

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in: *Science of The Total Environment*

Cronfa URL for this paper: http://cronfa.swan.ac.uk/Record/cronfa50175

Paper:

Jones, J., Börger, L., Tummers, J., Jones, P., Lucas, M., Kerr, J., Kemp, P., Bizzi, S., Consuegra, S., et. al. (2019). A comprehensive assessment of stream fragmentation in Great Britain. *Science of The Total Environment,* 673, 756-762.

http://dx.doi.org/10.1016/j.scitotenv.2019.04.125

Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository.

1	A Comprehensive Assessment of Stream Fragmentation in Great Britain
2	Joshua Jones ¹ , Luca Börger ¹ , Jeroen Tummers ² , Peter Jones ¹ , Martyn Lucas ² , Jim Kerr ⁴ , Paul
3	Kemp ⁴ , Simone Bizzi ³ , Sofia Consuegra ¹ , Lucio Marcello ⁵ , Andrew Vowles ⁴ , Barbara Belletti ³ ,
4	Eric Verspoor ⁵ , Wouter Van de Bund ⁶ , Peter Gough ⁷ , Carlos Garcia de Leaniz ¹
5	*Corresponding author: j.a.h.jones@swansea.ac.uk
6	¹ Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK
7	² Department of Biosciences, Durham University, Durham DH1 3LE, UK
8	³ Deptartment of Electronics, Information, and Bioengineering, Politecnico di Milano, Milano,
9	Italy
10	⁴ Faculty of Engineering and Physical Sciences, University of Southampton, Southampton
11	SO17 1BJ, UK
12	⁵ Rivers and Lochs Institute, University of Highlands and Islands, Inverness, UK
13	⁶ European Commission – Joint Research Centre, 21027 Ispra, VA, Italy
14	⁷ Natural Resources Wales, Cardiff, UK
15	
16	
17	
18	
19	
20	

21 Abstract

22 Artificial barriers are one of the main threats to river ecosystems, resulting in habitat 23 fragmentation and loss of connectivity. Yet, the abundance and distribution of most artificial barriers, excluding high-head dams, is poorly documented. We provide a comprehensive 24 25 assessment of the distribution and typology of artificial barriers in Great Britain, and 26 estimate for the first time the extent of river fragmentation. To this end, barrier data were compiled from existing databases and were ground-truthed by field surveys in England, 27 28 Scotland and Wales to derive a correction factor for barrier density across Great Britain. 29 Field surveys indicate that existing barrier databases underestimate barrier density by 68%, particularly in the case of low-head structures (<1 m) which are often missing from current 30 records. Field-corrected barrier density estimates ranged from 0.48 barriers/km in Scotland 31 32 to 0.63 barriers/km in Wales, and 0.75 barriers/km in England. Corresponding estimates of stream fragmentation by weirs and dams only, measured as mean barrier-free length, were 33 34 12.30 km in Scotland, 6.68 km in Wales and 5.29 km in England, suggesting the extent of river modification differs between regions. Our study indicates that 97% of the river 35 network in Great Britain is fragmented and less than 1% of the catchments are free of 36 artificial barriers. 37

38 Keywords: instream infrastructure, stream barriers, connectivity, rivers, obstacle inventory,
 39 dams

40

42 1. Introduction

Maintaining river connectivity is an essential requirement for the effective functioning of 43 river ecosystems and a crucial component to achieving 'good ecological status' according to 44 the Water Framework Directive (Directive 2000/60/EC; EC, 2000). However, river 45 46 connectivity can be disrupted by instream infrastructure, which can alter hydrogeomorphological processes, temperature regimes and sediment loadings, ultimately 47 impacting on the movement of organisms, nutrients and biologically-mediated energy flow 48 through river systems (Petts, 1980; Köster et al., 2007; Nyqvist et al., 2017; Rincón et al., 49 2017; Birnie-Gauvin et al., 2018). 50

The spatial distribution of barriers in a catchment determines, to a large extent, their 51 52 impacts on sediment fluxes (Petts and Gurnell, 2005; Schmitt et al., 2018b), fluvial habitats 53 such as floodplains and deltas (Schmitt et al., 2018a), and abundance and diversity of freshwater biota (Cooper et al., 2017; Rincón et al., 2017; Van Looy et al., 2014). Barriers 54 situated in lowlands can exert significant impacts throughout the catchment (Rolls, 2011), 55 56 for example by reducing the habitat suitable for rheophilic fish, and by preventing or 57 delaying fish migrations (Birnie-Gauvin et al., 2017; De Leeuw and Winter, 2008; Harding et 58 al., 2017). Headwater barriers, on the other hand, can impact fish populations that may be 59 already isolated by steep gradients and natural falls (Whiteley et al., 2010), but that can become more vulnerable to habitat fragmentation by the addition of artificial barriers 60 (Compton et al., 2008). Headwater barriers can alter downstream flows and sediment 61 62 transport, which can trigger changes in turbidity (Bond, 2004; Crosa et al., 2010; Quinlan et al., 2015) and impact on the abundance and diversity of fish and macrophytes (Benejam et 63

al., 2016; Gomes et al., 2017). Barrier placement also plays a role in determining
impoundment size (Van Looy et al., 2014), which is known to influence fish migration (e.g.
Keefer and Caudill, 2016; Nyqvist *et al.*, 2017).

In addition to barrier location, barrier height also plays a major role in determining 67 barrier impacts on freshwater biota and the surrounding ecosystem (Bourne et al., 2011; 68 69 Frings et al., 2013; Holthe et al., 2005; Kemp and O'Hanley, 2010; Meixler et al., 2009; Rolls et al., 2013). For example, high-head structures, typically those above 8 m (USACE, 2000) or 70 71 15 m high (WCD, 2000), often create impoundments greater than 3×10^6 m³ (WCD, 2000) that are prone to thermal stratification and changes in pH, which can cause shifts in 72 community composition within the reservoir as well as downstream (Muth et al., 2000; 73 Ward and Stanford, 1979). Low-head structures can also impact on essential ecological 74 75 processes just as strongly (Fencl et al., 2015; Garcia de Leaniz, 2008; Gibson et al., 2011; Hohensinner et al., 2004; Jungwirth et al., 2000; Warren and Pardew, 1998). Whilst barrier 76 77 impacts vary between barrier types (Mueller et al., 2011), low-head structures (i.e. those with a reservoir surface area typically <0.1 km²) make up 99.5 % of the estimated 16.7 78 79 million artificial barriers present globally (Lehner et al., 2011) and are likely to cause greater cumulative impacts and a more significant loss of river connectivity than high-head 80 structures (Callow and Smettem, 2009; Mantel et al., 2017, 2010a, 2010b; Rincón et al., 81 2017; Spedicato et al., 2005; Thorstad et al., 2003). 82

In most cases, existing barrier databases are limited and incomplete, and although they list most high-head dams (>15 m high; Berga et al., 2006; Lehner et al., 2011), they tend to ignore low-head structures. Consequently, to gain an understanding of the true extent of river fragmentation, it is important to quantify barrier distribution and height, and

87 include low-head weirs and other similar structures (Garcia de Leaniz et al., 2018; Januchowski-Hartley et al., 2019). Despite the importance of river fragmentation in 88 89 determining ecosystem health, its extent in Great Britain is poorly understood (e.g. McCarthy et al., 2008; Lucas et al., 2009; Russon, Kemp and Lucas, 2011; Gauld, Campbell 90 and Lucas, 2013). Recent studies have focused on barriers to salmon migration in Scotland 91 (Buddendorf et al., 2019; SEPA, 2018) and hydropower opportunities in England and Wales 92 (Environment Agency, 2018), yet no global river connectivity assessment exists for Great 93 94 Britain (Environment Agency, 2018),

Here we provide novel, ground-truthed estimates of the density, typology and spatial distribution of artificial barriers in England, Scotland and Wales using a harmonised database, and assess, for the first time, the extent of stream fragmentation across Great Britain.

101 2. Methods

102 **2.1. Barrier location, type and height**

103 We considered as 'artificial barriers' all anthropogenic structures that can interrupt ecological processes described by the River Continuum Concept (Vannote et al., 1980), 104 105 including all structures detailed in Table 1. Data on the location, type and height of artificial 106 barriers were obtained from the Environment Agency (EA) for England and Wales (Environment Agency, 2018), the Scottish Obstacles to Fish Migration database (SEPA, n.d.), 107 the Global Reservoir and Dam (GRanD) database (Grill et al., 2015) and the European 108 109 Environment Agency catchments and rivers network system (Ecrins) dam database (EEA, 2012). Barriers were included in the AMBER-GB database (AMBER: Adaptive Management of 110 111 Barriers In European Rivers - www.amber.international) if they met stringent criteria and 112 represented unique records. Thus, barriers were excluded and considered duplicates if they occurred within 500 m of a barrier of the same characteristics in other databases. We chose 113 a 500 m duplicate exclusion threshold based on a pilot expert assessment, where we 114 115 applied 50 m, 100 m, 500 m and 1000 m thresholds and compared the number of new records and the risk of including duplicates. The 500 m exclusion criterion only related to 116 117 dams (present in all four source databases), as there was no overlap between the EA and SEPA databases. When duplicate records were identified, barrier attributes were 118 preferentially extracted from the database with the widest spatial coverage (i.e. global 119 database first, regional database last). For the purposes of analysis, we classified all artificial 120 121 barriers into six basic types (Table 1), in line with an ongoing study at the European scale (Garcia de Leániz et al., 2018) to enable comparison with other databases globally. 122

124

125 2.2. Field validation of barrier data

126 To validate data on barrier type and location we carried out nineteen field walkover surveys, 127 typically 20 km in length, stratified across five rivers in Wales (mean = 21.2 km), five rivers in 128 England (mean = 16.7 km) and nine rivers in Scotland (mean = 12.6 km, Table S1, Figure S1). These rivers represent 0.2% of the total river network in Great Britain and are 129 130 representative in terms of barrier siting (Bishop and Muñoz-Salinas, 2013; Forzieri et al., 2008; Rojanamon et al., 2009; Yasser et al., 2013), barrier density, stream order (Strahler, 131 132 1957), and land cover of rivers in England, Scotland and Wales. Fifth and sixth order rivers 133 were excluded from the validation surveys as they only contribute 2.6% and 0.5% to the total stream length in Great Britain, respectively, and are well covered in existing barrier 134 databases due to the high flood risk they pose to settlements and property (Lempérière, 135 2017). We used the Ecrins river network to determine sites for validation (European 136 Catchment and Rivers network System; EEA, 2012), in line with ongoing barrier surveying at 137 138 the European scale (Garcia de Leaniz et al., 2018).

River reaches surveyed for validation included upland and lowland rivers with elevation ranging from 0 m to 346 m (mean = 88.2 m, SE = 5.0) and 0.1 % to 3.7 % slopes (mean = 1.0 %, SE = 0.01). Most river reaches surveyed were single-thread channels with a sinuosity index ranging from 1.1 to 1.6 (mean = 1.3, SE = 0.01), a stream order between 1 and 4 (median = 3) and are located in CORINE landcover level 1 classes 1 to 3 (median = 2) including artificial surfaces, agricultural areas and forest and semi-natural areas. Comparisons of these reaches to all river reaches in Great Britain are available in Table S2.

147 **2.3. Metrics of river fragmentation**

148 We calculated two measures of river fragmentation, barrier density and barrier-free length. 149 Barrier density was calculated for sub-catchments in the Catchment, Characterisation and Modelling (CCM) 2.1 database (median area = 5.2 km², interquartile range (IQR) = 0.0 - 11.9, 150 Vogt et al., 2008) using the total number of artificial barriers (in AMBER-GB) per total river 151 length (km, OS Open Rivers) for each sub-catchment in QGIS 3.03 (QGIS Development Team, 152 2018). Barrier-free length (BFL) was calculated using custom tools in ArcGIS 10.5 (ESRI, 153 2011) as the stream length between two consecutive barriers (or the stream length 154 155 between a barrier and the river source or mouth) using weirs and dams only, as these were the dominant barrier types and could be compared across all databases. Comparisons of 156 barrier density between field data and existing databases, and between regions (England, 157 Scotland and Wales), were tested by a paired t-test and an Analysis of Variance, 158 respectively; a log10 transformation was applied to barrier height, barrier density and BFL to 159 160 reduce skew and meet model assumptions, which were checked via residual diagnostic plots 161 in R 3.5.2 (R Core Team, 2018).

162

163 **2.4 Sensitivity analysis and barrier discovery rate**

We used a bootstrap approach (Chao et al., 2013) to assess the influence of distance surveyed on barrier discovery rate, and hence estimate the density of new barriers per river length. For this, we randomly resampled with replacement (10,000 times each) between 1 and 19 samples from the total set of 19 field validation catchments, calculated the mean barrier density and bootstrapped 95% CI of new barriers discovered per km, as a function of
the total river length surveyed. We carried out separate bootstrap resampling estimates for
England, Scotland and Wales, but as these overlapped widely, we provide a single sensitivity
analysis across Great Britain.

172

173 **3. Results**

174 **3.1.** Abundance and typology of artificial barriers

We compiled a harmonised new barrier database for Great Britain (AMBER-GB) 175 consisting of unique records of 19,053 artificial barriers in England, 2,128 in Scotland and 176 177 2,437 in Wales from existing databases (total = 23,618), as part of the EU-funded AMBER 178 project (Supplementary Material, Table 1). Mean barrier height was 3.46 m (SD = 4.72) but differed among regions (ANOVA: F_{2, 20315}= 1362.5, p <0.001), being higher in Scotland 179 180 (barriers with height data = 8%, mean = 19.9 m, SD = 10.1) than in Wales (barriers with height data = 100%, mean = 4.78, SD = 5.92, pairwise post-hoc p < 0.001) and England 181 (barriers with height data = 100%, mean = 3.13 m, SD = 4.1, pairwise post-hoc p < 0.001). 182

Comparisons between AMBER-GB and field survey data indicated that 68% of barriers present in the field were missing from existing records. None of the culverts, fords or ramp-bed sills found in the field were present in existing databases, whilst the presence of weirs was both under- and overestimated in existing databases, varying by region (Figure 1). Furthermore, none of the catchments surveyed during the field validation were free of artificial barriers.

The density of newly discovered barriers (i.e. those not recorded in existing databases) quickly reached an asymptote at around 0.3 barriers/km after only 68 km of river length had been surveyed (Figure 2), but the variance of the estimator did not stabilize until at least 200-250 km of river length had been sampled. The final, bootstrapped barrier discovery rate, based on 300 km of field survey, was 0.3 barriers/km (95% CI: 0.1 - 0.5).

194 **3.2 Barrier density**

Mean barrier density, based on all artificial barriers present in AMBER-GB, was 0.27 barriers/km (SE = 0.01). However, this varied by region (ANOVA: $F_{2, 24119} = 72.57$, p < 0.001), being higher in England (mean = 0.41 barriers/km, SE = 0.02) than in Wales (mean = 0.29 barriers/km, SE = 0.02, pairwise post-hoc p = 0.001) or Scotland (mean = 0.14 barriers/km, SE = 0.01, pairwise post-hoc p < 0.001; Figure 3A).

200 Differences in barrier density between field surveys and AMBER-GB were significant with a mean difference of +0.34 barriers/km observed in the field (95% CI: 0.13- 0.55, paired 201 $t_{18} = -3.4$, p = 0.003), close to the bootstrapped estimate of 0.3, whilst no differences were 202 detected between field and AMBER-GB between regions (ANOVA: $F_{2, 16} = 0.22$, p = 0.80). 203 204 Therefore, a correction factor of +0.34 barriers/km was applied to the known density of all 205 sub-catchments in Great Britain (Figure 3B). To generalise, this correction factor increases the number of artificial barriers in Great Britain from 23,618 to 66,381 (95% CI: 37,360-206 58,042) and results in an estimated barrier density of one barrier every 1.5 km of stream (or 207 208 0.61 barriers/km, 95% CI: 0.40- 0.82). In addition, by multiplying stream length per sub-209 catchment with estimated barrier density, we predict that artificial barriers are present in 99% of catchments by area in Great Britain, which is consistent with results from field 210 validation. 211

213 3.2 Barrier-free length

To calculate barrier-free length (BFL), only dams and weirs were used, as other barrier types were under-represented (Figure 1). Stream fragmentation varied significantly by region (ANOVA $F_{2,21460} = 357.1$, p < 0.001), being highest in England (mean BFL = 5.29 km, SE = 0.18), followed by Wales (mean BFL = 6.68 km, SE = 0.44; pairwise post-hoc p = 0.048) and Scotland (mean BFL = 12.30 km, SE = 0.96; pairwise post-hoc p < 0.001). Overall, results indicate that only 3.3% of the total river network in Great Britain is fully connected (i.e. the barrier free length equals total river length; Figure 3C).

221

224 4. Discussion

225 The conservation of many freshwater communities depends on having well connected habitats (e.g. Abell et al., 2011; Forslund et al., 2009; Ruhi et al., 2019), but managers 226 227 typically have few or no data on river connectivity to guide conservation efforts. Most 228 studies on the impacts of artificial barriers tend to be limited to single catchments, or consider only large barriers (Cooper et al., 2017; Grill et al., 2015; Van Looy et al., 2014). Our 229 230 study has generated the first, comprehensive, validated estimates of the density, typology and spatial distribution of artificial barriers across Great Britain, providing a valuable 231 resource for river management. 232

Over half of the freshwater bodies in England and Wales have failed to achieve 233 234 'good' ecological status under the Water Framework Directive (EEA, 2012), partially due to 235 loss of habitat and stream fragmentation. Understanding the true extent of barrier abundance and distribution should make it possible to estimate cumulative barrier impacts 236 and apply more effective barrier prioritisation and mitigation tools that will aid in achieving 237 238 good ecological status (Kemp and O'Hanley, 2010; King et al., 2017; Neeson et al., 2015). Existing barrier databases, combined for the first time in this study, indicate that only 3.3% 239 240 of the total river length of Great Britain is unfragmented by dams and weirs, but our study 241 suggests that this could be even lower if all barriers are considered. Of the nineteen catchments surveyed in this study, none were free of artificial barriers, and, based on the 242 243 correction factor derived here, we can predict that artificial barriers are present in at least 244 99% of the river catchments of Great Britain. Most of these barriers (c. 80%) are low-head

structures, whose cumulative impacts tend to be underestimated (Anderson et al., 2015;
Fencl et al., 2015).

Our estimates of river fragmentation indicate a mean barrier-free length of just 6.8 km for Great Britain, although this varied considerably among areas; stream fragmentation was highest in England and lowest in Scotland, possibly reflecting current and historical differences in anthropogenic pressures (Bishop and Muñoz-Salinas, 2013; Grizzetti et al., 2017). This finding is consistent with reports that indicate that rivers in Scotland have double the length of unaltered channels (28.0 %) than those in England and Wales (13.6%; Raven, 1998; Seager et al., 2012).

254 Our study highlights the merits, and need, for ground-truthing estimates of stream fragmentation through field surveys, as existing databases underestimated barrier density 255 256 by 68% mostly due to the presence of low-head structures. In broad terms, we were able to 257 correct for this underestimation through simple field validation surveys where differences in 258 barrier density between field data and AMBER-GB reached an asymptote after 68 km of 259 sampling. However, upper and lower barrier density confidence estimates varied five-fold, 260 even after 300 km of river length was surveyed, illustrating the need to sample a sufficient length of river to reduce uncertainty on barrier density estimates. 261

The database presented here (AMBER-GB) unifies barriers of different types and sources from existing databases and can be used to inform a better assessment of the global impact of stream fragmentation on fish assemblages and other taxa, based on barrier density and location (Cooper et al., 2017; King et al., 2017; Van Looy et al., 2014). The results of these studies demonstrate the value of databases on barrier location, particularly when barrier databases often lack important attributes such as barrier type, age, reservoir

size, fish pass type and height (Januchowski-Hartley et al., 2019). Current estimates of barrier height are derived from remote sensing techniques (e.g. LiDAR), but these tend to be inaccurate when they are compared with field data (R² = 0.39, (Entec UK Ltd, 2010) and would greatly benefit from ground-truthing or better modelling. More accurate data on barrier traits may be obtained from novel assessment techniques (Diebel et al., 2015; Fuller et al., 2015; Rincón et al., 2017), which should provide a better understanding of cumulative barrier impacts, which is necessary to restore stream connectivity (Schmitt et al., 2018a).

275 Our results show the importance of validating existing barrier databases to estimate barrier density. However, our field validation focused on first to fourth order stream reaches 276 277 delineated at the relative coarse resolution of the Ecrins river network (EEA, 2012) and 278 restricted to areas below 340 m elevation due to access constraints. Although this may have 279 introduced an upward bias on the number of barriers, this is relatively small (<8000) and well within the estimated 95% confidence intervals. The reaches surveyed in this study only 280 281 represent 0.2% of the total river length of Great Britain, but this extent of coverage is similar to that achieved by other large scale ecological studies (Newbold et al., 2015). Crucially, our 282 bootstrapping analyses indicate that the confidence intervals converge after c. 120 km of 283 284 surveying, indicating that our reach selection criteria produced a representative sample. 285 However, whilst our study was able to produce estimates of barrier density and stream fragmentation in Great Britain, information on barrier attributes remains patchy. In this 286 287 sense, barrier data gathered by unmanned aerial vehicles (Ortega-Terol et al., 2014), 288 modelling (Januchowski-Hartley et al., 2013; Kroon and Phillips, 2016) and volunteers in the field (Ellwood et al., 2017; Swanson et al., 2016) through a smart phone application 289 290 (https://portal.amber.international/, accessed: 25/01/2019), could be used to bridge data 291 gaps, complement existing databases, and reduce uncertainty.

293 **5. Conclusion**

Our assessment of stream fragmentation in Great Britain indicates that existing barrier databases underestimate true barrier occurrence, particularly low-head structures, by nearly a factor of 3. Using simple field surveying methods, we show how correction factors can be derived to obtain more realistic values for barrier density. Our results indicate that most catchments in Great Britain are heavily fragmented, and none or very few are free of artificial barriers. These findings provide a much needed critical starting point for assessing the true impacts of stream fragmentation across ecologically relevant spatial scales.

301

302

303

304 Acknowledgements

305 This work was funded by the AMBER Project (www.amber.international) under the EC

H2020 Program, EC Grant Agreement 689682 led by CGL. Contains OS data © Crown

307 copyright and database right (2018). We acknowledge all colleagues who took part in the

field work in Scotland: A. Drywa, N. Crutchley, S. Jones, J. O'Dell, M. Coulson, M. Curran, E.

Roderick, S. Ferreira Carvalho, A. William Kirkland, S. Watson (UHI). We thank Morgan Jones

310 for comments on earlier versions of this manuscript.

311 References

Abell, R., Thieme, M., Lehner, B., 2011. Indicators for assessing threats to freshwater

313	biodiversity from humans and human-shaped landscapes, in: Human Population.
314	Springer, pp. 103–124.
315	Affum-baffoe, K., Baker, T.R., Lewis, S.L., Lopez-gonzalez, G., Sonke, B., Djuikouo, K., Ojo,
316	L.O., Phillips, O.L., Reitsma, J.M., White, L., Comiskey, J.A., Ewango, C.E.N., Feldpausch,
317	T.R., Hamilton, A.C., Gloor, M., Hart, T., Hladik, A., Lloyd, J., Lovett, J.C., Makana, J.,
318	Malhi, Y., Mbago, F.M., Ndangalasi, H.J., 2009. Increasing carbon storage in intact
319	African tropical forests. Nature 457. https://doi.org/10.1038/nature07771
320	Anderson, D., Moggridge, H., Warren, P., Shucksmith, J., 2015. The impacts of
321	'run-of-river'hydropower on the physical and ecological condition of rivers. Water
322	Environ. J. 29, 268–276.
323	Benejam, L., Saura-Mas, S., Bardina, M., Solà, C., Munné, A., García-Berthou, E., 2016.
324	Ecological impacts of small hydropower plants on headwater stream fish: from
325	individual to community effects. Ecol. Freshw. Fish 25, 295–306.
326	https://doi.org/10.1111/eff.12210
327	Berga, L., Buil, J.M., Bofill, E., De Cea, J.C., Perez, J.A.G., Mañueco, G., Polimon, J., Soriano,
328	A., Yagüe, J., 2006. Dams and Reservoirs, Societies and Environment in the 21st
329	Century, Two Volume Set: Proceedings of the International Symposium on Dams in the
330	Societies of the 21st Century, 22nd International Congress on Large Dams (ICOLD),
331	Barcelona, Spain, 18 June 2006. CRC Press.
332	Birnie-Gauvin, K., Aarestrup, K., Riis, T.M.O., Jepsen, N., Koed, A., 2017. Shining a light on
333	the loss of rheophilic fish habitat in lowland rivers as a forgotten consequence of
334	barriers, and its implications for management. Aquat. Conserv. Mar. Freshw. Ecosyst.

- 335 27, 1345–1349. https://doi.org/https://doi.org/10.1002/aqc.2795
- Bishop, P., Muñoz-Salinas, E., 2013. Tectonics, geomorphology and water mill location in
- 337 Scotland, and the potential impacts of mill dam failure. Appl. Geogr. 42, 195–205.
- 338 https://doi.org/10.1016/J.APGEOG.2013.04.010
- Bond, N.R., 2004. Spatial variation in fine sediment transport in small upland streams: the
- 340 effects of flow regulation and catchment geology. River Res. Appl. 20, 705–717.
- 341 https://doi.org/10.1002/rra.787
- Bourne, C.M., Kehler, D.G., Wiersma, Y.F., Cote, D., 2011. Barriers to fish passage and
- 343 barriers to fish passage assessments: the impact of assessment methods and
- 344 assumptions on barrier identification and quantification of watershed connectivity.
- 345 Aquat. Ecol. 45, 389–403. https://doi.org/10.1007/s10452-011-9362-z
- Buddendorf, W.B., Jackson, F.L., Malcolm, I.A., Millidine, K.J., Geris, J., Wilkinson, M.E.,
- 347 Soulsby, C., 2019. Integration of juvenile habitat quality and river connectivity models
- 348 to understand and prioritise the management of barriers for Atlantic salmon
- 349 populations across spatial scales. Sci. Total Environ. 655, 557–566.
- 350 https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.11.263
- 351 Callow, J.N., Smettem, K.R.J., 2009. The effect of farm dams and constructed banks on
- 352 hydrologic connectivity and runoff estimation in agricultural landscapes. Environ.
- 353 Model. Softw. 24, 959–968.
- Chao, A., Wang, Y.T., Jost, L., 2013. Entropy and the species accumulation curve: a novel
- entropy estimator via discovery rates of new species. Methods Ecol. Evol. 4, 1091–
- 356 1100.

357	Compton, R.I., Hubert, W.A., Rahel, F.J., Quist, M.C., Bower, M.R., 2008. Influences of
358	fragmentation on three species of native warmwater fishes in a Colorado River basin
359	headwater stream system, Wyoming. North Am. J. Fish. Manag. 28, 1733–1743.
360	https://doi.org/10.1577/M07-226.1
361	Cooper, A.R., Infante, D.M., Daniel, W.M., Wehrly, K.E., Wang, L., Brenden, T.O., 2017.
362	Assessment of dam effects on streams and fish assemblages of the conterminous USA
363	Sci. Total Environ. 586, 879–889. https://doi.org/10.1016/J.SCITOTENV.2017.02.067
364	Crosa, G., Castelli, E., Gentili, G., Espa, P., 2010. Effects of suspended sediments from
365	reservoir flushing on fish and macroinvertebrates in an alpine stream. Aquat. Sci. 72,
366	85–95. https://doi.org/10.1007/s00027-009-0117-z
367	De Leeuw, J.J., Winter, H. V., 2008. Migration of rheophilic fish in the large lowland rivers
368	Meuse and Rhine, the Netherlands. Fish. Manag. Ecol. 15, 409–415.
369	https://doi.org/10.1111/j.1365-2400.2008.00626.x
370	Diebel, M.W., Fedora, M., Cogswell, S., O'Hanley, J.R., 2015. Effects of road crossings on
371	habitat connectivity for stream-resident fish. River Res. Appl. 31, 1251–1261.
372	https://doi.org/10.1002/rra.2822
373	Ellwood, E.R., Crimmins, T.M., Miller-Rushing, A.J., 2017. Citizen science and conservation:

- Recommendations for a rapidly moving field. Biol. Conserv. 208, 1–4.
- Entec UK Ltd, 2010. Mapping Hydropower Opportunities and Sensitivities in England and
 Wales. Bristol.
- 377 Environment Agency, 2018. River obstructions England and Wales. Environment Agency,378 Bristol.

379	ESRI, 2011. ArcGIS Desktop: Release 10.5. Redlands, CA Environ. Syst. Res. Inst.	

- European Environment Agency, 2012. EEA Catchments and Rivers Network System ECRINS
 v1.1. Copenhagen.
- 382 Fencl, J.S., Mather, M.E., Costigan, K.H., Daniels, M.D., 2015. How big of an effect do small
- dams have? Using geomorphological footprints to quantify spatial impact of low-head
- dams and identify patterns of across-dam variation. PLoS One 10, e0141210.
- 385 https://doi.org/10.1371/journal.pone.0141210
- Forslund, A., Renöfält, B.M., Barchiesi, S., Cross, K., Davidson, S., Farrell, T., Korsgaard, L.,
- 387 Krchnak, K., McClain, M., Meijer, K., 2009. Securing water for ecosystems and human
- 388 well-being: The importance of environmental flows. Swedish Water House Rep. 24.
- 389 Forzieri, G., Gardenti, M., Caparrini, F., Castelli, F., 2008. A methodology for the pre-
- 390 selection of suitable sites for surface and underground small dams in arid areas: A case
- 391 study in the region of Kidal, Mali. Phys. Chem. Earth, Parts A/B/C 33, 74–85.
- 392 https://doi.org/10.1016/J.PCE.2007.04.014
- 393 Frings, R.M., Vaeßen, S.C.K., Groß, H., Roger, S., Schüttrumpf, H., Hollert, H., 2013. A fish-

394 passable barrier to stop the invasion of non-indigenous crayfish. Biol. Conserv. 159,

395 521–529. https://doi.org/10.1016/J.BIOCON.2012.12.014

- Fuller, M.R., Doyle, M.W., Strayer, D.L., 2015. Causes and consequences of habitat
- fragmentation in river networks. Ann. N. Y. Acad. Sci. 1355, 31–51.
- 398 Garcia de Leaniz, C., 2008. Weir removal in salmonid streams: Implications, challenges and
- 399 practicalities. Hydrobiologia 609, 83–96. https://doi.org/10.1007/s10750-008-9397-x
- 400 Garcia de Leaniz, C., Belletti, B., Bizzi, S., Segura, G., Borger, L., Jones, J., Olivo del Amo, R.,

401	Wanningen, H., Tummers, J., Kerr, J., Kemp, P., van de Bund, W., the AMBER
402	consortium, 2018. The importance of having a good database for restoring river
403	connectivity: the AMBER Barrier Atlas in Europe, in: Brink, K., Gough, P., Royte, J.,
404	Schollema, P.P., Wanningen, H. (Eds.), From Sea to Source 2.0. Protection and
405	Restoration of Fish Migration in Rivers Worldwide. World Fish Migration Foundation,
406	Groningen, pp. 142–145.
407	Garcia de Leániz, C., van de Bund, W., Bizzi, S., Belletti, B., Zalewski, M., Krauze, K.,
408	Parasiewicz, P., Kemp, P., Aarestrup, K., Birnie-Gauvin, K., Wanningen, H., van Deelen,
409	J., Olivo del Amo, R., Dodkins, I., 2018. Periodic Technical Report Part B.
410	Gauld, N.R., Campbell, R.N.B., Lucas, M.C., 2013. Reduced flow impacts salmonid smolt
411	emigration in a river with low-head weirs. Sci. Total Environ. 458, 435–443.
412	Gibson, R.J., Haedrich, R.L., Wernerheim, C.M., 2011. Loss of fish habitat as a consequence
413	of inappropriately constructed stream crossings. Chang. Publ. Wiley 30, 10–17.
414	https://doi.org/10.1577/1548-8446(2005)30[10:LOFHAA]2.0.CO;2
415	Gomes, P.I.A., Wai, O.W.H., Yan, XF., 2017. Eco-hydraulic evaluation of herbaceous
416	ecosystems below headwater dams without a base flow: Observing below dam reaches
417	as new stream sources. Ecohydrology 10, e1774. https://doi.org/10.1002/eco.1774
418	Grill, G., Lehner, B., Lumsdon, A.E., MacDonald, G.K., Zarfl, C., Liermann, C.R., 2015. An
419	index-based framework for assessing patterns and trends in river fragmentation and
420	flow regulation by global dams at multiple scales. Environ. Res. Lett. 10, 15001.
421	Grizzetti, B., Pistocchi, A., Liquete, C., Udias, A., Bouraoui, F., van de Bund, W., 2017. Human
422	pressures and ecological status of European rivers. Sci. Rep. 7, 205.

423 https://doi.org/10.1038/s41598-017-00324-3

424	Harding, D.J., Dwyer, R.G., Mullins, T.M., Kennard, M.J., Pillans, R.D., Roberts, D.T., 2017.
425	Migration patterns and estuarine aggregations of a catadromous fish, Australian bass
426	(Percalates novemaculeata) in a regulated river system. Mar. Freshw. Res. 68, 1544.
427	https://doi.org/10.1071/MF16125
428	Hohensinner, S., Habersack, H., Jungwirth, M., Zauner, G., 2004. Reconstruction of the
429	characteristics of a natural alluvial river-floodplain system and hydromorphological
430	changes following human modifications: the Danube River (1812–1991). River Res.
431	Appl. 20, 25–41.
432	Holthe, E., Lund, E., Finstad, B., Thorstad, E.B., McKinley, R.S., 2005. A fish selective obstacle
433	to prevent dispersion of an unwanted fish species, based on leaping capabilities. Fish.
434	Manag. Ecol. 12, 143–147. https://doi.org/10.1111/j.1365-2400.2004.00436.x
435	Januchowski-Hartley, S.R., Jézéquel, C., Tedesco, P.A., 2019. Modelling built infrastructure
436	heights to evaluate common assumptions in aquatic conservation. J. Environ. Manage.
437	232, 131–137. https://doi.org/10.1016/J.JENVMAN.2018.11.040
438	Januchowski-Hartley, S.R., McIntyre, P.B., Diebel, M., Doran, P.J., Infante, D.M., Joseph, C.,
439	Allan, J.D., 2013. Restoring aquatic ecosystem connectivity requires expanding
440	inventories of both dams and road crossings. Front. Ecol. Environ. 11, 211–217.
441	Jungwirth, M., Muhar, S., Schmutz, S., 2000. Fundamentals of fish ecological integrity and
442	their relation to the extended serial discontinuity concept. Hydrobiologia 422, 85–97.
443	Keefer, M.L., Caudill, C.C., 2016. Estimating thermal exposure of adult summer steelhead
444	and fall Chinook salmon migrating in a warm impounded river. Ecol. Freshw. Fish 25,

- 445 599–611. https://doi.org/10.1111/eff.12238
- Kemp, P.S., O'Hanley, J.R., 2010. Procedures for evaluating and prioritising the removal of
 fish passage barriers: a synthesis. Fish. Manag. Ecol. 17, 297–322.
- 448 King, S., O'Hanley, J.R., Newbold, L.R., Kemp, P.S., Diebel, M.W., 2017. A toolkit for
- 449 optimizing fish passage barrier mitigation actions. J. Appl. Ecol. 54, 599–611.
- 450 Kroon, F.J., Phillips, S., 2016. Identification of human-made physical barriers to fish passage
- 451 in the Wet Tropics region, Australia. Mar. Freshw. Res. 67, 677–681.
- 452 Lehner, B., Liermann, C.R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P.,
- 453 Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J.C., Rödel, R., Sindorf, N.,
- 454 Wisser, D., 2011. High-resolution mapping of the world's reservoirs and dams for
- 455 sustainable river-flow management. Front. Ecol. Environ. 9, 494–502.
- 456 https://doi.org/10.1890/100125
- 457 Lempérière, F., 2017. Dams and Floods. Engineering 3, 144–149.
- 458 https://doi.org/10.1016/J.ENG.2017.01.018
- Mantel, S.K., Hughes, D.A., Muller, N.W.J., 2010a. Ecological impacts of small dams on South
 African rivers Part 1: drivers of change-water quantity and quality. Water Sa 36, 351–
- 461 360.
- 462 Mantel, S.K., Muller, N.W.J., Hughes, D.A., 2010b. Ecological impacts of small dams on South
- African rivers Part 2: biotic response-abundance and composition of macroinvertebrate
 communities. Water Sa 36, 361–370.
- 465 Mantel, S.K., Rivers-Moore, N., Ramulifho, P., 2017. Small dams need consideration in
- 466 riverscape conservation assessments. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 748–

467 754.

468	McCarthy, T.K., Frankiewicz, P., Cullen, P., Blaszkowski, M., O'connor, W., Doherty, D., 2008.
469	Long-term effects of hydropower installations and associated river regulation on River
470	Shannon eel populations: mitigation and management. Hydrobiologia 609, 109–124.
471	Meixler, M.S., Bain, M.B., Walter, M.T., 2009. Predicting barrier passage and habitat
472	suitability for migratory fish species. Ecol. Modell. 220, 2782–2791.
473	Mueller, M., Pander, J., Geist, J., 2011. The effects of weirs on structural stream habitat and
474	biological communities 48, 1450–1461. https://doi.org/10.1111/j.1365-
475	2664.2011.02035.x
476	Muth, R., Crist, L., LaGory, K., Hayse, J., Bestgen, K., Ryan, T., Lyons, J., Valdez, R., 2000. Flow
477	and temperature recommendations for endangered fishes in the Green River
478	downstream of Flaming Gorge Dam.
-	
479	Neeson, T.M., Ferris, M.C., Diebel, M.W., Doran, P.J., O'Hanley, J.R., McIntyre, P.B., 2015.
479 480	Neeson, T.M., Ferris, M.C., Diebel, M.W., Doran, P.J., O'Hanley, J.R., McIntyre, P.B., 2015. Enhancing ecosystem restoration efficiency through spatial and temporal coordination.
479 480 481	Neeson, T.M., Ferris, M.C., Diebel, M.W., Doran, P.J., O'Hanley, J.R., McIntyre, P.B., 2015. Enhancing ecosystem restoration efficiency through spatial and temporal coordination. Proc. Natl. Acad. Sci. 201423812.
479 480 481 482	 Neeson, T.M., Ferris, M.C., Diebel, M.W., Doran, P.J., O'Hanley, J.R., McIntyre, P.B., 2015. Enhancing ecosystem restoration efficiency through spatial and temporal coordination. Proc. Natl. Acad. Sci. 201423812. Newbold, T., Hudson, L.N., Hill, S.L.L., Contu, S., Lysenko, I., Senior, R.A., Börger, L., Bennett,
479 480 481 482 483	 Neeson, T.M., Ferris, M.C., Diebel, M.W., Doran, P.J., O'Hanley, J.R., McIntyre, P.B., 2015. Enhancing ecosystem restoration efficiency through spatial and temporal coordination. Proc. Natl. Acad. Sci. 201423812. Newbold, T., Hudson, L.N., Hill, S.L.L., Contu, S., Lysenko, I., Senior, R.A., Börger, L., Bennett, D.J., Choimes, A., Collen, B., 2015. Global effects of land use on local terrestrial
479 480 481 482 483 484	 Neeson, T.M., Ferris, M.C., Diebel, M.W., Doran, P.J., O'Hanley, J.R., McIntyre, P.B., 2015. Enhancing ecosystem restoration efficiency through spatial and temporal coordination. Proc. Natl. Acad. Sci. 201423812. Newbold, T., Hudson, L.N., Hill, S.L.L., Contu, S., Lysenko, I., Senior, R.A., Börger, L., Bennett, D.J., Choimes, A., Collen, B., 2015. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50.
479 480 481 482 483 484 485	 Neeson, T.M., Ferris, M.C., Diebel, M.W., Doran, P.J., O'Hanley, J.R., McIntyre, P.B., 2015. Enhancing ecosystem restoration efficiency through spatial and temporal coordination. Proc. Natl. Acad. Sci. 201423812. Newbold, T., Hudson, L.N., Hill, S.L.L., Contu, S., Lysenko, I., Senior, R.A., Börger, L., Bennett, D.J., Choimes, A., Collen, B., 2015. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50. Nyqvist, D., Greenberg, L.A., Goerig, E., Calles, O., Bergman, E., Ardren, W.R., Castro-Santos,
479 480 481 482 483 484 485 485	 Neeson, T.M., Ferris, M.C., Diebel, M.W., Doran, P.J., O'Hanley, J.R., McIntyre, P.B., 2015. Enhancing ecosystem restoration efficiency through spatial and temporal coordination. Proc. Natl. Acad. Sci. 201423812. Newbold, T., Hudson, L.N., Hill, S.L.L., Contu, S., Lysenko, I., Senior, R.A., Börger, L., Bennett, D.J., Choimes, A., Collen, B., 2015. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50. Nyqvist, D., Greenberg, L.A., Goerig, E., Calles, O., Bergman, E., Ardren, W.R., Castro-Santos, T., Castro-Santos, T., 2017. Migratory delay leads to reduced passage success of
479 480 481 482 483 484 485 485 486 487	 Neeson, T.M., Ferris, M.C., Diebel, M.W., Doran, P.J., O'Hanley, J.R., McIntyre, P.B., 2015. Enhancing ecosystem restoration efficiency through spatial and temporal coordination. Proc. Natl. Acad. Sci. 201423812. Newbold, T., Hudson, L.N., Hill, S.L.L., Contu, S., Lysenko, I., Senior, R.A., Börger, L., Bennett, D.J., Choimes, A., Collen, B., 2015. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50. Nyqvist, D., Greenberg, L.A., Goerig, E., Calles, O., Bergman, E., Ardren, W.R., Castro-Santos, T., Castro-Santos, T., 2017. Migratory delay leads to reduced passage success of Atlantic salmon smolts at a hydroelectric dam. Ecol. Freshw. Fish 26, 707–718.

489	Ortega-Terol, D., Moreno, M., Hernández-López, D., Rodríguez-Gonzálvez, P., 2014. Survey
490	and classification of Large Woody Debris (LWD) in streams using generated low-cost
491	geomatic products. Remote Sens. 6, 11770–11790.
492	Petts, G.E., Gurnell, A.M., 2005. Dams and geomorphology: Research progress and future
493	directions. Geomorphology 71, 27–47.
494	https://doi.org/10.1016/J.GEOMORPH.2004.02.015
495	QGIS Development Team, 2018. QGIS Geographic Information System. Open Source
496	Geospatial Foundation Project.
497	Quinlan, E., Gibbins, C.N., Batalla, R.J., Vericat, D., 2015. Impacts of Small Scale Flow
498	Regulation on Sediment Dynamics in an Ecologically Important Upland River. Environ.
499	Manage. 55, 671–686. https://doi.org/10.1007/s00267-014-0423-7
500	R Core Team, 2018. R: A language and environment for statistical computing.
501	Raven, P.J., 1998. River Habitat Quality: the physical character of rivers and streams in the
502	UK and Isle of Man. Environment Agency.
503	Rincón, G., Solana-gutiérrez, J., Alonso, C., Santiago Saura, ·, García De Jalón, D., Solana-
504	Gutiérrez, J., Alonso, C., Saura, S., de Jalón, D.G., 2017. Longitudinal connectivity loss in
505	a riverine network: accounting for the likelihood of upstream and downstream
506	movement across dams. Aquat. Sci. 79, 573–585. https://doi.org/10.1007/s00027-017-
507	0518-3
508	Rojanamon, P., Chaisomphob, T., Bureekul, T., 2009. Application of geographical
509	information system to site selection of small run-of-river hydropower project by
510	considering engineering/economic/environmental criteria and social impact. Renew.
	24

511	Sustain. Energy Rev. 13, 2336–2348. https://doi.org/10.1016/J.RSER.2009.07.003
512	Rolls, R.J., 2011. The role of life-history and location of barriers to migration in the spatial
513	distribution and conservation of fish assemblages in a coastal river system. Biol.
514	Conserv. 144, 339–349.
515	Rolls, R.J., Ellison, T., Faggotter, S., Roberts, D.T., 2013. Consequences of connectivity
516	alteration on riverine fish assemblages: potential opportunities to overcome
517	constraints in applying conventional monitoring designs. Aquat. Conserv. Mar. Freshw.
518	Ecosyst. 23, 624–640. https://doi.org/10.1002/aqc.2330
519	Ruhi, A., Catford, J.A., Cross, W.F., Escoriza, D., Olden, J.D., 2019. Understanding the nexus
520	between hydrological alteration and biological invasions, in: Multiple Stressors in River
521	Ecosystems. Elsevier, pp. 45–64.
522	Russon, I.J., Kemp, P.S., Lucas, M.C., 2011. Gauging weirs impede the upstream migration of
523	adult river lamprey Lampetra fluviatilis. Fish. Manag. Ecol. 18, 201–210.
524	Schmitt, R.J.P., Bizzi, S., Castelletti, A., Kondolf, G.M., 2018a. Improved trade-offs of
525	hydropower and sand connectivity by strategic dam planning in the Mekong. Nat.
526	Sustain. 1, 96–104. https://doi.org/10.1038/s41893-018-0022-3
527	Schmitt, R.J.P., Bizzi, S., Castelletti, A.F., Kondolf, G.M., 2018b. Stochastic modeling of
528	sediment connectivity for reconstructing sand fluxes and origins in the unmonitored Se
529	Kong, Se San, and Sre Pok tributaries of the Mekong River. J. Geophys. Res. Earth Surf.
530	123, 2–25. https://doi.org/10.1002/2016JF004105
531	Seager, K., Baker, L., Parsons, H., Raven, P., Vaughan, I.P., 2012. The rivers and streams of
532	England and Wales: an overview of their physical character in 2007–2008 and changes

- since 1995–1996. River Conserv. Manag. 27–41.
- 534 SEPA, 2018. Scottish Obstacles to Fish Migration data set [WWW Document]. URL
- 535 https://www.sepa.org.uk/environment/environmental-data/ (accessed 9.10.18).
- 536 Spedicato, M.T., Lembo, G., Marmulla, G., 2005. Upstream migration of Atlantic salmon in
- 537 three regulated rivers, in: Aquatic Telemetry: Advances and Applications: Proceedings
- of the Fifth Conference on Fish Telemetry Held in Europe, Ustica, Italy, 9-13 June 2003.
- 539 Food & Agriculture Org., p. 111.
- 540 Strahler, A.N., 1957. Quantitative analysis of watershed geomorphology. Eos, Trans. Am.
- 541 Geophys. Union 38, 913–920.
- 542 Swanson, A., Kosmala, M., Lintott, C., Packer, C., 2016. A generalized approach for
- 543 producing, quantifying, and validating citizen science data from wildlife images.
 544 Conserv. Biol. 30, 520–531.
- 545 Thorstad, E.B., Økland, F., Kroglund, F., Jepsen, N., 2003. Upstream migration of Atlantic
- salmon at a power station on the River Nidelva, Southern Norway. Fish. Manag. Ecol.
- 547 10, 139–146.
- 548 USACE, 2000. US Army Corps of Engineers National Inventory of Dams.
- 549 Van Looy, K., Tormos, T., Souchon, Y., 2014. Disentangling dam impacts in river networks.
- 550 Ecol. Indic. 37, 10–20. https://doi.org/10.1016/J.ECOLIND.2013.10.006
- 551 Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R., Cushing, C.E., 1980. The river
- continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137.
- 553 Vogt, J. V, Rimaviciute, E., de Jager, A., 2008. CCM2 River and Catchment Database for

554 Europe: Version 2.1 Release Notes.

Ward, J. V., Stanford, J.A., 1979. The ecology of regulated streams : [proceedings of the first
 International Symposium on Regulated Streams held in Erie, Pa., April 18-20, 1979].

557 Plenum Press.

- 558 Warren, M.L., Pardew, M.G., 1998. Road crossings as barriers to small-stream fish
- 559 movement. Trans. Am. Fish. Soc. 127, 637–644. https://doi.org/10.1577/1548-

560 8659(1998)127<0637:RCABTS>2.0.CO;2

- 561 WCD, 2000. Dams and Development: A New Framework for Decision-making: the Report of
- the World Commission on Dams. Earthscan.
- 563 Whiteley, A.R., Hastings, K., Wenburg, J.K., Frissell, C.A., Martin, J.C., Allendorf, F.W., 2010.
- 564 Genetic variation and effective population size in isolated populations of coastal

565 cutthroat trout. Conserv. Genet. 11, 1929–1943.

- 566 Yasser, M., Jahangir, K., Mohmmad, A., 2013. Earth dam site selection using the analytic
- 567 hierarchy process (AHP): a case study in the west of Iran. Arab. J. Geosci. 6, 3417–3426.
- 568 https://doi.org/10.1007/s12517-012-0602-

569

- 570
- 571
- 572

573

- 574
- 575
- 576

577 Table 1. Barrier types included in each of the databases of artificial barriers in Great Britain 578 combined in this study (AMBER-GB).

Barrier types included in each database matched to European Barrier Atlas categories								Proportion included in	Source	
Database	Region	Dam	Weir	Sluice	Culvert	Ford	Ramp-bed sill	Other	AMBER- GB	
EA	England and Wales	dam	weir	barrage, sluice, lock	culvert	ford		null, unknown, mill, other	0.998	EA, 2018
SEPA	Scotland	dam	weir	sluice, lock, water gate	culvert, pipe bridge	ford	bridge apron	unknown, screen, wall, intake, artificial cascade, flume, fish trap, fish scarer	0.965	SEPA, 2018
GRanD	Global	dam	-	-	-	-	-	-	1.000	Lehner et al., 2011
Ecrins	Europe	dam	-	-	-	-	-	-	0.856	EEA, 2012

				Barrier height (m)			
Region	n	%	mean (μ)	standard deviation (σ^2)			
	culvert	8	0.04	NA	NA		
	dam	705	3.70	12.02	12.84		
	ford	2	0.01	NA	NA		
Finala nd	ramp-bed sill	1	0.01	NA	NA		
England	sluice	2712	14.23	2.29	1.45		
	weir	14945	78.44	2.86	2.85		
	other	680	3.57	1.84	1.44		
	total	19053	-	3.13	4.10		
	culvert	258	12.12	0.75	NA		
	dam	469	22.04	20.90	9.32		
	ford	57	2.68	NA	NA		
Contland	ramp-bed sill	91	4.28	NA	NA		
Scotianu	sluice	52	2.44	NA	NA		
	weir	744	34.96	1.12	0.99		
	other	457	21.48	NA	NA		
	total	2128	-	19.90	10.10		
	dam	169	6.93	13.43	15.81		
Walos	sluice	163	6.69	3.93	2.02		
vvales	weir	1954	80.18	4.16	3.51		
	other	151	6.20	3.66	4.09		
	total	2437	-	4.78	5.92		
Great Britain	total	23618	-	3.46	4.72		

Table 2. Summary of barrier type, abundance and height for England, Scotland and Wales.No available barrier height information is denoted by 'NA'.

586

587 Figure 1. Barrier types observed in the field validation and recorded in existing barrier 588 databases for the same reaches. Total river length surveyed in England was 84 km, 113 km 589 in Scotland and 106 km in Wales.

591 592 Figure 2. Bootstrapped density of new barriers with 95% CI absent from AMBER-GB as 593 observed in 19 catchments in England, Scotland and Wales during walkover surveys ranging 594 from 1.9 km to 30.3 km.

Figure 3. A) Existing records of barrier density (*barriers/km*) in Great Britain at CCM 2.1 catchment scale (*ca* Agency, Scottish Environmental Protection Agency, GRanD and Ecrins barrier databases and OS Open Rivers density corrected by data from field barrier surveys across 19 catchments (303 km). C) Barrier-free leng network length in Great Britain based on records of dams and weirs.

5°0′0.0″W 0°0′0.0″ 0.0°0°0°N 60°0'0.0"N Validation Rivers 1: Helmsdale 2: Loth Burn 3: Brora 4: Nairn 5: Muckle Burn 6: Burn of Tynet 7: Burn of Gollachy 55°0'0.0"N 55°0'0.0"N 8: Burn of Buckie 9: Blackadder Water 10 11 10: River Wear 13 12 11: River Skerne 12: Coatham Beck 13: Neasham Stell 14: River Itchen 15: Afon Taf 16: Afon Afan 17: Afon Tawe 18: Afon Teifi 19: Afon Tywi 50°0'0.0"N 50°0'0.0"N 0 50 km L 1 5°0′0.0″W 0°0′0.0″

Figure S1. Distribution of 19 rivers surveyed during field validation in England (n = 5), Scotland (n = 9) and Wales (n = 5).

ID	River	Reach	Length (m)	Mean altitude (m)	Mean slope (%)	Number of channels	Sinuosity	CORINE land o
1	Helmsdale	downstream	15146	57	0.5	1	1.3	agricultural ar
		upstream	15163	103	0.3	1	1.13	forests and se areas
2	Loth Burn	both	3638	68	3.7	1	1.19	forests and se areas
3	Brora	both	14954	79	0.9	1	1.3	agricultural ar
4	Nairn	downstream	12692	39	0.5	1	1.09	agricultural ar
		upstream	12685	114.5	0.8	1	1.09	agricultural ar
5	Muckle Burn	both	4083	16.5	0.2	1	1.3	agricultural ar
6	Burn of Tynet	both	7400	82.5	3.3	1	1.33	agricultural ar
7	Burn of Gollachy	both	5457	84.5	3.1	1	1.12	agricultural ar
8	Burn of Buckie	both	1849	19.5	2.6	1	1.21	artificial surfa
9	Blackadder Water	downstream	9600	58.4	0.3	1	1.54	agricultural ar
		upstream	10415	86.9	0.6	1	1.28	agricultural ar
10	River Wear	downstream	10268	259.2	0.9	1	1.07	agricultural ar
		upstream	9996	346.3	1.6	1	1.25	agricultural ar
11	River Skerne	downstream	8504	69.4	1.1	1	1.33	forests and se areas
		upstream	10796	93.8	0.9	1	1.31	forests and se areas
12	Coatham Beck	downstream	10562	49.5	0.4	1	1.43	agricultural ar
13	Neasham Stell	upstream	11212	22.5	0.2	1	1.44	agricultural ar
14	River Itchen	downstream	8734	24.5	0.17	>1	1.42	agricultural ar
		upstream	13600	53.5	0.17	>1	1.31	agricultural ar

Table S1. Summary of 19 rivers surveyed during field validation in England (n = 5), Scotland (n = 9) and Wale

15	Afon Taf	downstream	11200	16	0.16	1	1.21	artificial surfa
		upstream	11200	36.5	0.17	1	1.15	artificial surfa
16	Afon Afan	downstream	11200	46.5	1.01	1	1.12	artificial surfa
		upstream	11200	192.9	2.11	1	1.08	forests and se areas
17	Afon Tawe	downstream	11500	67.9	0.82	1	1.19	artificial surfa
		upstream	11500	288.2	3.4	1	1.05	forests and se areas
18	Afon Teifi	downstream	8322	14.6	0.2	1	1.41	forests and se areas
		upstream	8322	27.3	0.1	1	1.62	forests and se areas
19	Afon Tywi	downstream	10670	79.5	0.47	1	1.14	forests and se areas
		upstream	10670	149.7	1.78	1	1.32	forests and se areas

Table S2. Comparison of field validation reaches to all catchments in Great Britain.

	field		Great Britain					
	median	IQR	median	IQR	X²	W	Ρ	Test
Stream order (Strahler)	3	2	1	1	-	114070	<0.001	
Slope (%)	0.7	1.3	4.9	9.3	-	24855	<0.001	Wilcoxon
Elevation (m)	68	54.9	43.4	114	-	77246	0.056	
Land cover (CORINE Level 1)	2	1	2	1	0.46	-	0.447	Kruskal-Wallis