wl ) Y00 e gy

i 62ds



3 Preparations

We first introduce a formula of the L-derivative re-organized from [7, Theorem 6.5] and [11,
Proposition A.2], then investigate the partial derivatives of X in the initial value, and the
Malliavin derivatives of X; with respect to the Brownian motion W,.

3.1 A formula of L-derivative

The following result is essentially due to [7, Theorem 6.5] for f € C(19(Z2y(R%)), and [11
Proposition A.2] for bounded X and Y. We include a complete proof for readers’ convenience.

Proposition 3.1. Let (Q,.%,P) be an atomless probability space, and let X,Y € L*(2 —
RYP) with Lx = p. If either X and Y are bounded and f is L-differentiable at u, or
f € CUO(P2y(RY)), then

[(Lxiey) — f(1)

1) i L) 2T gt ), v),
Consequently,
) [ ) 2 IO mipe 00, v)] < 10550 BT

Proof. Tt is easy to see that (3.2) follows from (1.3) and (3.1). Indeed, letting ¢ € L*(R¢ —
R?, ;1) such that ¢(X) = E(Y|X), we have
[E(D"f(1)(X),Y)| = [E{D"f (1) X)) = (D" f(n), 9))|
1
< [[ID"f(u)] - H¢||L2(u) = \|DLf(/~L)||(E|E(Y\X)| )2 < ID"F(WIIVEY [
Below we prove (3.1) for the stated two situations respectively.

(1) Assume that X and Y are bounded. For any R%valued random variable &, let
F(&) = f(£). Next, let (Q,.%,P) be an atomless Polish probability space, and let X €

L*(Q — R4 P) with ZLxp = i, where Zjp denotes the distribution of a random variable
under P. According to [11 Proposition A. 2(111)] if

(V) = [(%g), ¥ € MO RLP)
is Fréchet differentiable at X with derivative DF(X) = D¥ f(u)(X), then

(3.3) o F(Expey) = f(Lx) — (DM f()(X),Y)
el0 e

=0.

Equivalently, (3.1) holds. Below we construct the desired X and (€,.7,P) such that
DF(X) = D*f(u)(X).

10



A natural choice of (Q,.7,P) is (R?, Z(R?), i), but to ensure the atomless property, we
take (Q, #,P) = (R? x R, B(R? x R), u x \), where \ is the standard Gaussian measure on
R. Then (92, #,P) is an atomless Polish probability space. Let

X@) = o=(z,7r) eRxR.
We have 5 = . Moreover, let
F(i) = F(i(- x R)), fi € 2o(R? x R).

It is easy to see that the L-differentiability of f at u implies that of f' at p X dg with
(3.4) DY f(pu x 8o)(z,r) = (DY f(p)(),0), (x,7) € R x R.
Finally, on the probability space (2, .#,P) we have
(3.5) F(Y):=f(%)=f(L), Y :=(Y,0) € L*(Q—RxR,.Z P).
Letting X = (X,0) € L*(2 — T xR, #,P), by [11 Proposition A.2(iii)], the formula (3.3)
holds for (XY, f, ju x &) replacing (XY, f, ), i

oo I Exiey) = F(Z5) -

10 €

E(D"f (i x &),€Y)

=0.

Combining this with (3.4) and (3.5), we prove (3.3). Therefore, (3.1) holds.
(2) Let f € CUO( Py (RY)) and let i € P(R?) and X € L*(Q — RY P) with Zx = u

For any n > 1, let
z
Tz, = ——ouw— zeR%.

V14 n x|

By (3.1) for bounded X and Y, for any n > 1 we have

¢ d
f(Zx,1ev,) — [(Zx,) = / &f(gxmslfn) ds
(3.6) 0

_ / E(D" {( Ly sov. ) (X + 5Y2), Ya) ds.
0
Since f € O (P,(R?)), it follows that
sup | DUf (L, vav )| <00, lim {f( Ly, vevs) — F(Lx,)} = F(Lxper) — f(Lx),

n>1,s€[0,e]
and for any s € [0, ],

lim E(|X — X,,|* + Y = Y, |* + | D" f(Lxpssv ) (X + 5Ys) — DX f(Lxrsy ) (X + sY)[?) = 0.

n—oo

Then letting n — oo in (3.6) we arrive at
(3.7) f(ZExiey) — [(Zx) = / E(D" f(Lx1sv)(X +5Y),Y)ds, > 0.
0

11



This implies (3.1). More precisely, it is easy to see that {-%x sy } is compact in P, (R?). So,
f € CHO (2, (RY)) implies

(3.8)  A:= sup VEIDE f(Lxssy )(X +sY)]2 = sup ID" f(Lxrsy )22y < 0.
s€[0,1 s€[0,1

Combining this with the continuity property of D f on RY x 225(R?), we conclude that
hﬁ)l DY f(Lxysv)(X +5Y) = DV f(Lx)(X) weakly in L*(©2 — R P).

In particular,

(3.9) li E(D" £ (L )(X +5Y), Y) = E{DH(£)(X), V).
Moreover, (3.8) implies

sup E[(D* f(Lxyey)(X 4 sY),Y)| < AVE|Y]? < o0.

s€[0,1]

Due to this, (3.7) and (3.9), the dominated convergence theorem gives

i L) T g2 208 (L )X ). s

— B(D" () (X),Y).

3.2 Partial derivative in initial value

For any T' > 0, let €7 = C([0,T] — R?) be the path space over R? with time interval [0, 7],
and let Xo,n € L*(Q — R %y, P). For any £ > 0, let (X§);>0 solve the SDE

Obviously, X; = X} solves (1.4) with initial value X,. Consider the following linear SDE for
v) on R%:

gy (TR + (BB AL,

3.11
V00 20 (X0 + (ED ouly, ) (L) (X0, o),y JAWe, el =7

The main result of this part is the following.

Proposition 3.2. Assume (H). Then for any T > 0, the limit

(3.12) VX, = limu,

te0,7)
el0 £

exists in L*(Q — €r,P). Moreover, (v{ := V,; X, )iejo1) is the unique solution to the linear

SDE (3.11).
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To prove the existence of V, X, in (3.12), it suffices to show that when ¢ | 0

Xf—X
(3.13) E(t) == tTt t €0,
is a Cauchy sequence in L?(2 — 7, P), i.e.
(3.14) lim E[ sup [€°(t) — f‘s(t)|2] =0
040 | ¢e(0,T]

To this end, we need the following two lemmas.

Lemma 3.3. Assume (H). Then

sup E[ sup |§5(t)|2] < 00.

€€(0,1] t€[0,T]
Proof. By (H), there exists a constant C'; > 0 such that
X7 — X

= {2<bt(Xt€7$Xf) - bt(Xtngt),XtE - Xt) + ||O-t(Xt€7$XtE> — O-t<Xta$Xt)||%{S}dt + th
< C{IXE — Xof? + Wo(Lxs, L, ) fdt + dM,,

where

th = 2<)(tE — Xt7 (O‘t(XtE,gXtE) — Ut(Xt7$Xt))th>
satisfies
(3.15) (M), < CH|X7 — X, > + Wy(Lys, L)} dt.

Then by the Burkholder-Davis-Gundy inequality, and noting that Wy (%, %,)? < E|§ — n]?
for two random variables &, 7, we may find out a constant Cy > 0 such that

t
(3.16) E{ sup |X§—Xs\2] §£2|n|2+201/ E|X: — X,|?ds + CoE\/(M);.
0

s€[0,t]

NOtng that W2($X§7$X5)2 S E|X§ — Xs|2, (315) yields

2

t
CoE/ (M) < OlczE( / {1X: - X, + W2($X§,$X5)2}2d3)
0

t
< C@E( sup {|X: — X,|* + E|X{ — XS|2}/ {1X; - X, +E|X; — Xs|2}ds)
0

s€[0,t]

1 Cy [*
< 5B[ swp 1 - X ]+ G [ BIXG - X Pas
2 Lacog 2 Jo
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for some constant C3 > 0. Combining this with (3.16) and noting that due to (1.7)

]E[ sup | X — XS|2] < 00

s€[0,t]

we arrive at

t
]E[ sup \Xj—XSP] < 252|77]2+03/ E|X¢ — X,|’ds, t€[0,T],e> 0.
0

s€0,t]
Therefore, Gronwall’s inequality gives
1
sup E[ sup lﬁf(t)\z] = sup —E[ sup \Xj—XSIQ} < 2¢TEp? < oo.
€€(0,1] te[0,7] £€(0,1] g2 5€[0,T
]

For any differentiable (real, vector, or matrix valued) function f on R? x 2 (R?), let

X5, L) — f( Xy, Ly,
E5(t) = / x;) . H %) _ Ve [, Lx,)(Xi)

— {E(DE £y, ) (L) (X0, E@Y],_y,. t€[0,T]e> 0.

(3.17)

Lemma 3.4. Assume (H). For any (real, vector, or matriz valued) C»M9)-function f on
RY x P (R%) with

(3.18) Ky= sup (IVFC @) + D" f(z, ) (1) 720) < o0,

(2,0)ER% x P (RY)

there holds
(3.19) Z50)]° < 4K (BIE®)P + € (1)) and lim E|=5 (1)

*=0, telo0,T].
Proof. Let X;(s) = Xy + s(X; — X;), s € [0,1]. By the chain rule and (3.1), we have

f(Xf7$Xf)_f(Xt7'$Xt) _l/l{i
o Uds

£ 9

F(XE(3). L) | ds
= [ {Vewl 6 L) (X9 + (BP0 W Lo K5 )6 0D o

Combining this with (3.18) we obtain

=0 < 2/01

(3.20) + 2/01

Ve L) (X (9) — £ 2x) (X0} s

(E(D" f(y, ) (Lxz(5)) (X[ (5)),£(¢))) ‘y:Xf(s)

— (B (5, () (X0, E0))], [0
< 8K (€0 + BIE(D)).
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So, the first inequality in (3.19) holds. Moreover, Lemma 3.3 implies

HmE| sup |Xi(s) — X¢)?| <lImE|X; — X,|* = 0.
10 | ey “10

Thus, the C»(X%9-property of f, Lemma 3.3 and the first inequality in (3.20) yield that
Z5%(t) — 0 in probability as ¢ — 0. Combining this with the first inequality in (3.19), Lemma

3.3, and using the dominated convergence theorem, we derive lim, o ]E‘E?(t) |2 =0. ]

Proof of Proposition 3.2. Let (Z5(t), Ky,) and (Z5(t), K,,) be defined as in (3.17) and (3.18)
for b, and oy replacing f respectively. By (H), there exists a constant C; > 0 such that

sup (Kbt + Kat) < (4 < o0.
te[0,7)

Then Lemma 3.4 gives

=]+ |z <40(lE@))? +ElE@)),

lim =)+ =0 =0, telo,T].

(3.21)

By (3.10), (3.13), and (3.17) for b, and oy replacing f, we have
£ (t) = / {Z5() + Vertobal L) (X)) + (BID 04y, ) (L) (X,), € ()|, Jds
+ / (Z2(5) + Vel Zx) (X) + (B(D 0y, ) (L) (X0) €() |y, AW )

for t € [0,T). So, for any ¢,d € (0, 1], £9(t) := &£5(¢) — £(t) satisfies

2

0 <4 [ 12500 - e Pas+4| [ (=0 - 2h0.am)

t
+4T/
0

+ 4‘ /Ot <Vss»6<s>0s(-7 Zx,)(Xs) + (E(D"oy(y, ) (Lx,)(Xs), £°(5))) |y=x.. dWs>

2

Vees(bs(, L) (Xs) + (E(Dby(y, ) (Lx.)(X,), €7°(5))) [y=x.| ds

2

Combining this with (H) and using the Burkholder-Davis-Gundy inequality, we find out a
constant Cy > 0 such that

E{ sup g%)] < Gy / TJE(\EZ<S) — =) + [E(s) - =i ()| ds

s€[0,t]

t
—I—C’g/ E|¢59(s)[* ds, t € [0,T).
0
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Since Lemma 3.3 ensures that E[supse[oﬁﬂ 55(5)] < 00, by Gronwall’s lemma this yields

,0 CoT g —e =5 2 —e =6 2
IE[ sup && (s)] < (Oye™? /0 E( =5 (s) —:b(s)‘ + ‘:U(s) —:U(s)| )ds.

s€[0,7

Combining this with (3.21) and Lemma 3.3, and applying the dominated convergence theo-
rem, we prove the first assertion in Proposition 3.2.

Finally, by (3.10), (3.12), (3.21) and (3.17) for b;, oy replacing f, we conclude that v, :=
V,X; solves the SDE (3.11). Since this SDE is linear, the uniqueness is trivial. Then the
proof is finished. O

3.3 Malliavin derivative

Consider the Cameron-Martin space
T
H = {h c C([0,T] = RY) : hg = 0, h, exists a.e. L, ||h]|4 = / |hj|2dt < oo}.
0

Let n € L*(Q — RY .%,,P) with .4, = p, and let pur be the distribution of Wy :=
{Witieo,r), which is a probability measure (i.e. Wiener measure) on the path space 6 :=
C([0,T) = RY). For F € L*(R? x €r, pu x pr), F(n, Wior)) is called Malliavin differentiable
along direction h € H, if the directional derivative

F(n, W, h) — F(n, W,
DhF<77, W[O,T}) — lim (n’ [0,7] +e ) (77’ [O,T])

e—0 £

exists in L*(Q,P). If the map H > h — D,F € L*(Q, ) is bounded, then there exists a
unique DF(n, Wiom) € L*(Q — H,P) such that (DF(n, Wior), h)m = D F(n, Wior)) holds
in L?(Q,P) for all h € H. In this case, we write F(n, Wj.r1) € 2(D) and call DF(n, W)
the Malliavin gradient of F(n, W r). It is well known that (D, Z(D)) is a closed linear
operator from L*(Q, Zr,P) to L*(Q — H, %, P). The adjoint operator (D*, Z(D*)) of
(D, 2(D)) is called Malliavin divergence. For simplicity, in the sequel we denote F'(n, W 1)
by F. Then we have the integration by parts formula

(3.22) E(DyF| %) = E(FD*(h)| %), F € 2(D),he€ 2(D").
It is well known that for adapted h € L*(€2 — H,P), one has h € 2(D*) with

(3.23) D*(h) = / T(h;, dws,).

For more details and applications on Malliavin calculus one may refer to [21] and references
therein.

To calculate the Malliavian derivative of X; with Zx, = u € P»(R?), we write X; =
Fy(W.) as a functional of the Brownian motion {W}.cjo,q. Then by definition, for an adapted
h € L*(Q — H,P),

F,(W. +¢h.) — F,(W.)

Dy X, = lim L 0<t<T.
el0 g
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On the other hand, by the pathwise uniqueness of (1.4), see for instances [10, 25, 30],
X["* := F,(W. + ¢h.) solves the SDE

(324) dXZW‘: = bt(Xgl,€7$Xt)dt + O't<Xth7€7 gxt)d(Wt + ght)a Xél’g = XO;

which is well-posed due to (H) and &/ € L*(Q x [0,T],P x dt). When oy(z, 1) does not
depend (z, ;1) this SDE reduces to a random ODE for Y, := X]** — ¢,W,, which is well-
posed also for non-adapted h like h* in Theorem 2.3. The main result of this part is the
following which is well known by regarding (1.4) as the classical SDE, since in (3.24) the
distribution .Zx, does not depend on the variable e.

Proposition 3.5. Assume (H). Let h € L*(Q — H, P), which is adapted if o(z, 1) depends
on x or . Then the limit

XM - X
(3.25) DpX, = lim =t——*,

te€[0,7T]
el0 g

exists in L*(Q — €r,P). Moreover, (w; := D Xy)ieo1] is the unique solution to the SDE

dwf ={ Vi, Zx,)(X) faw,
(3.26)
{ Vi, ) (X0) + 01, L) (X i e, iy = 0.

4 Proofs of main results

We first present an integration by parts formula for V, X7 with n € L?(Q — R, %, P),
then prove Theorem 2.1, Corollary 2.2 and Theorem 2.3 respectively.

4.1 An integration by parts formula

Theorem 4.1. Assume (H) and (2.1). Then for any f € CH(R?), n € L*(Q — R4 P), and
any 0 <r < T and g € C*([r,T]) with g, =0 and gr = 1,

G = (X)) { g + (BD by, ) (L) (X0), 97|, . b € 0,7

(4.1) E((Vf(Xr), V, Xr)| 7)) = E(f(XT> [ . amy

holds for

Proof. Having Propositions 3.2 and 3.5 in hands, the proof is more or less standard. For v}
solving (3.11), we take

t
(4.2) h; = / l{szr}Cs ds, te [O,T]
t

Ar
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By (H), (2.1), and that h € L*(© — H, P) is adapted, Proposition 3.5 applies. Let ¥; = g;v}
for t € [r,T]. Then (3.11) and (4.2) imply

5, = {vﬂtbt(-,gxt)(xt) + (B(D by, ) (L) (X0), 50))] o, + g;vy}dt
+ {vﬁtot(~,$Xt)(Xt)}th
_ {vatbt(-,zxt)(xt) n at(Xt,,s,ﬂXt)h;}dt + {vﬁtat(xt)}dwt, t>r 5, = 0.

So, (0¢)¢>, solves the SDE (3.26) with o, = 0. On the other hand, by (4.2) we have h} = 0
for ¢ < r, so that the solution to (3.26) with w = 0 satisfies w” = 0. So, the uniqueness of
this SDE from time 7 implies ©; = w! for all ¢ > r. Combining this with Propositions 3.2
and 3.5, we obtain

Vo, Xr = v} = grv} = 0p = wh = Dy Xr.

Thus, by the chain rule and the integration by parts formula (3.22), for any bounded .%,-
measurable G € Z(D), we have

E(G(Vf(Xr),V,Xr)) = E(G(Vf(X7), Dy Xr) ) = E(GDnf(X1))

= E(Dp{Gf(X1)} — f(X7)DiG) = E(Gf(X7)D*(h)),
where in the last step we have used D,G = 0 since G is #,-measurable but h; = 0 for ¢ < r.
Noting that the class of bounded .#.-measurable G € (D) is dense in L*(Q,.%,,P), this

implies

E((Vf(Xr), V,X1)|Z,) = E(f(X7)D*(h)|F;).
Combining this with

D*(h) = /TT<h;,th> = /TT (¢, dWy)

due to (3.23) and (4.2), we prove (4.1). O

4.2 Proof of Theorem 2.1

Let p € P5(RY). We first establish (2.3) for f € %,(R?), then construct v € L*(R? — R?, 1)
such that

(4.3) i (Prf)(po (d+¢)™) — (Prf)(i) — n((6:7))]
n(|¢1?)—0 w([6]?)

which, by definition, implies that Prf is L-differentiable at pu with DX Prf(p) = 7.
(a) Proof of (2.3) for f € %,(R?). When f € C}HR?), (2.3) follows from (4.1) for
n = ¢(Xy). Below we extend the formula to f € %,(R%). For s € [0,1], let X* solve (1.4)

for X" = Xo + s6(Xo). We have p* := .i”Xga,s = po (Id + s¢)~!, and by the definition of

=0,
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V., Xt for n = ¢(Xo),

d

(Prf)(*) = (Prf) ) = ELFOX) = 500)) = [ SBLXE) s
(4.4) 0

= | BTN Taxo X ds. 1 € CR)
Next, let (vf’s)te[oj] solve (3.11) for n = ¢(X,) and X} replacing X, i.e.

s O T = b Lo ) (X + (BID by, ) (Lo ) (XP), 00)) | e bt
+{Vpen(XP) JaWs, o = 6(X).

Let

2= () g+ (BIDMh . N Lyp ) XE), 907 _o b2 1€ 0.T]

Then (4.4) and (4.1) imply

46)  (Pef)ute) — (Prf)(u) = /:JE[ﬂX?S) /0 (co, th>] ds, feCLRY),

By a standard approximation argument, we may extend this formula to all f € %,(R?).
Indeed, let

v.(A) :/OE]E{lA(X?S) /OT (¢, th>} ds, A ZBRY).

Then v, is a finite signed measure on R? with

€ T
fdué_:/ E[f(Xfi’s)/ (o, th>} ds, fe ByRY).
R4 0 0

So, (4.6) is equivalent to

(4.7) [ rariee = [ fap= [ av. g ecim)

Since vre i= Piu®® + Piu+ |ve| is a finite measure on R?, C}(R?) is dense in L'(R?, vz,).
Hence, (4.7) holds for all f € %,(R?) C L'(RY vr.). Consequently, (4.6) holds for all
f € %,(RY). Thus,

(48) (PTf)(u¢7€> B (PTf)(:u) _ l/OEE{f(X%S) /OT <C;z>,s’ th>} dS, f e ﬁb(Rd)-

£ 9

It is easy to see from (H) that

lim sup E(|Xt¢’s — X + v — Uf|2) =0.
SHOtE[O,T]
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So,

€

1
(4.9) lim- [ E
el0 € 0

T
/ <t¢’s_<t¢7dvvt> -
0

Combining this with (4.8), we see that (2.3) for f € %,(R?) follows from

(1.10) | (F02) — X} [ (chaw)| =0, f € au(m)

el0

To prove this equality, we denote

:/T@f’,th}, re(0,7).
0

Applying (4.1) with g, := & [r,T] and using (H), we may find out a constant

C(T,r) > 0 such that

E{L{f (X5 — \—\ [ VRO, Vi X7

r € T 2 % 1
< Q2 w8 [ efar) Jas, £ e e

By the argument extending (4.6) from f € C}(R?) to f € %(R?Y), we conclude from this
that for any r € (0,7),

<Einl| / E((V£(X$"), Vo X8| 7:)ds

lim sup [E[L{f(X{) = f(X7)}]| = 0.

40 £l <1
Therefore,
limsup_sup E[{f(X“ Xr)} / <ct,thH
el | fflee<1
(a.1) s sup (B[00~ 106} [ (ctam)|
€ o<1 r

v }
SQ(E/ |gf|2dt) , 7€ (0,7).

By letting ~ T T" we prove (4.10).
(b) For any f € %,(R%), we intend to find out v € L*(R? — R? 1) such that

(1.12) E[f()m / <<f>,dwt>] — 0((6,7)), 6 € LAR = RY, ).
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When f € Cy(R?), in step (c) we will deduce from this and (2.3) that v = DLPpf(u). To
construct the desired ~y, consider the SDE

AX] = bi(X], Lo)dt + (X )AWs, X] = Xo + 6(Xo),

and let v solve (2.2). Since (2.2) is a linear equation for v{ with initial value ¢(X,) €
L2(Q2 — R?, %y, P), the functional

LR R )3 ¢ Lo =E [f(XT) /0 e th>]

is linear, and by (H) and (2.1), there exists a constant C'(7") > 0 such that
|Lo|* < C(T) El¢(Xo)[* = C(T) u(l6*), ¢ € L*(R? — R, pu).

Then L is a bounded linear functional on the Hilbert space L?(RY — R? p). By Riesz’s
representation theorem, there exists a unique v € L?(R? — R%, ) such that

Lo =p((v,9), ¢ € L*(R" =R p).

Therefore, (4.12) holds.
(c) Now, for f € %, (R?), we intend to verify (4.3) for v in (4.12), so that Prf is L-
differentiable with D*(Prf)(u) = «. By (4.8) for ¢ = 1, we have

413 et - (e = [ B[ [ aw), 1 e i,
For R? random variables X, v, let
N,(X,v) = at(X)—l{g;v + (E(D"b,(y, ) (Lx)(X), giv)) |y:X}, t e [0, 7).

Then (° = No(X?%, v%%) and ¢ = N,(X;,v?). Combining this with (4.12) and (4.13), and
noting that u' = po (Id + ¢)™1), we arrive at

(1) Pehlo@d+9)™) - (Prf)(u) = u((,7)

< e1(¢) + e2(9) + e3(0),

(|9l
where
1 1 T

£1(¢) = ——— [ E|(f(XP*) — f(X7p 7 dW) |ds,

)= s [ | - s5) [ am

£ e Ml l]E ' Ni(XP* 0%) — Ny(Xy,0%), dW,)|ds
(¢) M(W)O/Out,) (X0, %), W) ds,
5 e M~ 11@ ' Ny(XP5 0%%) — Ny(XP%, 0?), dW,)|ds.
(o) = g | e v = N o). awy
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It is easy to deduce from (H) that for any p > 2 there exists a constant ¢(p) > 0 such
that

(4.15) sup  E(|X{ = X, + o P Z0) < elp)|o(Xo)].

te[0,77,s€[0,1]
Combining this with the continuity of o;(x) in = uniformly in ¢ € [0, T], we conclude that

4.16 Hm  ey(0) = 0.
(4.16) (|62} -0 2(9)

Next, by the argument deducing (2.3) from (4.8), it is easy to see that (4.15) implies

4.17 lim ¢ = 0.
(4.17) 0 19)

Moreover, by the SDEs for v{* and v{ we have
d(vf’s — vf) = {At(vf’s — vf) + fltvt ’S}dt + {Bt(vf’s — vf’) + Btvf}th,
where for a square integrable random variable v on R¢,
Aw = Vb, Lx,)(Xe) + (E(D"by(y, ) (Lx, ) (Xp), v)) ‘y:Xta
Ay = Vb, Lo () + (B{DMb1(y, ) (Lo (K7),0)) |
= Vibi(, Zx,)(Xe) = (E{D"bi(y, ) (Zx,)(X0), v))|
BtU = VUO't<Xt), Btv = VUO't<XjS7S) — V»UO't(Xt).

y=X¢’

Combining this with (4.15) and (H), there exists a constant ¢ > 0 such that
(4.18) dlof* —vf 2 < efof* —of Pate(| AP+ Boll?) (1o *[P+of 1) dt+dMe, Jvg*—vf] =0
holds for some martingale M;, and that

(4.19) JAIR +1B? < e, lim (AR + |B)?) =0, te[0,T],s€0,1].
1(l9]?)—0

By (4.18) and (4.15) for p = 4, there exists a constant ¢ > 0 such that

E(|of" —vf[*|F0)

t T
< / E(jo?* — of P Zo)dr + 2¢ / VEQAN + 1 B4 Fo) - B (o + o 4].50) dt
0 0
t
<o / E(jo* — o 2| Fo)dr + de(d)|o(Xo) % s € [0, 1],¢ € [0,T],
0

where

)= [ VEROAN + 1B 70 .
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Then Gronwall’s lemma and (4.19) yield

sup E(|vf —of || %) < ¢ee()|(Xo) [,
s€[0,T]

lim Ee =0.
w(|¢l2)—0 <¢)

Combining this with the definition of £5(¢), (H), and Jensen’s inequality for the conditional
expectation E(-|.%), we may find out constants C,Cy > 0 depending on || f||.o and 7" such
that

1
. . Ch /1 (/T )2
lim ¢ < lim —— E vy — oy |7dt | ds
W G =0 /(o) ) 1% o

n(lof? HO\/IT/ (/ (juf* = vf |f0)dt>éd3

u<|<1z>i|£§lﬁom/o E(|6(Xo)|v/=(¢))ds
< lim 02\/(E’¢(X0)|2)E€<¢): . C\/IF

= ulol)=0 1([0]?) u(|8[2) -0

This, together with (4.14), (4.16) and (4.17), implies (4.3). Therefore, Prf is L-differentiable
at p with DY(Prf)(u) = ~.
(d) Finally, (2.3) and (4.8) imply

)
‘Pz’iuo (1d +e¢)' —
g

_ ‘ (Prf)(u*) —

€

P;u( - (¢P§iu)(f)‘
(Prf)(w) _E[f(XT) /OT<€5’,th>H

T
E S — ¢ AW,
| e = ctawy

ds

1 A r
+ 2Elon - oy [ gram] as
Combining this with (4.9) and (4.10) we prove (2.4).
4.3 Proof of Corollary 2.2
Proof of (1). By (H) and (2.2), there exists a martingale M, such that

(4.20) Al |? < 4K o |(|of | + Elof dt +dMy, - |og | = 6(Xo)I?,

where K (t) is increasing in ¢t > 0. Then
t t
Efo?|? < E|¢(Xo)? + 4K, / ([ + (E[o?])?}ds < u(|6P) + 8K, / EJo?*ds.
0 0

23



By Gronwall’s inequality this implies
(4.21) Elvf[* < e u(|g), te[0,T].

Next, since E fOT <§f’, dW;) = 0, (2.3) is equivalent to

DL (Prf)(p [{fXT Prf(u }/ <gt,th>}

Combining this with (4.21) and using Jensen’s inequality, when u(]#|?) < 1 we have
DAL < (P00~ (s} [ EIG

< [P/ () — (Prf(i)?) / (1] + F (1) ge]) N2 at

for any g € C'([0,7]) with go = 0 and gr = 1. Taking g, = &, t € [0,7], we prove the

estimate (2.5). O

Proof of (2). Let f € %,(R%) with | f|l.e < 1. By Theorem 2.1, Prf is L-differentiable.
Moreover, by Theorem 4.1, Prf is Lipschitz continuous on %2, (R?). Indeed, for any juy, ps €
Py(RY), let X1, X, € L2(Q — RY, F,P) such that Ly, = p;, 1 <i <2, and E|X; — X,|> =
Wy (p1, 12)?. Let X} be the solutlon to (1.4) with Xy = X7 + s(X3 — X1),s € [0,1]. Then

Theorem 4.1 implies
/ "dprixa
— s
o ds r
2

< B|Xp — Xi|* = W, o)’

2

|Prf(u1) — Prf(u)|* = Ef(XD) —Ef(Xp)? =

1
/ E<vf(X18“)v vX2—X1‘XV%>C18
0

for some constant ¢ > 0.
To apply Proposition 3.1, we take {jin, Vp fn>1 C Po(R?) which have compact supports
and are absolutely continuous with respect to the Lebesgue measure, such that

(4.22) nhl?o {Ws(p, pn) + Wa(v, 1)} = 0.

According to [5], see also [7, Theorem 5.8], for any n > 1 there exists a unique map ¢, €
L*(R? — R?, 1) such that

(4.23) Vi =t 0 (Id + 0) ™", Wa(ttn, v0)* = pn(|6nl?).

Let X, € L?(2 — RY, %, P) such that Zx, = p,,. By Proposition 3.1, (2.5) and (4.23), we
obtain
2

(Prf) (1) — (Prf) ()] \ / (Prf) (Lo y) s
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2

_ ‘ / E(D*(Prf)(Lsson) (Xn + 562(X0)), 60(X)) ds

< M0l _ IS IEWalptn, vn)?

TN e s [T et

By the continuity of Prf and (4.22), by letting n — oo we prove

_ )2 WQ(M? V)Q
(P = (PN < 2 5

Therefore, (2.6) and (2.7) hold. O

y MV € QQ(Rd)a .f € ‘@b(Rd>ﬂ HfHOO S L.

4.4 Proof of Theorem 2.3

Let T > 1 > 0,u € P5(R™ ) and let X; solve (2.8) with .Zx, = p. To realize the procedure
in the proof of Theorem 2.1 for the present degenerate setting, we first extend Theorem 4.1
using D*(hy}.) to replace f?((’f ,dW,), where for a C([r, T] — R™¢)-valued random variable

a. = (a.(l), a.(z)), let (hg;, wy;)ier.r) be the unique solution to the random ODEs

dhe
Tt =0 Vb (X, Z) - ()
(1.24) + (ED () (L) (), +ui)) ]y,
dwy
dti = Ve, bi( Zx,)(X0) + (0, 00(h,)'),  hil, =0, = 0.

Theorem 4.2. Assume (H1). Let T > r > 0, n € L*(Q — R™ %, P), and let X,
solve (2.8) with Lx, = p € Po(R™ ). If there exists a C'([r, T] — R™")-valued random

variable a. = (oz.(l), oz.(Q)) such that o, =V, X, ar =0,

(4.25) (V) = Vo, b (X,), telrT],
and he. € P(D*), then for any f € C}(R™),
(4.26) E((V £(Xr), V, X0)| 2) = E(F(Xr) D' (h2)] 7).

Proof. Letting w; = w1y, Proposition 3.5 implies that w; = Dpe Xy, ¢ € [0,7]. By
(4.24), we have

wy = /t {szbs(-,gxs)(Xs) + (O,US(hff’S)’}ds, t€0,7].

AT

Extending a; with oy := V, X; for t € [0,7), and letting v; = w; + o for any ¢ € 0,77, we
obtain
t

(o) T / {Vube, 2 (X0) + (0, (B (y,)(Lx)(X,), v))],_y.)

+ (07 Us{h?)/ - (]E(Dngz)(y, ')(ng)(XS)7 ws + O‘S>) |y:Xs) - VasbS('7 fxs)(Xs)}dS-
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By (4.25),
t
/ Vo, bV (25 ) (X) ds = s (o) — v, X)),
tAT

while the definition of i, implies

/t {ou(h2) = (B(D"HO (5, ) (L) (X), w0, + )|y, = Vb Zx)(X,) s

AT B

t
= _/ (0422))/(15 = lgysry (VWX7€2) - O‘§2))-
t

AT

Combining these with (4.27) and Proposition 3.2 leads to

t

v =V, X, + / (V0o Z) (X0) + (0, (DM (y, ) (L) (X)) |,y ) s

tATr

- / V02X + (0, (BID (. )(Z) (X)), ) s, € [0.7].

That is, v; solves (3.11) so that by Proposition 3.2 we obtain v, := w; + oy = V, X;. Since
ar = 0, this implies Dpe X7 = V, X7. Thus, for any bounded .%,-measurable G € Z(D),

E[G(Vf(Xr),V,Xr)] = E[GDpe f(Xr)

(4.28) _ E[Dhg“{Gf(XT)} — f(XT)Dh;{,G] = E[Gf(XT)D*(hg,.)]a

where in the last step we have used the integration by parts formula (3.22) and Dje G =0
since (G is .%,-measurable but

Dy G = / (h2.)(5) - {(DG) Y (s)ds = 0,

(hg.)'(s) = 0 for s < r. Noting that the class of bounded .#,-measurable functions G € (D)
is dense in L?(, Z,,P), (4.28) implies (4.26). O

Proof of Theorem 2.3. With Theorem 4.2 in hands, the proof is completely similar to that
of Theorem 2.1. Let

Uf) = ((v?)(l)v (Uf)@)) = (V¢(X0)Xt(1)7 V¢(X0)Xt(2)) = V¢>(X0)‘Xt’ te [O’T]'

For any 0 <7 < T, let

T — ¢ t—r)(T —t)BK* T
o) =E =Ly T OB [P 116y, (0 Vs
o T—r fT62ds ¢ 00 ’
(4.29) 0o
T —s
— (t—r)(T —t)B; K;,Q7" / = K7 VP (X)) (Xo)ds, t e [r,T),
0
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and
t
(4.30) ot = Ky (v))® + / K V00 (Xo(@) ds, ¢ € [, T).

Then a,.. := (ozSt), ozgt)) satisfies

Q= Voxg)Xr, app =0,
and by (2.9) and Duhamel’s formula, (4.30) implies
(@) (t) = Va, b1 (X0), €[]

Moreover, let h;"" be defined in (4.24) for «,. replacing a. Noting that (H1) and (H2)
imply [31, (H)] for I; = Iy = 0, the proof of [31, Theorem 1.1] with ¢(s) := (s —r)(T — s)
for s € [r,T] ensures that h."" € 2(D*) with D*(hy."") € LP(P) for all p € (1,00). So, by
Theorem 2.3 with n = ¢(X,) we obtain

(4.31)  E((Vf(Xr), Voxo X)) = E(f(Xr) D* (W) | F,), | e Cy(RY),r€[0,T).
In particular, taking » = 0 we obtain D*(h) € LP(P) for all p € (1,00) and
(432)  DgPrf(p) = E(V(Xr), VouxyXr)) = E(f(Xr)D*(h")|F,), f € Cj(RY).

Basing on these two formulas, by repeating the proof of Theorem 2.1 with I, := E(D*(h®)|-%#,),
we prove (2.16) and the L-differentiability of Prf for f € %,(R™*%). Finally, the estimates
(2.17) and (2.18) follows from (2.16) as in the proof of Theorem 2.1, together with the cor-
responding estimate on E|D*(h®)|? as in the proof of [31, Theorem 1.1]. For instance, below
we outline the proof of (2.16).

Firstly, for s € (0,1) let X} solve (2.8) with X = X, + s¢(Xy), let p®* = &

xX& =
po (Id+ ¢)~', and let Osz be defined as a,; with X* replacing X,. Then as in (4.4) and

(4.7), (4.32) implies

(Prf) () = (Prf) o) = [ BUTI), Vo X7 ds
(4.33) 0

= [(Elsexiopnen). s e cjme,

9,5
b5 afe
where h®"" := h>" satisfies

(4.34) M%MD%W“)—D%mP:o
s—
By the argument leading to (4.8), (4.33) yields

(PTf)(/ﬁ’g)e_ (Prf)(p) — é/an[f(X?S)D*(ha‘“)} ds, fe e@b(Rerd).
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Combining this with (4.34), we prove (2.16) provided

€

(4:35) i~ [ BIUOG) — £} D ()] ds =

For any r € (0,7), let I, = E(D*(h*)|-%,). By (4.33) we obtain
E[{f(X77) = f(X0)}L] = E[LE(f(X7) = f(X1)|. 7))
= E[Ir /EE(<Vf(X$S) VX)) Zr) ds] = [1/ E(f(X3*)D*(her)| ;) ds

:/OEE[ITf(X%S)D*(hgv)} ds, f e CHRY).

Combining this with the argument extending (4.8) from f € C}(R?) to f € %B(RY), we

obtain
B[{(X7) ~ FOI] = [ BILACGOD )] ds. £ € A(R)
Consequently,
I E[{f(X") — F(X)}L] =0, f € B(RY,r € (0,T).

Then for any r € (0,7),

1 boy _ c ] ds
hrr:isoup 8/0 E[{f(X7") = f(X7)}D*(h*)] d
= timsup | [ E[(70X) = 7)) D" (%) = 1}] s

< 2[|flloE[D*(R*) — E(D*(h*)[-#)].

Letting r T T we derive (4.35), and hence prove (2.16) as explained above.

]
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