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Abstract 44 

The relationship between structure and stability in ecological networks, and the effect of 45 

spatial dynamics on natural communities have both been major foci of ecological research for 46 

decades. Network research has traditionally focused on a single interaction type at a time 47 

(e.g., food webs, mutualistic networks). Networks comprising different types of interactions 48 

have recently started to be empirically characterized. Patterns observed in these networks and 49 

their implications for stability demand for further theoretical investigations. Here we 50 

employed a spatially explicit model to disentangle the effects of mutualism:antagonism ratios 51 

in food web dynamics and stability. We found that increasing levels of plant-animal 52 

mutualistic interactions generally resulted in more stable communities. More importantly, 53 

increasing the proportion of mutualistic vs. antagonistic interactions at the base of the food 54 

web affects different aspects of ecological stability in different directions, although never 55 

negatively. Stability is either not influenced by increasing mutualism - for the cases of 56 

population stability and species’ spatial distributions - or is positively influenced by it – for 57 

spatial aggregation of species. Additionally, we observe that the relative increase of 58 

mutualistic relationships decreases the strength of biotic interactions in general within the 59 

ecological network. Our work highlights the importance of considering several dimensions of 60 

stability simultaneously to understand the dynamics of communities comprising multiple 61 

interaction types.  62 

  63 
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Introduction 64 

Biodiversity and species interactions are key regulators of ecosystem stability and 65 

functioning (May 1972; Levins 1974; Pimm 1984; McCann 2000; Reiss et al. 2009; Loreau 66 

& de Mazancourt 2013). Research on the relationship between the architecture of species 67 

interaction networks and community stability has shown that, whereas high connectance and 68 

nestedness promote stability and increases species richness in communities made up 69 

exclusively of mutualistic interactions (but see (Allesina & Tang 2012; James et al. 2013; 70 

Staniczenko et al. 2013)), the stability of trophic networks is higher in modular and weakly 71 

connected architectures (Thebault & Fontaine 2010). Additionally, the strength of ecological 72 

interactions has also been shown to play a crucial role in community structure (Paine 1980; 73 

Neutel et al. 2002). Although these studies have improved our knowledge on complexity-74 

stability relationships, they have often focused on a single interaction type at a time and 75 

overlooked the fact that natural communities comprise different interaction types that operate 76 

simultaneously in space and time (Fontaine et al. 2011; Kéfi et al. 2012). Empirical work has 77 

started to address methodologies to incorporate different interaction types into a broader 78 

ecological network context, in which the creation of a ‘network of networks’ and its 79 

implications for different aspects of community organisation are considered (Melián et al. 80 

2009; Olff et al. 2009; Fontaine et al. 2011; Kéfi et al. 2012). 81 

These empirical studies have opened up a big theoretical challenge in complexity-82 

stability research: exploring how interaction networks with different architectures and 83 

interaction types combine to shape stable networks of networks. A theoretical framework that 84 

incorporates these features will facilitate the understanding of the mechanisms behind the 85 

observed empirical patterns and of how multiple interaction types taken together affect 86 

ecosystem stability and functioning (Thebault & Fontaine 2010; Kéfi et al. 2012). Recent 87 

attempts to do so have shown that interaction type may affect community stability and its 88 
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relationship with network architecture (Allesina & Tang 2012), and that the proportion of 89 

trophic versus mutualistic interactions may influence the stability of natural communities 90 

(Mougi & Kondoh 2012). Mougi & Kondoh (2012) showed that, whereas the presence of a 91 

few mutualistic interactions destabilises predator-prey communities, a moderate mixture of 92 

antagonistic and mutualistic interactions could have a stabilising effect in 'hybrid' 93 

communities. More recently, the stabilizing role of nestedness and modularity has been 94 

challenged when several interaction types are considered within the same network, arguably 95 

by the increasing importance of indirect effects in these networks of networks (Sauve et al. 96 

2014).  97 

Many of the organisational patterns of ecological communities that we observe in 98 

nature, including species-connectivity scaling laws in food webs, species-abundance 99 

distributions, complex fluctuations in population dynamics, and species-area relationships 100 

(Solé et al. 2002), can only be understood by acknowledging that populations move and 101 

interact in a spatial context (Durrett & Levin 1994; Tilman & Kareiva 1997; Solé et al. 2002). 102 

Further, the use of spatially explicit models has been fundamental to understand questions 103 

related to natural phenomena that are not detected in non-spatial or spatially-implicit models, 104 

such as percolation thresholds (Neuhauser 1998; Solé & Bascompte 2006). Essentially, 105 

theoretical models that consider space explicitly include the range of dynamics found in 106 

spatially implicit models but with important constraints to movement and species 107 

interactions. This affects the spatial distribution and the mobility of species in the community, 108 

which in turn modulates the dynamics of interacting species through effects on the 109 

probability of encounter between individual predators and prey (Olesen & Jordano 2002; 110 

Burkle & Alarcon 2011), which ultimately determines the realisation of potential interactions. 111 

In other words, spatial processes such as species distribution patterns, range dynamics, and 112 

local dispersal abilities can affect community stability via the shaping of the network of 113 
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interactions between species in the community. Constraints imposed by space are thus not 114 

only fundamental to understand patterns of diversity, but also spatial processes alone can 115 

result in network architectures that resemble those observed in real networks (Morales & 116 

Vázquez 2008). However, despite important advances with single interaction types (Holt 117 

2002; McCann et al. 2005; Fortuna et al. 2008), we still lack understanding on complexity-118 

stability relationships in a spatially explicit context with different interaction types considered 119 

simultaneously. 120 

In this work, we contribute to fill this gap by investigating the stability of “networks of 121 

networks” that combine antagonistic and mutualistic consumer-resource interactions within a 122 

spatially explicit context using an individual-based, bio-energetic model. We ask whether 123 

different aspects of ecological stability are influenced by the proportion of mutualistic and 124 

antagonistic interactions (hereafter MAI ratio) within the overall species interaction network. 125 

Our aim is to explore the relationship between hybrid network architecture and community 126 

stability not only in terms of population dynamics and network structure but also introducing 127 

a novel analysis of spatial stability. The assessment of community stability from a spatial 128 

perspective allows for the quantification of the effect of community organisation on species 129 

distributions and range dynamics. Specifically, we address the following questions: (1) Do 130 

increasing levels of mutualism result in more stable communities? And, if so, (2) How do 131 

MAI ratios influence community stability in a spatial context? 132 

 133 

Material and Methods 134 

We developed an individual-based, spatially explicit, bio-energetic model of species 135 

interaction networks. Network architecture was obtained using the niche model (Williams & 136 

Martinez 2000). The dynamics of the system are governed by local rules of interactions 137 

between individuals in a simulated, spatially explicit environment. Models of this type, 138 
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although simple in terms of the nature of individual’s interactions, successfully reproduce 139 

relevant ecological patterns (Durrett & Levin 1994; Solé et al. 2002; Morales & Vázquez 140 

2008). Individuals’ state is determined by several bio-energetic constraints. For the analysis 141 

of model outcomes we employ network metrics that are traditionally used for the 142 

characterisation of food webs and mutualistic interaction networks. We also calculate 143 

different metrics of community stability to create a comprehensive picture of stability based 144 

on several dimensions (sensu (Donohue et al. 2013)). The model allows us to test the 145 

relationship between different mutualistic vs. antagonistic interactions (MAI) ratios and 146 

several network and stability properties. We ran 275 replicates of experiments consisting of 147 

model communities generated using different MAI ratios and letting them evolve through 148 

time. 149 

Generation of species interactions networks  150 

Food web architecture was obtained using the niche model (Williams & Martinez 151 

2000). This model requires 2 input parameters: (1) the number of species (S), and (2) 152 

connectance, defined as the fraction of realised links (C=L/S2) within the network. The niche 153 

model describes trophic niche occupancy between consumers and resources along a resource 154 

axis, and successfully generates network structures that approximate well the central 155 

tendencies and the variability of a number of food web properties (Williams & Martinez 156 

2000; Dunne et al. 2002; Stouffer et al. 2005). Because it arranges consumers and resources 157 

along a resource axis, the niche model can be applied to other types of consumer-resource 158 

interactions (aside from antagonistic predator-prey). We thus used the niche model to define 159 

mutualistic interactions simply by substituting some herbivore links by mutualistic ones 160 

while keeping connectance and species richness constant. The model for network 161 

construction selected however, should not affect our results, as long as realistic food web 162 

architectures are produced.  163 
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We created food webs comprising 60 species and with connectance values of 0.08 164 

(values well within the range of those found for real food webs (Dunne et al. 2002)) for MAI 165 

ratios ranging from 0 to 1.0 with steps of 0.1: [0, 0.1, 0.2, 0.3 … 1], making up a total of 11 166 

different MAI ratios, from communities with no mutualistic interactions to communities with 167 

only mutualistic links and no herbivores (see Appendix S1 in Supporting Information for 168 

more details on network construction). We classified species into 6 categories (i.e., trophic 169 

groups) according to their position within the overall food web: (1) non-mutualistic plants, 170 

(2) mutualistic plants, (3) animal mutualists or mutualistic consumers, (4) herbivores, (5) 171 

primary predators, and (6) top or apex predators (Fig. 1). 172 

Individual-based spatially explicit dynamics 173 

Individual-based models (IBMs) have been used to tackle different problems in 174 

ecology, although not very frequently to simulate complex ecosystems comprising large 175 

numbers of species (Grimm & Railsback 2005). We implemented an IBM that simulates 176 

dynamics typical of two-dimensional cellular automata (CA) (Ulam 1952; Durrett & Levin 177 

1994) but based on ecological rules of interaction. This CA represents our simulated 178 

community in space. Space in the CA is represented as a 2D lattice. Cells in the lattice can be 179 

occupied by a maximum of two individuals at any given time, provided that one of them 180 

belongs to a plant and the other one to an animal species. Cells in the lattice can thus be in 181 

one of four states: (i) empty, (ii) harbouring a plant individual or (iii) an animal individual, 182 

and (iv) harbouring a plant and an animal individuals. Torus boundary conditions were used 183 

for the 2D lattice in order to reduce possible edge effects due to the loss of individuals. 184 

Individuals change their internal state (or not) during each iteration of model simulations, not 185 

only according to their interactions but also as a function of a number of bio-energetic 186 

constraints (Table S1). CA-type rules represent demographic processes, foraging actions, and 187 

inter/intra -species interactions of individuals in our IBM. These rules, by which individuals 188 
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(and hence the CA) change their state through time, are detailed in Appendix S1. 189 

In summary, the macroscopic dynamics of the CA emerge from the local interactions 190 

occurring between individuals occupying cells in a 2D lattice (Fig. 2). These dynamics will 191 

determine not only the spatial distribution of species (states of the CA) but also the temporal 192 

dynamics of their populations. Persistence/extinction dynamics are determined by individual 193 

energetics, which in turn affect demographic processes at the individual level (see Table S1 194 

for description of bio-energetic parameters). This individual-based, bio-energetic model is 195 

more realistic than previous models of complex food webs dynamics (e.g., (Pimm 1979; 196 

McCann et al. 2005; Brose et al. 2006)) in the following aspects: (i) individuals within 197 

species have different extinction rates, which are not dependant on stochastic events, thus 198 

eliminating the need to define fixed extinction probabilities for all species in the community 199 

(e.g., (Solé & Montoya 2006; Fortuna et al. 2013)); (ii) more complex demographic processes 200 

such as reproductive ability and immigration based on available space are taken into account; 201 

and (iii) bio-energetic constraints such as energy gathering efficiency and energy loss at the 202 

individual level are driving population dynamics. 203 

During model simulations spatial communities evolve through time following 204 

constraints imposed by bio-energetic parameters (see Table S1), spatial constraints (similar to 205 

all individuals), and the interactions between species determined by network architecture. 206 

After 5000 time steps, which include an initial period of transient dynamics, the communities 207 

are analysed in terms of diversity (species richness and abundances), network properties and 208 

stability.  209 

Diversity and food web properties 210 

Several statistical properties of the network of species interactions were measured after 211 

transient dynamics. In particular, we measured the number of species (S), number of links 212 

(L), connectance (C=L/S2), the standard deviation of generality (GenSD) and vulnerability 213 
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(VulSD) - the last two quantify diet breadth variability, and predation pressure variability 214 

across species, respectively (Williams & Martinez 2000). Additionally, we obtained 215 

quantitative indices that consider the strength of species interactions including: H’2 - a 216 

measure of mutualistic specialisation - (Blüthgen et al. 2006), which was calculated for the 217 

mutualistic part of the web, since it is only meaningful for bipartite interaction networks; and 218 

quantitative measures of generality (Gq) and vulnerability (Vq) (Bersier et al. 2002). Table 1 219 

presents the full set of metrics calculated over the networks and their mathematical 220 

definitions, including those mentioned above. 221 

In addition to properties related to network architecture, we also measured community 222 

diversity using the Shannon diversity and evenness indexes (Begon et al. 2006). These 223 

indexes were calculated both at the community level and within each trophic group (Fig. 1). 224 

Community stability 225 

Theoretical studies on the relationship between network architecture and stability of 226 

hybrid communities often define stability as the proportion of stable communities following 227 

May's stability criterion (e.g., (Allesina & Tang 2012; Mougi & Kondoh 2012)). May 228 

concluded that a complex ecosystem would be stable if, and only if, it complied with the 229 

following condition: < i >(SC)1/2 < 1 (May 1972), where < i > is the mean strength of the 230 

interactions between species in the community – the strength of the interaction between 231 

species i and j is the effect of species i on the population growth rate of j. S and C correspond 232 

to the number of species in the community and its connectance, respectively. Although, due 233 

to the nature of our modelling approach, our communities are not amenable to this type of 234 

analysis, May’s criterion is useful in our case because we have communities with constant S 235 

and C values. A good indicator of community stability in our communities, is thus the 236 

average interaction strength among their constituent species: the lower the < i >, the more 237 

stable our communities will be because of less fluctuating dynamics. This feature has also 238 
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been identified as distinctive feature of more stable natural communities (McCann 2000; 239 

Neutel et al. 2002). 240 

We estimated the interaction strength between a predator j and its prey j as:  241 

α"# = 	
b"#

N" 	 ∗ 	N#
	 242 

where b"# is the total biomass flowing from prey species i to predator species j -quantified 243 

here as the total number of individuals (or fractions of it, in the case of plants) from species i 244 

eaten by individuals of species j-. Ni and Nj are the total number of individuals of species i 245 

and j at the time of the calculation of the index, respectively. This way of calculating 246 

interaction strengths quantifies the per-capita effect of a predator species over its prey, and it 247 

is thus analogous to Paine’s index and Lotka-Volterra interaction coefficients (Neutel et al. 248 

2002; Berlow et al. 2004). This allows us to employ these values to assess and understand 249 

community stability based on the strengths of ecological interactions.  250 

We additionally looked at 3 other measures of community stability. First, temporal 251 

variability, which quantifies population variability as the average of the coefficient of 252 

variation (CV) of species population abundances through time (Pimm 1984). Second, spatial 253 

variability, which corresponds to the CV of the location of the centroid of each species range 254 

through time (see Appendix S1). And third, aggregation stability, measured as the degree of 255 

clustering (i.e., spatial correlation) of individuals within each species in space (i.e., Moran's I 256 

and Geary's C indexes described in Appendix S1). This metric is linked to reproductive 257 

stability because the likelihood of finding a reproductive partner in the neighbourhood is 258 

higher in more spatially aggregated distributions. Collectively, more stable communities will 259 

be characterised by lower temporal and spatial variability, higher reproductive stability, and 260 

lower average interaction strengths. This framework allowed the exploration of the 261 

relationships between network properties and the stability metrics in our communities by 262 

looking at how temporal and spatial stability changed as MAI ratio increased. 263 
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Experimental simulations 264 

We generated networks with 11 different MAI ratios in order to study the effects of 265 

different combinations of antagonistic and mutualistic interactions on community stability. 266 

The individual-based model described above was employed to perform a series of 267 

simulations of the dynamics of the system through time and space. Simulations were set up 268 

by placing a given community, made up of artificial individuals belonging to each of the 269 

species in the interaction network defined by the niche model, on a landscape that consists of 270 

a 200x200 square lattice with identical cells. Each cell can be occupied at any given time by 271 

at most two individuals, yielding a maximum of 80,000 individuals. At the beginning of the 272 

simulations only 40 per cent of the landscape was occupied and populated with the same 273 

number of individuals of each species randomly across the lattice. Communities were 274 

allowed to evolve for 5,000 iterations. Diversity and network properties were constantly 275 

monitored. 276 

We performed 25 replicates for each of the 11 MAI ratios, each of them representing 277 

different sets of initial conditions, not only in terms of the initial configuration of the 278 

simulated landscape but also regarding the network of interactions. For each of these 25 279 

replicates the initial distributions of individuals across the landscape varied by placing 280 

individuals randomly across the landscape for each replicate as detailed above. The network 281 

of interactions for each of these replicates was generated independently by running different 282 

instances of the niche model with the same S and C values, and choosing the mutualistic links 283 

following the heuristic described in Appendix S1. We kept S and C constant across our 284 

simulations because our aim is to evaluate the effect of varying MAI ratios on community 285 

stability rather than the effects of changes in species richness or connectivity. This process 286 

effectively produced different interaction networks for each run with the same number of 287 

species and connectivity. Each of the 25 communities simulated for each MAI ratio was thus 288 
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independent, and the architecture of the ecological network was different from replicate to 289 

replicate. This yielded a total of 25x11=275 replicates. 290 

Linear models (LM) were used to analyse the relationship between MAI ratios and the 291 

properties of the communities and their interaction networks as well as their effect on 292 

stability. The IBM used here was developed using Python v2.7 (www.python.org), while 293 

statistical analyses were performed in R 2.15.2 (R Core Development Team, 2012). 294 

Sensitivity analyses were carried out to assess the robustness of our results to differences in 295 

species richness, landscape lattice size, and number of generated communities. See Appendix 296 

S1 for a description of these analyses. The model presented here incorporates a total of 17 297 

free parameters (see Table S1), over which sensitivity analyses could be performed. Our aim 298 

however, was to use realistic values that would result in dynamically stable communities in 299 

terms of species richness and trophic level abundances. For some parameter combinations, 300 

after a short number of iterations of the model, several species in the system went extinct, 301 

making the analysis of stability proposed in this work unfeasible. Additionally, we were not 302 

interested in parameter combinations able to produce stable dynamics but based on 303 

unrealistic parameter combinations, because their applicability to reality is questionable. Our 304 

approach was thus to use a single parameter combination with realistic values for all of the 305 

parameters while at the same time able to reproduce persistent communities. 306 

Results 307 

Community structure 308 

After a period of transient dynamics, the resulting simulated communities and their 309 

associated interactions networks displayed patterns similar to those found in empirical 310 

multitrophic assemblages. Population dynamics showed oscillations typical of predator-prey 311 

and mutualistic interactions in multispecies systems, with all species in the community 312 

persisting through time. The rank-abundance and degree distributions of the simulated 313 
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communities followed lognormal (Fig. S2) and exponential (Fig. 3, p-value < 0.001 for all 314 

fits to exponential models) patterns, respectively, typical of natural communities (Montoya et 315 

al. 2006). Therefore, we can conclude that the model successfully generates communities 316 

displaying empirically-observed patterns.  317 

Diversity metrics changed as expected by an increase in MAI ratios. Although the level 318 

of mutualism did not affect total species richness, communities with larger MAI ratios hosted 319 

a larger number of individuals (F(1,273) = 98.69, p < 0.001) (Fig. 4). In spite of a decline in the 320 

abundance of non-mutualistic primary producers and herbivores with increasing MAI ratios 321 

(as expected due to a larger fraction of mutualistic species), the increase in mutualistic plants 322 

and animals overcompensated for this loss, causing an overall increase in abundance. This 323 

over-compensation was due to mutualistic plants becoming more abundant than non-324 

mutualistic ones since mutualistic consumers do not consume as much resources from them 325 

and are, additionally, beneficial for their reproduction. Increased MAI ratios caused a 326 

significant decline in Shannon diversity index (Fig. 4, F(1,273) = 71.47, p < 0.001). This result 327 

is in line with our previous observation reporting an increased overall abundance of 328 

individuals following a systematic increase in mutualistic plant and animal abundances. The 329 

proportion of mutualistic species in the community had a profound effect on diversity and 330 

evenness, making model communities more biased towards the dominance of mutualistic 331 

species. 332 

Most network properties were not significantly affected by the degree of mutualism vs. 333 

antagonism. However, some of them did show a monotonic relationship with MAI ratio. 334 

Quantitative generality (Gq) was significantly lower in communities with higher MAI ratio 335 

(F(1,273) = 59.49, p < 0.001, Fig. 5), whereas specialisation (H’2) within the mutualistic sub-336 

web decreased (F(1,248) = 25.91, p < 0.001, Fig. 5). These results combined indicate that a 337 

larger fraction of mutualistic interactions resulted in more generalised mutualistic interactions 338 
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within a more specialised overall network. It is important to note that we are referring here to 339 

quantitative metrics. This means that, with increasing MAI ratios, binary network architecture 340 

remained constant –not significant differences in modularity, nestedness or connectance 341 

across MAI ratios-, but interactions at the overall network level became weaker in general, 342 

with only a few strong interactions. On the mutualistic sub-web, interactions became more 343 

homogeneous in terms of strength due to a weakening of the interactions in general, which 344 

made it less specialised (lower H’2) by increasing the relative importance of weak links. 345 

 Community stability 346 

Based on the interaction strengths criterion for community stability (see Methods), we 347 

found that MAI ratios enhanced dynamic stability in our model communities. We observed a 348 

significant reduction in < i > -the average interaction strength- as MAI ratio increased, 349 

evidenced by a shift in the distribution of interactions strengths towards lower values with 350 

MAI ratio (Fig. 6, p < 0.001 for all pairwise comparisons between distributions). This result 351 

suggests that mutualistic interactions make communities more stable by lowering the average 352 

strength of ecological relationships between species. 353 

MAI ratios did not affect temporal stability (i.e., population variability through time), 354 

spatial stability (as measured by the change in the centroid of the species' spatial range) or the 355 

area and density of species populations. In contrast, higher MAI ratios resulted in 356 

significantly higher and lower Moran's I and Geary's C indexes, respectively (correlation tests 357 

using linear models yielded F(1,273) = 29.06, p < 0.01 for Moran’s I and F(1,273) = 24.35, P < 358 

0.01 for Geary’s C against MAI ratios), revealing more spatially aggregated populations with 359 

increasing MAI ratios (Fig. S3). Increases in spatial aggregation were different across trophic 360 

levels both at global (Moran’s I) and local (Geary’s C) scales. For example, whereas 361 

predators and plants got significantly more aggregated as MAI ratio increased, the 362 

aggregation of mutualistic animals and herbivores was either not affected or only weakly 363 
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affected by changing MAI ratios, respectively (Figs. 7 and S4). We argue that more spatially 364 

aggregated populations can be associated with higher reproductive potential stability, as the 365 

likelihood of finding a reproductive partner in the neighbourhood is higher. From this 366 

perspective, communities in general, and plant and predator species in particular, were thus 367 

more stable in terms of species reproductive potential as the MAI ratio increased (Figs. 7, S3, 368 

and S4). 369 

Discussion 370 

The consideration of different interaction types simultaneously within the same 371 

ecological network has consistent and predictable effects on community organisation and 372 

stability across a gradient of antagonistic vs. mutualistic interactions. We have shown that 373 

increasing levels of mutualisms result in more stable communities. More importantly, 374 

increasing the proportion of mutualistic vs. antagonistic interactions (i.e., MAI ratios) 375 

influences different dimensions of ecological stability in different ways, although never 376 

negatively. Stability was either not influenced by increasing mutualism - in the cases of 377 

population stability and species’ spatial distributions - or was positively influenced by them - 378 

spatial aggregation, distribution of interaction strengths-. The question arising is: why were 379 

some components of stability affected by MAI ratios and others not? 380 

Stability of our model communities in terms of the variability in the population 381 

dynamics of their constituent species was not affected by the MAI ratio. This could be a 382 

consequence of the stabilising effect of space on complex communities, as has been 383 

previously demonstrated (e.g., (Solé & Bascompte 2006)), regardless of the type of 384 

interaction considered. Several mechanisms that could yield these stability patterns due to 385 

spatial arrangements within communities, such as metapopulation dynamics and refugee 386 

effects, are in place in our model. Metapopulation dynamics, via the exchange of individuals 387 

among local populations, could be an important factor determining the fate of species, 388 
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preventing them from going extinct (Hanski 1998). Metapopulation structure in our model 389 

communities emerges as a property of the system from organisation of individuals at the local 390 

scale. Also, the refugee effect created by highly aggregated populations (see Fig. 7), which 391 

prevents predators from attacking individuals at the core of these populations, could drive 392 

stability at the population level. Collectively, these factors could have profound impacts on 393 

the ability of predators to capture prey as mutualisms increase. Is it possible however that the 394 

opposite pattern could arise, whereas a more aggregated prey distribution would allow 395 

predator individuals to find the ‘next’ prey to attack more readily. This would result in higher 396 

attack rates. The emergence of this pattern would make communities displaying it less able to 397 

persist through time since the predator would force their prey into an extinction vortex. This 398 

suggests that a good balance between prey aggregation and attack rate must be found to 399 

enhance persistence. The key to this balance could lie on the strength of ecological 400 

interactions. 401 

Our results showed that increasing MAI ratios results in model communities with a 402 

lower quantitative generality (Gq). Because quantitative generality measures the generality of 403 

consumers, this indicates that predators, even when keeping all of their prey species as MAI 404 

increases, are becoming more specialised (i.e., they are more likely to interact with some of 405 

their prey species than with others). Since our model does not enforce any kind of prey 406 

preference or selection, this is exclusively a consequence of an increased abundance of those 407 

‘preferred’ prey species. A higher proportion of mutualistic interactions promotes the 408 

dominance of certain prey species that are becoming relatively more abundant. As a result 409 

and in parallel to this pattern, some of the interactions of generalist species are becoming 410 

weaker (those with less abundant prey). This could in turn cause a shift in the distribution of 411 

the strengths of interactions towards lower values, a distinctive feature of more stable 412 

communities (McCann 2000; Neutel et al. 2002). Interestingly, the distribution of interaction 413 
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strengths at the community level was largely affected by MAI ratios, with weaker interactions 414 

becoming more common in communities with higher MAI ratios. Therefore, a higher fraction 415 

of mutualistic species promotes community stability by shifting the distribution of interaction 416 

strengths towards lower values. 417 

The likely mechanism behind the observed changes in interaction strength patterning is 418 

a differential spatial aggregation of species per trophic level. Both global (Moran’s I) and 419 

local (Geary’s C) aggregation metrics were positively influenced by MAI ratios at the whole 420 

community level, with some trophic groups displaying a stronger relationship than others. 421 

The populations of basal species (plants) were more aggregated at higher MAI ratios. This 422 

higher spatial aggregation of primary producers is likely due to the fact that mutualistic 423 

consumers take up fewer resources from their interaction partners. Populations of mutualistic 424 

plants can thus remain more aggregated due to decreased mortality and hence increased local 425 

reproduction. Additionally, given that there are less herbivore species as MAI ratio increases, 426 

non-mutualistic plants remain more clustered. Regardless of the mechanisms behind the 427 

aggregation of basal species (e.g., decreased mortality, increased local reproduction, 428 

herbivory release), the effects of this aggregation percolates up through the food chains, 429 

possibly by inducing herbivores (and mutualistic animals) to remain near aggregated food 430 

sources, and hence predator species become more clustered as MAI ratio increases. In 431 

summary, spatial aggregation offers a potential explanation to why interactions in the 432 

community are becoming weaker in general, as suggested by the decrease in Gq. Consumers 433 

will be more likely to interact with the same prey species if they are aggregated around them, 434 

in detriment of their other potential interactions as defined in the niche model. 435 

Our results seem to contradict those of Mougi and Kondoh (2012), who found that 436 

higher levels of mutualisms have a destabilising effect on the communities with a mixture of 437 

antagonistic and mutualistic interactions. Even though space has an important influence on 438 
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the stability of ecological communities (whether natural or artificial), we should not overlook 439 

the fact that the results by Mougi and Kondoh were obtained from communities where 440 

mutualistic interactions were arranged randomly across the interactions network. In the 441 

present study we only allow mutualistic interactions between basal (plant) and first-order 442 

consumer (herbivores) species, mimicking plant-animal mutualisms. Besides, the ‘proportion 443 

of mutualistic interactions’ in our study refers to the proportion in relation to herbivore links 444 

rather to the whole set of interactions in the community, as in Mougi and Kondoh’s. Thus, 445 

MAI ratios of 1 (or 100% mutualism) in this study correspond to low-to-intermediate values 446 

of mutualism in their study, range in which they found the most stable communities. These 447 

observations suggest that both studies might actually be consistent with each other. Also 448 

recently, Sauve et al. (2014) found that in model communities, network properties that were 449 

previously associated to community stability in ecological networks with a single interaction 450 

type - nestedness for mutualistic networks, and modularity for food webs -, are no longer 451 

good predictors of stability in ‘hybrid’ communities. These properties were not affected by 452 

MAI ratios in our model communities. By extending community stability analysis to spatial 453 

networks with a mixture of interaction types, our results further supports Sauve et al.’s 454 

findings by confirming that modularity and nestedness (network properties that do not change 455 

with MAI ratio) are not related to community stability (which increases with MAI ratio). 456 

However, the mechanisms are not clear. The increase in the importance of indirect effects on 457 

hybrid communities, together with the associated unpredictability that indirect effects have on 458 

community dynamics (Yodzis 1988; Montoya et al. 2009; Novak et al. 2011), is likely to 459 

reduce the importance of network topology for stability. In addition, the spatial distribution of 460 

individuals across trophic levels by ultimately affecting interaction strengths is also 461 

diminishing the importance of these two network properties for community dynamics. 462 

Conclusion  463 
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Ecological stability has several components (Pimm 1984), and that considering 464 

different aspects of stability in community analyses benefits the exploration of complexity-465 

stability relationships (Donohue et al. 2013). In this study, we have made three major 466 

developments in the understanding of complexity-stability relationships in complex food 467 

webs by (1) exploring the effects of antagonistic and mutualistic interactions operating 468 

simultaneously and across a gradient, (2) including interactions at the individual level, and 469 

(3) considering space explicitly. We showed that the proportion of mutualistic versus 470 

antagonistic interactions largely affects spatial stability. This is a key advance for 471 

understanding how spatial processes such as dispersal, aggregation, or habitat loss and 472 

fragmentation affect community stability. The ‘network of networks’ approach used here and 473 

increasingly claimed for in network research allows for a more comprehensive exploration of 474 

the relationship between network architecture and community stability.  475 
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Table 1. Metrics applied over the interaction networks to obtain information about its 595 

structural and quantitative properties. 596 

 597 
Property Formula 

C: connectance, fraction of 
realised links out of the possible 
ones 

L/S2 

GenSD is the standard deviation 
of the normalised number of prey 
Gi across species. 

𝐺* = 	
+
,/.
	∑ 𝑎1*.

12+  , where aji is 1 if there exists a trophic link between 
prey j and predator i, and 0 otherwise. 

VulSD is the standard deviation 
of the normalised number of 
predators Vi across species. 

𝑉* = 	
+
,/.
	∑ 𝑎*1.

12+ , where aij is 1 if there exists a trophic link between prey 
i and predator j, and 0 otherwise. 

Compartmentalisation is the 
degree to which species share 
common neighbours across the 
web (Pimm & Lawton 1980) 

𝐶 = 	 +
.	(.6+)

	∑ ∑ 𝑐*1.
12+
19*

.
*2+  , where cij is the number of species with which 

both i and j interact divided by the number of species with which either i 
or j interact. 

Nestedness: the extent to which 
the diets of specialist species are 
proper subsets of more generalist 
ones 

Calculated using the nestedness metric based on overlap and decreasing 
fill (NODF) proposed by Almeida-Neto et al. (Almeida-Neto et al. 2008) . 
This metric was only calculated for the mutualistic sub-web. 

H’2: two-dimensional 
standardised Shannon entropy, as 
proposed by Bluthgen et al. 
(2006). 

H’2 =  (H2max – H2) / (H2max – H2min) where H2max and H2min are maximum 
and minimum H2 for the particular network over which the index is being 
calculated [see (Blüthgen et al. 2006) for details]. 𝐻; =
	−∑ ∑ (𝑝*1 	 ∙ 𝑙𝑛	𝑝*1)A

12+
B
*2+ , where r and c are resources and consumers in 

the mutualistic web respectively. pij is the proportion of the total number 
of interactions in the network that occur between resource species i and 
consumer species j. This metric was calculated over our networks using 
the bipartite package in R (Dormann et al. 2009), and only for the 
mutualistic sub-web. 

Gq: weighted (quantitative) 
generality, as proposed by Bersier 
et al. (2002). 

𝐺C =	∑
D∙E
D∙∙
	𝑛F,H.

H2+ , where 𝑏∙H is the total amount of biomass going into 
species k, and 𝑏∙∙ is the total amount of biomass flowing through the entire 
food web. 𝑛F,H is the number of prey that predator k has. Here the biomass 
flowing from one species to another was calculated as the number of 
individuals of a given prey species eaten by individuals of predator species 
k (Bersier et al. 2002).  

Vq: weighted (quantitative) 
vulnerability, as proposed by 
Bersier et al. (2002). 

𝑉C =	∑
DE∙
D∙∙

.
H2+ 	𝑛J,H, where 𝑏H∙ is the total biomass emanating from species 

k. 𝑏∙∙ is the total biomass flowing through the entire food web. 𝑛J,H  is the 
number of predator species that feed upon prey species k. Here the 
biomass flowing from one species to another was calculated as the number 
of individuals of prey species k eaten by a given predator species (Bersier 
et al. 2002). 
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Figure Legends 599 

Figure 1. Schematic representation of the species interaction networks generated. Nodes 600 

correspond to taxonomic species and arrows to trophic links from resources to consumers. 601 

The six different categories (i.e., functional groups) of species, according to their position, 602 

that result from the process of network generation are shown (see text). 603 

 604 

Figure 2. Example of a 2D grid (17x17 cells) showing a fraction of the landscape where 605 

digital organisms in the individual-based model co-exist and interact. Trajectories of two 606 

sample individuals until they encounter each other are represented by black and dark grey 607 

squares. Light grey squares represent the neighbourhood of each of the two individuals at the 608 

beginning of their respective current paths. At the end of both paths, each individual finds 609 

itself inside the other’s neighbourhood. Depending on other individuals present on a given 610 

individual’s neighbouring cells (shown as light grey cells for the starting position of each of 611 

the two individuals in the figure) or whether these are available, the ‘state’ in this complex 612 

cellular automaton will change following certain rules and constraints (see text and 613 

Supporting Information). 614 

 615 

Figure 3. Cumulative degree distributions from 10 sample communities with different MAI 616 

ratios. Lines represent a fit of each dataset to an exponential distribution (p-values for all fits 617 

< 0.001).  618 

 619 

Figure 4. Total abundance of individuals in the community and Shannon diversity index at 620 

the level of the total community versus MAI ratio. Total numbers of individuals are 621 

represented in tens of thousands. Points show index values for each replicate. Line and 622 

shadow on each plot represent the fit of a linear model to the data and the standard error of 623 
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the mean respectively. p-value < 0.001 for linear model fits to each data set. 624 

 625 

Figure 5. Quantitative generality (Gq) and specialisation degree (H’2) values as a function of 626 

MAI ratio. Points show index values for each replicate. Line and shadow on each plot 627 

represent the fit of a linear model to the data and the standard error of the mean respectively. 628 

p-value < 0.001 for linear model fits to each data set. 629 

 630 

Figure 6. Frequency distributions of interaction strengths in the overall ecological network 631 

across different values of MAI ratio. 632 

 633 

Figure 7. Moran’s I spatial aggregation index per trophic level as a function of MAI ratio. 634 

Points show index values for each replicate. Line and shadow on each plot represent the fit of 635 

a linear model to the data and the standard error of the mean respectively. ** and *** 636 

correspond to p-value < 0.01 and 0.001 for linear models fits to each data set respectively. 637 

 638 

  639 
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Figures 640 

Figure 1 641 

 642 

  643 
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Figure 2 644 

 645 

 646 

 647 
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Figure 3 649 

 650 

  651 
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Figure 4 652 

 653 
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Figure 5 655 
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Figure 6 659 
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Figure 7 664 

 665 
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Herbivores **
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