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SUMMARY 

In this work, the recently proposed unsymmetric 4-node 12-DOF (degree of freedom) membrane 

element [1], which has demonstrated excellent performance for the classical elastic problems, is 

further extended for the modified couple stress theory, to account for the size-effect of materials. 

This is achieved via two formulation developments. First, by using the penalty function method, the 

kinematic relations between the element’s nodal drilling DOFs and the true physical rotations are 

enforced. Consequently, the continuity requirement from the modified couple stress theory is 

satisfied in weak sense, and the symmetric curvature test function can be derived from the gradients 

of the drilling DOFs. Secondly, the couple stress field that satisfies a priori the related equilibrium 

equations is adopted as the energy conjugate trial function to formulate the element for the modified 

couple stress theory. As demonstrated by a series of benchmark tests, the new element can 

efficiently capture the size-dependent responses of materials and is robust to mesh-distortion. 

Moreover, as the new element uses only three conventional DOFs per node, it can be readily 

incorporated into the standard finite element framework and commonly available finite element 

programs. 
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penalty function 

  

1. Introduction 

There is mounting evidence for strong size effects of materials, especially when the deformation 

takes place at the microscale or below. For instance, Fleck et al. [2] conducted a torsion test on 

copper wires and discovered the shear strength increases as the wire diameter decreases; Lam et al. 



 

[3] reported the flexural rigidity of a micro epoxy beam varies with respected to the structure size. 

Similar phenomena have also been observed in other experiments [4-8]. The classical continuum 

theory cannot capture such size effects, because it assumes the material is homogeneous and only 

the force can be transmitted to infinitesimal surfaces, which may no longer be valid at small length 

scales. New continuum theories are needed to describe these size-dependent deformation behaviors.  

Since the pioneering work of Cosserat brothers [9], substantial efforts have been made to 

investigate the size effects related to material deformation, resulting in a diverse range of continuum 

theories. Mindlin [10] developed a microstructure theory that contains eighteen material constants 

for an isotropic material, and it was later simplified into the strain gradient theory [11] that contains  

two Lamé coefficients and five additional material constants. Fleck and Hutchinson [12] extended 

this theory into the plastic strain gradient theory. Aifantis [13] also developed a non-local theory for 

plastic materials. Lam et al. [3] modified the strain gradient theory so that it only requires three 

additional material constants. Also, by eliminating the difference between micro-rotation and 

macro-rotation in the Cosserat theory [9], Koiter [14], Mindlin and Tiersten [15] and Toupin [16] 

proposed the couple stress theory that contains only two additional constants, which has been 

proved to be a special case of the strain gradient theory [11].  

To support practical use in engineering applications, many attempts [17-21] have been made to 

further reduce the number of additional material constants required to describe the size-dependent 

behavior. Among them, Yang et al. [21] proposed the modified couple stress theory, in which only 

the symmetric terms of curvatures are considered for contribution to the deformation energy. The 

modified couple stress theory requires just one additional material parameter to describe the 

size-dependent deformation, and has become increasingly popular in recent years due to its 

simplicity and verifiability.  

It is hard to solve analytically the size-effect related problems, because the size-dependent 

continuum theories are much more complicated than the classical elasticity theory. The finite 

element method (FEM), which is generally regarded as the most efficient and popular numerical 

tool for modelling solids [22], provides a promising solution [23-27]. However, due to the presence 

of the second-order derivatives of displacements in these size-dependent continuum theories, the 

displacement-based FEM simulation requires C1 continuity for the displacement interpolation. This 

brings a significant challenge to the element construction and complicates the element formulation. 



 

For instance, Zervos et al. [28] and Papanicolopulos et al. [29] developed strict C1 elements for the 

strain gradient theory but due to some inherent drawbacks [30], these complex C1 elements can only 

be used in certain restricted cases.  

Alternatively, Ma and Chen [31, 32] developed 3-node triangular and 4-node quadrilateral hybrid 

stress element models which have six DOFs (degrees of freedom) per node, including two 

displacements and four displacement derivatives. In these hybrid elements, the C1 continuity 

requirement is satisfied in weak sense. Zhao et al. [33, 34] and Wang et al. [35, 36] also proposed 

similar elements based on the refined nonconforming element method and the quasi-conforming 

element method, respectively. However, such treatments with both displacements and their 

gradients taken as nodal DOFs may significantly increase the computational cost at the element 

level. Moreover, it is inconvenient to incorporate such elements into the standard FEM framework 

or commercial FEM software. An effective approach to simplify the element formulation is to 

introduce the independent rotation or drilling DOFs [37, 38]. In this approach, the penalty function 

method [39, 40] or the Lagrangian multiplier method [30, 41] is usually employed to constrain the 

kinematic relations between the independent rotation DOFs and the physical rotations derived from 

displacements, so that the C1 continuity requirement is met in weak sense.  

Recently, Shang and Ouyang [1] proposed a simple and robust 4-node 12-DOF quadrilateral 

membrane element US-Q4 for the classical elastic problems based on the unsymmetric finite 

element method [42-44]. The unsymmetric FEM, which has been successfully applied to various 

applications in past years [45-49], employs different interpolations for the test and trial functions in 

the element formulation. Demonstrated by numerical tests [1], the element US-Q4 exhibits good 

numerical accuracy and resistance to mesh distortions, even when the element shape is severely 

distorted into concave quadrilateral or triangle. In this work, the unsymmetric US-Q4 element, 

originally designed for classical elastic problems, is further developed to model size-dependent 

material responses based on the modified couple stress theory [21]. Since the US-Q4 element uses 

the drilling DOFs, the key step here is to introduce a proper penalty function to ensure the nodal 

drilling DOFs effectively approximates the true physical rotations. Then, the test function for the 

symmetric curvature in the virtual work principle can be readily determined as the derivatives of 

these drilling DOFs. Meanwhile, the trial function for the couple stress, which conjugates with the 

curvature test function, can be directly formulated following the analytical trial function method [50] 



 

and the quasi-conforming technique [51, 52]. Developed for the modified couple stress theory, the 

new element, renamed as US-Q4-CS, is expected to work with size-dependent problems with good 

numerical precision and high resistance to mesh distortion. Moreover, as the new element still has 

only two translational DOFs and one drilling DOF per node, it can be easily incorporated into the 

standard FEM framework and commercial FEM software.  

The remainder of this paper is organized as follows. The modified couple stress theory proposed 

in [21] is briefly reviewed in Section 2. Next, the element formulation is explained in Section 3 and 

several numerical benchmark tests are presented in Section 4 to validate the new element’s capacity. 

Finally, some conclusions and discussions are drawn in Section 5. 

 

2. Overview of Modified Couple Stress Elasticity Theory 

2.1. General governing equations 

In the modified couple stress theory [21], the strain components 
ij

  and the rotation components 

i
  are defined as the spatial derivatives of displacement 

i
u :  
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where 
ijk

e  is the Levi-Civita symbol. Different from the classical couple stress theories [14-16] in 

which both symmetric and anti-symmetric parts of rotation gradients contribute to the deformation 

energy, only the symmetric part is considered in Yang’s modified couple stress theory [21]. Then, 

the symmetric curvature components 
ij

  are defined as   
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For a linear elastic isotropic material, the stress 
ij

  and the couple stress 
ij

m , which are work 

conjugates of the above strain and curvature respectively, can be obtained using the constitutive 

relations: 
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in which   and G  are the two Lamé constants in Cauchy elasticity, l  the additional material 

length scale parameter, and 
ij

  the Kronecker delta. The higher-order equilibrium equations are 

expressed as 
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where 
k

f  denotes the body force per unit volume. The body couple force is not included in 

Equation (4), because it can be decomposed into an equivalent system of body force and surface 

force [53]. 

 

2.2. Two-dimensional problem 

As discussed in [54], the curvature terms produced by the thickness-direction displacement 

contribute to the deformation energy in the modified couple stress theory, therefore the plane stress 

state cannot be accurately simulated through a two-dimensional simplification. Thus, only the plane 

strain state is considered in this work.  

In the following sections, x- and y- are used to represent the two in-plane directions, while z- 

refers to the thickness direction. Correspondingly, the three displacement components are denoted 

as u, v and w, respectively. Under the plain strain assumption, the nonzero strain and curvature terms 

can be expressed in the following vector forms: 
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in which 
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The coefficient “2” in Equation (6) is to consider the symmetry of the curvatures. The stress and 

couple stress can be obtained by using the constitutive equations: 
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in which E denotes Young’s modulus,    Poisson’s ratio and ( )2 1G E = + . 

 

3. Finite Element Formulation  

3.1. Virtual work principle for unsymmetric FEM 

The unsymmetric FEM is developed following the virtual work principle and it employs different 

interpolations for the element test and trial functions. With respect to the proposed membrane 

element model for the modified couple stress theory, the virtual work principle incorporating the 

penalty term can be expressed as 
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in which   is the domain bounded by  ; t is thickness; f  denotes the body force vector; R  

and z
M  represent respectively the prescribed external force and couple force at the boundary; u  

is the test function for displacement, and ε  and χ  are the test functions for strain and symmetric 

curvature; z
  is the test function for the physical rotation, independently interpolated by the 

element nodal drilling DOFs; σ̂  and m̂  are the trial functions for stress and couple stress, 

respectively.  

Moreover, the last term in Equation (12) is the penalty function term, which constrains the 

kinematic relations between the independently assumed rotation z
  and the one derived from 

displacement u . By adding the penalty function term, the rotation z
  can effectively reproduce 

the true physical rotation. This will be discussed in more details in Section 3.2.3. 



 

 

3.2. The new unsymmetric element US-Q4-CS 

As stated above, the proposed element is directly developed from the existing high-performance 

4-node element US-Q4 [1] which is proposed for classical elastic problems. As shown in Figure 1, 

the new element still has three DOFs per node: 
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3.2.1 The element’s test functions 

In this work, the test function for displacement is also determined by using the concise 

interpolations proposed in [1], which can meet the requirements of interelement compatibilities for 

any distorted geometry: 
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where ( ),
i i

x y  are the Cartesian coordinates of node i; ( )1 ~ 4
i

N i =  are the shape functions of 

the standard 4-node isoparametric element: 
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in which ( ),   are the isoparametric coordinates. Then, by substituting Equation (14) into the 

displacement-strain equations, the test function for strain can be obtained: 
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As previously discussed, z
  is independently interpolated by the element nodal drilling DOFs: 

 
e

z
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 = N q , (21) 

with  
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Because the penalty function method is employed to minimize the difference between z
  and the 

physical rotation derived from displacement u , the physical rotation can be approximately 

replaced by z
  for the finite element implementation. Therefore, the test function for symmetric 

curvature can be expressed as: 
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in which 
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3.2.2 The element’s trial functions 

Similar to the original US-Q4 element [1], the trial function for stress of the proposed new 

element, as work conjugate of the strain test function, is also formulated based on the Airy stress 

solutions. Since the detailed discussions can be found in [1], the derivation procedure is only briefly 

summarized here. First, the stress field σ̂  in Equation (12) is initially assumed as  
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  1 2 3 4 5 6 7

n
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Secondly, to determine the relations between the unknown coefficients in Equation (28) and the 

element nodal DOFs in Equation (13), the following quasi-conforming condition is employed: 
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in which ε  and n
D  are defined by Equation (18) and Equation (10), respectively. Then, the stress 

σ̂  can be rewritten in terms of 
e

q : 
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The trial function for couple stress of the new element, which is work conjugate of the curvature 

test function as shown in Equation (12), can be obtained by following a similar procedure. The 

couple stress field m̂  is initially assumed as the following form: 
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Then, the quasi-conforming technique [51, 52] is employed once again to determine the relation 

between the unknown coefficients in Equation (36) and the element nodal DOFs, as follows: 
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Substituting Equation (23) and Equation (34) into Equation (37) yields:  
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Finally, substitution of Equation (38) back into Equation (34) yields 

 ˆˆ c e
=m S q , (41) 

with 

 
1ˆ c c

c c

−
=S H M V . (42) 

It should be noted that, the stress field σ̂  defined in Equation (30) and the couple stress field m̂   

defined in Equation (41) can satisfy a prior the related governing equations,  making them a good 

choice for the stress interpolation.  

 

3.2.3 The penalty function  

Since the test function for rotation z
  is independently interpolated by the element nodal 

drilling DOFs, as shown in Equation (21), it differs from the physical rotation derived from the 

displacement u . Specifically,   in Equation (12) has the following expression:  
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By substituting Equation (14) and Equation (21) into Equation (43), we can rewrite it as 
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The penalty function method is used in this work to enforce the constraint 0 = . The penalty 

parameter should be set large enough to enforce the constraint at an acceptable level and in general, 

the constraint will be satisfied more strictly as the penalty parameter k  increases. According to 

dimensional analysis, the penalty parameter k  should be proportional with G. Parameter studies 

have been performed to test the influence of the penalty parameter with respect to mesh size and 

mesh distortion. The numerical results indicate that the solutions are independent from the penalty 

parameter when 
4

10k G  . On the other hand, the penalty parameter should not be overly large 

because it may make the stiffness matrix ill conditioned. Therefore, it is suggested to keep the ratio 

k G  less than 7
10 . 

 

3.2.4 The element stiffness matrix 

By substituting the related equations into the virtual work principle in Equation (12), the element 

stiffness matrix and the equivalent nodal load vector can be obtained as: 
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After solving the element nodal DOFs 
e

q , the stress and couple stress at an arbitrary point within 

the element can be calculated using Equation (30) and Equation (41). 

Note that, as the independently assumed rotation z
  and the physical rotation derived from 

displacements have different orders of interpolation, severe locking behavior may be observed 

when full-integration scheme is used for the last penalty stiffness in Equation (47). To overcome this 

problem, the selective reduced integration procedure suggested in [39] is employed here: the last 

penalty term is calculated by using the one-point Gauss quadrature strategy, whilst other 

integrations are operated by using the full quadrature scheme.  

 



 

4. Numerical Validation  

In this section, several benchmark problems are solved to examine the performance of the proposed 

element US-Q4-CS for modeling the size effect. The penalty parameter is set as 
5

10k G =  in all 

benchmark tests, except where otherwise stated. 

  

4.1. The test for rigid body rotation  

Figure 2 shows a square block with an edge length L= 2 mm modeled by using four elements. 

To produce a rigid body rotation, two cases with different boundary conditions are considered. The 

first one is to make u1=v1=0 and 1=0.1 at the central node 1, and the second is to make u1=v1=0 at 

node 1 while v2=0.1mm at node 2. In the context of small deformation problems, the rotational 

angles should be 0.1 at all nodes in these two cases. The numerical results listed in Table 1 verify 

that the proposed new element can correctly reproduce the rigid body rotation motions. 

 

4.2. The cantilever thin beam 

As shown in Figure 3, the benchmark proposed in [54] is solved, in which the cantilever thin 

beam is subjected to a tip shear load. The reference flexural rigidity for the modified couple stress 

theory is given by [54]:  
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where A is the cross-sectional area and I is the area moment of inertia. The flexural rigidity obtained 

by finite element analysis can be evaluated by  
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in which max
v  is the maximum vertical tip displacement. 

 First, the convergence properties of the new element are tested. The beam height h is set as 20m. 

Three cases with different material length scale parameters l=17.6m, 13.2m and 8.8m are 

considered. The computations are repeated by successively refining the basic mesh 110 given in 

Figure 4(a) into 220, 440 and 880. The relative errors of the flexural rigidity are shown in 

Figure 5, in which the results from another 4-node 12-DOF quadrilateral element proposed by 



 

Garg and Han [39] are also plotted for comparison. It can be observed that Garg and Han’s 

element experiences the locking problem in the coarse mesh 110. The main reason for this is the 

element’s displacements are interpolated by the standard isoparametric interpolation. In contrast, 

the proposed element US-Q4-CS converges very rapidly and is free of shear locking. 

Secondly, the influence from mesh distortion is checked by using the distorted meshes as 

illustrated in Figure 4(b) and Figure 4(c). The beam height h is 20m, the material length scale 

parameters l is 17.6m and the distortion parameter  is set as 10m. As shown by the results in 

Figure 6, the new element can also converge well in distorted meshes. 

Moreover, to further assess the new element’s robustness to mesh distortion, the coarse 

trapezoidal mesh 110 is tested again, by varying the distortion parameter  from -20m to 20m. 

Figure 7 shows the variation of the normalized flexural rigidity with respect to the distortion 

parameter. It can be seen that the maximum deviation is less than 4%, confirming that the proposed 

new element has low susceptibility to mesh distortion. 

  Next, the influence on the flexural rigidity from the structure size is studied by using the refined 

regular mesh 440. Four different values of height h=20m, 38m, 75m and 115m are examined. 

As shown in Figure 8 and Table 2, the numerical results are in good agreements with the theoretical 

reference values, proving that this new element can effectively capture the size effects.  

  Finally, parametric studies are performed to assess the influence of the penalty parameter on the 

numerical results with respect to mesh size and mesh distortion. The material and dimension 

parameters are set as h=20m and l=17.6m. The ratio of penalty parameter k to shear modulus G is 

varied from 10 to 107. Table 3 lists the results obtained by using regular meshes with different mesh 

sizes, while Table 4 summarizes the results obtained by using the three distorted meshes 110 

shown in Figure 4. It can be concluded that the solutions are independent from the penalty 

parameter when the ratio 
4

10k G  . 

 

4.3. The simple shear problem 

As shown in Figure 9, a slender rectangular panel is clamped from the bottom. On the top surface, 

the y- direction displacement and rotation are restrained while the x- direction displacement is 

constrained to the prescribed constant value U=1m. The analytical solution for the modified 



 

couple stress theory has been obtained Park and Gao [55]: 
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and l is the material length scale parameter. Accordingly, the analytical shear strain can be expressed 

as follows 
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This rectangle is meshed into 10100 elements and three different material length scale 

parameters, i.e., l=176m, 17.6m and 8.8m, are considered. Figures 10 and 11 present 

respectively the displacement u  and the shear strain xy
  along the y- axis. The numerical results 

agree well with the reference solutions, confirming once again that the proposed new element can 

correctly capture the size effects. 

 

4.4. The square plate with a hole 

In this example, a large square plate containing a circular hole is loaded by uniform uniaxial 

tension, as shown in Figure 12. Owing to symmetry, only a quarter of the structure is modeled and 

the corresponding symmetric boundary conditions are applied. Figure 13 shows the meshes 

employed for FE analysis. 

Figure 14 shows the stress concentration factors for different ratios of the material length scale 

parameter to the hole radius. It is observed that the stress concentration factor decreases with as the 

length scale parameter decreases. Moreover, the stress x and the couple stress mx in the vicinity of 

the hole are obtained by using 512 elements, as shown in Figure 15 and Figure 16. It can be 

observed that as the material length scale parameter increases, the couple stress concentration 



 

becomes more pronounced whist the stress concentration phenomenon is relieved. 

 

4.5. The bracket 

The bracket model proposed in [54] is modified in this study to assess the performance of the new 

element for practical FE analysis. As shown in Figure 17, the bracket is fixed at its left hole while 

the right hole is constrained with a vertical displacement U. To study the size effect, two cases with 

different material length scale parameters l=176m and 17.6m are considered. The shear stress xy 

and the couple stress mx calculated using 1822 elements are plotted in Figures 18 and 19, 

respectively. It can be observed that, as the material length scale parameter increases, the shear 

stress reduces in magnitude while the couple stress increases, implying that the couple stress plays 

an increasingly significant role in energetics. 

 

5. Conclusions  

In this paper, an unsymmetric 4-node 12-DOF quadrilateral membrane element is proposed for the 

modified couple stress theory. The new element is directly developed from the high-performance 

element model US-Q4 with drilling DOFs [1]. Specifically, the nodal drilling DOFs in the original 

US-Q4 element formulations are constrained by the penalty function method to approximate the 

physical rotation. Therefore, the test function for the symmetric curvature can be simply derived 

from these nodal drilling DOFs. Meanwhile, the trial function for the couple stress, which 

conjugates with the curvature test function, is formulated following the analytical trial function 

method. To overcome the locking problem, the penalty stiffness term is evaluated by using the 

one-point Gauss integration strategy. The proposed new element, named as US-Q4-CS, has the 

following characteristics: 

(i) This element is developed within the framework of the unsymmetric finite element method. 

The construction procedure is straightforward and the resulting element formulation is concise. 

Numerical benchmarks verify that this element can effectively simulate the size-dependent 

responses with good robustness to mesh distortions. 

(ii) According to dimensional analysis, the penalty parameter k  should be proportional with G . 

Parametric studies have been performed to test the influence of the penalty parameter with 

respect to mesh size and mesh distortion. The numerical results indicate that the solutions are 



 

independent from the penalty parameter when 
4

10k G   for all cases tested in this work. 

Thus, this value can be regarded as an approximate lower limit for the penalty parameter. 

Moreover, the penalty parameter should not be too large because it may make the stiffness 

matrix ill conditioned. It is suggested that the value of k G  is set as less than 7
10 . 

(iii) Different from Garg and Han’s 4-node 12-DOF element [39] in which the rotation DOFs are 

used only to approximate the physical rotation, the proposed new element employs the nodal 

rotation DOFs not only to determine the test function for physical rotation but also to enhance 

the test function for displacement. Besides, the new element’s trial functions for stress and 

couple stress are designed using the analytical functions which can a prior satisfy the 

equilibrium equations. Numerical results show that the proposed new element has much better 

performance than Garg’s model, and is free of shear locking in beam bending problems. 

(iv) Compared with those elements [31-36] that employ both displacements and displacement 

derivatives as nodal DOFs, the proposed new element has only three conventional DOFs per 

node. Thus, it is computationally cheaper at the element level and can be readily incorporated 

into the standard finite element program for practical applications. For instance, this element 

can be easily implemented in the commonly used commercial software Abaqus [56] through 

the user-defined element (UEL) subroutine. 

(v) This new unsymmetric element is directly developed from the virtual work principle. It can be 

further extended to nonlinear analysis by using the incremental form and adopting an 

appropriate algorithm for updating the stress trial functions [46]. The related topic will be 

discussed in our future papers. 
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Table 1. Rotation results of the test for rigid body rotation  

 Node 1 2    

 

Case A 0.1 0.1 0.1 0.1 0.1 

Case B  0.1 0.1 0.1 0.1 0.1 

 

 

  



 

Table 2. The relative errors of flexural rigidity using the regular mesh 440  

 h=20m h=38m h=75m h=115m 

l=17.6m 0.127% 0.686% 1.065% 1.154% 

l=13.2m 0.386% 0.881% 1.132% 1.175% 

l= 8.8m 0.725% 1.064% 1.173% 1.186% 

  



 

 

 

Table 3. The normalized flexural rigidity with different penalty parameters and different mesh sizes 

of the regular mesh (h=20m and l=17.6m) 

k/G 10 102 103 104 105 106 107 

110 1.00627 1.00673 1.00678 1.00678 1.00678 1.00678 1.00678 

220 1.00240 1.00278 1.00282 1.00283 1.00283 1.00283 1.00283 

440 0.99974 1.00090 1.00122 1.00127 1.00127 1.00127 1.00127 

880 0.99863 0.99989 1.00016 1.00019 1.00019 1.00019 1.00019 

  



 

 

 

Table 4. The normalized flexural rigidity with different penalty parameters and different basic 

meshes 110 (h=20m and l=17.6m) 

k/G 10 102 103 104 105 106 107 

Mesh (a)  1.00627   1.00673  1.00678  1.00678  1.00678  1.00678  1.00678 

Mesh (b) 1.02515 1.02562  1.02567  1.02568  1.02568  1.02568  1.02568  

Mesh (c) 1.01206  1.01251  1.01256  1.01256  1.01256  1.01256  1.01256  

 

  



 

 

  

Figure 1. Unsymmetric 4-node 12-DOF quadrilateral membrane element 
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Figure 2. The test for rigid body rotation  
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Figure 3. The micro cantilever thin beam 
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Figure 4. Three typical basic meshes 110 for the micro cantilever thin beam 
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Figure 5. The relative errors of flexural rigidity using the regular 

mesh shown in Figure 4(a) with h=20m 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 6. The relative errors of flexural rigidity using different distorted meshes 

(h=20m, l=17.6m and =10m) 



 

 

  

Figure 7. The normalized flexural rigidity versus the distortion parameter using 

the trapezoidal mesh 110 with h=20m and l=17.6m 



 

 

  

Figure 8. The flexural rigidity versus the beam thickness using the 

regular mesh 440 



 

 

  

Figure 9. The simple shear problem 

E=1.44GPa, =0.38, h=100m, L=10h, width b=10h, U=1m 
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Figure 10. Distribution of displacement u along x=0 of the simple shear 

problem using the mesh 10100 



 

 

  

Figure 11. Distribution of shear strain xy along x=0 of the simple shear 

problem using the mesh 10100 



 

 

  

Figure 12. Square plate with a hole under uniform tension 
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Figure 13. Meshes used for the square plate with a hole  

(a) 128 elements (b) 288 elements (c) 512 elements 



 

 

  

Figure 14. The stress concentration factor versus l/r obtained by 

using different meshes  



 

 

  

Figure 15. The stress x near the hole, obtained by using 512 elements 

(a) l/r=1 (b) l/r=0.01 



 

 

  

Figure 16. The couple stress mx near the hole, obtained by using 512 elements 
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Figure 17. The geometry of the bracket 
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Figure 18. The shear stress xy of the bracket 
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Figure 19. The couple stress mx of the bracket 
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