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Abstract 31 

Objective of the work is to investigate the stress and strain fields that corneal tissue and 32 

donor graft undergo during endothelial keratoplasty. In order to attach the donor graft to 33 

the cornea, different air bubble pressure profiles acting on the graft are considered. This 34 

study is carried out by employing a three-dimensional non-linear finite element (FE) 35 

methodology, combined with a contact algorithm. The ocular tissues are treated as 36 

isotropic, hyper-elastic and incompressible materials. The contact algorithm, based on 37 

the penalty-based node-to-surface approach, is used to model the donor graft-corneal 38 

interface region. The proposed computational methodology is tested against benchmark 39 

data for bending of the plates over a cylinder. The influence of geometrical and material 40 

parameters of the graft on the corneal contact-structural response is investigated. The 41 

results are presented in terms of Von Mises (VM) stress intensity, displacement and 42 

mean contact force. Results clearly indicate that the air bubble pressure plays a key role 43 

in the corneal stress and strain, as well as graft stiffness and thickness. 44 

Keywords: Keratoplasty; Cornea transplantation; Biomechanics; Hyper-elastic 45 

model; Finite element; Contact mechanics 46 

 47 

Nomenclature 48 

d = Displacement vector (mm) 

e = Tangent vector 

E = Young’s Modulus (Pa) 

F = Deformation gradient 

f = Contact force (N) 

gi = Gap vector (mm) 
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N = Normal vector 

K = Stiffness matrix 

Kc = Contact stiffness matrix 

P = Bubble pressure (Pa) 

RC = Residual contact forces vector (N) 

S = Internal forces vector (N) 

T = External forces vector (N) 

t = Traction vector (Pa) 

w = dual basis vector 
 

Greek symbols  

υ = Poisson ratio 

ε = penalty parameter (N/mm) 

ρ = density (kg/m3) 

κ = Penalty number (Pa) 

µ = Shear modulus (Pa) 

σ  = Cauchy Stress Tensor (Pa) 

Ψ = Strain Energy function (Pa) 

 
 

Acronyms 49 

AC = Anterior Chamber 

DM = Descemet’s Membrane 
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VM = Von Mises 

Subscripts 50 

p = Projection 

s = slave node 

max = Maximum 

1. Introduction 51 

Corneal transplantation, known as keratoplasty, is a surgical procedure aiming to 52 

replace damaged cornea with healthy donor tissue. It can be used to improve sight, 53 

relieve pain and treat severe uncontrolled corneal infection [Tan et al., 2012]. In 54 

conventional surgical procedures for corneal transplantation, known as Penetrating 55 

Keratoplasty (PK), the whole cornea tissue is replaced with donor tissue. However, with 56 

the advent of sophisticated techniques, like Descemet’s Stripping Automated 57 

Endothelial Keratoplasty (DSAEK) and Descemet’s Membrane Automated Endothelial 58 

Keratoplasty (DMAEK), selective removal of posterior corneal tissue has achieved a 59 

decrease in post-operative complications and improved vision [Stuart et al., 2018; 60 

Parekh et al., 2018; Parekh et al., 2018]. 61 

Both DSAEK and DMAEK surgical techniques involve two steps: in the first step, 62 

partial removal of the damaged corneal basement layer, mainly the Descemet’s 63 

Membrane (DM), is carried out while in the second step, a healthy donor DM is 64 

replaced. The thickness of the donor DM is selected by the surgeon based on the 65 

intensity of the damage on the host membrane. The donor DM, often referred to as 66 

graft, is inserted in the Anterior Chamber (AC) of the eye by means of scleral incision, 67 

and attached to the posterior cornea with a surgical device. Attaching the graft by a 68 
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device may damage both corneal tissues and graft. For this reason, the pressure needed 69 

to attach the graft is imposed by means of an air bubbling technique as shown in Figure 70 

1. In this technique, an air bubble is placed at the anterior part of the graft inside the 71 

Anterior Chamber (AC) of the eye and subsequently the bubble size is increased along 72 

with the pressure in order to move the graft towards the corneal basement side. This 73 

technique provides approximately 90% success rate of correct attachment of the graft to 74 

the posterior cornea, and generally it avoids further surgical device interventions with 75 

ocular tissues and corneal sutures [Stuart et al., 2018; Parekh et al., 2018; Parekh et al., 76 

2018]. In unsuccessful cases, graft detachment may be associated with the presence of 77 

interfacial fluid between graft and cornea, but the underlying cause of these 78 

detachments is still unknown.  79 

The employment of mathematical eye models and engineering approach in biomedical 80 

applications has proven to be a success in terms of prediction of physical quantities of 81 

interest like velocity, pressure, stress and temperature, such as for the design of 82 

biomedical equipment [Mauro et al., 2018; Mauro et al., 2018; Mauro et al., 2018; 83 

Mauro et al., 2018]. The high number of recent studies on modelling cornea 84 

biomechanics indicates a growing interest in the field [Canovetti et al., 2018; Fraldi et 85 

al., 2011; Nguyen et al., 2011; Pandolfi et al., 2006].  In the study by Studer et al., the 86 

collagen fibre distribution in a human cornea is studied using a biomechanical model, 87 

accounting for age related differences. Their results show an increase in collagen cross-88 

linking in cornea for older age groups [Studer et al., 2010]. A finite element 89 

methodology was proposed by Lago et al. to present the in vivo characterization of 90 

biomechanical behaviour of the cornea [Lago et al., 2010]. In the numerical study by 91 

Whiteford et al., a finite element model was proposed to analyse the anisotropic 92 

behaviour of the cornea [Whitford et al., 2015]. In their study, model parameters were 93 
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calibrated with the experimental data for different age-groups. Montanino et al. 94 

developed a model for analysing the air puff test on the cornea, in order to study the 95 

effect of aqueous humour on corneal deformation [Montanino et al., 2018]. In their 96 

study the influence of material and geometrical parameters on corneal deformation was 97 

also investigated. 98 

There are no studies concerning the numerical modelling of keratoplasty, with a realistic 99 

reproduction of the corneal transplantation into a three-dimensional cornea model. 100 

Therefore, the present work represents the first attempt to theoretically describe the 101 

second step of endothelial keratoplasty procedure, i.e., the attachment of donor graft 102 

with cornea driven by air bubble pressure, in order to characterize the structural 103 

interaction between graft and cornea. This will ultimately provide insights on the design 104 

of corneal transplantation surgery, with consequent reduction of post-operative 105 

complications. 106 

The paper is organized as follows: the next section presents the computational domain, 107 

boundary conditions, governing equations and contact mechanics algorithm. The third 108 

section first reports the numerical method validation, and then comments the results 109 

obtained from endothelial keratoplasty simulations. Finally, concluding remarks are 110 

drawn in the last section. 111 

2. Mathematical model and numerical procedure 112 

2.1. Computational domain and boundary conditions 113 

The computational domains of the graft (slave body) and cornea (master body) are 114 

represented in Figure 2. The graft considered in this work is 8 mm in diameter and 120 115 

µm in thickness [Moshirfar et al., 2014; Gormsen et al., 2018]. The cornea is assumed 116 

to have a uniform thickness equal to 520 µm, with an anterior chamber height of 15 117 
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mm. During the endothelial keratoplasty, the slave surface (pink colour in Figure 2 118 

(top)) of graft attaches with master surface (red colour in Figure 2 (bottom)) of the 119 

cornea. Linear hexahedron elements are used to discretise the computational domain of 120 

graft and cornea with 324 and 968 elements, respectively. 121 

In order to reproduce the air bubble pressure a space and time varying load P=P(x, z, t) 122 

is applied along the ‘y’ direction, normal at anterior surface (load surface) of the graft. 123 

A parabolic profile is used to describe its spatial variation, and its magnitude is 124 

gradually increased until attachment occurs, with Pmax as the maximum value at the 125 

centre of the graft. For the cornea a fixed boundary condition (fixed b.c) is also imposed 126 

at the circumferential sides (blue colour in Figure 2). Free boundary condition is 127 

imposed at the remaining surfaces. 128 

With regard to the cornea, the Young’s Modulus and Poisson ratio υ are equal to E = 1.0 129 

MPa and 0.4, respectively [Shih et al., 2017]. For the graft, material properties are 130 

similar to DM. However, the stiffness of the donor graft is slightly higher than the 131 

actual DM, due to the chemical treatment performed prior to the endothelial 132 

keratoplasty procedure [Last et al., 2009]. Therefore, different Young’s Modulus values 133 

between 0.1 MPa and 0.3 MPa are considered in this study (Poisson ratio is maintained 134 

equal to 0.4). The Young’s Modulus values of cornea and graft are experimentally 135 

measured values which are obtained from the previous studies [Shih et al., 2017, Last et 136 

al., 2009). A density ρ = 1000 kg/m3 is assumed for both bodies. Since the study focuses 137 

on the biomechanical behaviour of cornea and graft, the presence of aqueous humor at 138 

the anterior chamber is, for sake of simplicity, not accounted for.  139 

2.2. Governing equations and discretization 140 

Cornea and graft are modelled as isotropic, hyper-elastic and nearly-incompressible 141 

materials [Sinha et al., 2009; Khan et al., 2016]. Finite strain theory is used for 142 
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describing the kinematics of both bodies. The reference (stress free) and deformed 143 

configurations are indicated with oΩ  and Ω , respectively, and the corresponding 144 

coordinates as oX ∈Ω  and x∈Ω . The deformation gradient is denoted as 145 

xF
X
∂

=
∂

, whilst det 0J F= >  is the local volume ratio and 
1
2F J F

−
=  is the 146 

distorsional component of the deformation gradient. The right-Cauchy deformation 147 

gradient and its isochoric counterpart are therefore defined as TC F F= and 148 

T
C F F=  respectively. For a material which is assumed to be nearly-incompressible, 149 

the strain energy function (ψ ) can be decoupled as in [Holzapfel et al., 2000] 150 

( ) ( )C U Jψ ψ= +        ,    (1) 151 

where ψ and U are the purely isochoric and volumetric contributions to ψ , 152 

respectively. In the current study a neo-Hookean type material has been adopted, ie,  153 

1( ) ( 3)
2

C Iµ
ψ = − ,     (2) 154 

in which µ is the shear modulus, 1I  is the first invariant of C . The volumetric 155 

component of the strain energy function is 156 

2( 1)( )
2

JU J κ
−

=       (3) 157 

where  κ is the penalty parameter used for enforcing incompressibility.  158 

In a standard Lagrangian description, the balance of linear momentum for an 159 

infinitesimal solid volume dΩ  may be written as 160 

0dρ σ−∇⋅ =&& ,     (4) 161 
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in which ρ is the current density, the vector d is the displacement field whereas σ is the 162 

second order Cauchy stress tensor. The application of the virtual work principle to the 163 

momentum conservation equation leads, after integration by parts, to 164 

T Td d d 0Tδ ρ δε σ δΩ Ω Γ∫ Ω+ ∫ Ω− ∫ Γ =
..

d d d t ,   (5) 165 

where δd and δε are the virtual displacement and strain components, respectively, and t 166 

is the current traction vector acting on the surface Γ . 167 

After Galerkin discretization ( , )e e e eΩ ≈ Σ Ω Γ ≈ Σ Γ , it is possible to write the multi-168 

dimensional system in the following compact matrix form, 169 

T T T
e e ed ( ) d d 0

e e ee δ ρ σ δΩ Ω Γ
⎡ ⎤Σ ∫ Ω + ∫ Ω − ∫ Γ =⎢ ⎥⎣ ⎦

..
d d Bd d t ,  (6) 170 

in which B is a matrix containing the derivatives of the shape functions, as described in 171 

[Zienkiewicz et al., 2013]. The semi-discrete system obtained can then be discretized in 172 

time by using the α-method [Zienkiewicz et al., 2014]. This yields a non-linear system 173 

of equations: 174 

n+1 n+1 n+1( ) 0+ − =
..

Md S d T ,   (7) 175 

where n+1d  is the vector of unknown nodal displacements at time n+1, M is the mass 176 

matrix, S is the internal force (non-linearized) vector and n+1T is the external forces 177 

vector. The system solution is sought by employing the Newton-Raphson method, as 178 

described in [Bonet et al., 2010]. In this solution procedure the stiffness matrix, K, is 179 

computed as derivative of the residual of the previous system of equations with respect 180 

to the displacement d. 181 

 182 

 183 

 184 
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2.3. Contact mechanics algorithm 185 

Contact mechanics problems are non-linear in nature, since contact forces, 186 

displacements and points of contact are unknowns at the interface during collision 187 

between two bodies. The contact algorithm used in this study is derived from the 188 

methodology by Doghri et al [Doghri et al., 1998]. For a more detailed explanation on 189 

contact procedure see the above-mentioned reference work. 190 

A frictionless node-to-surface contact procedure based on the penalty method is 191 

employed where the nodes at lower surface of the graft are designated as slave nodes. 192 

Figure 3 illustrates the contact procedure for a single slave node of the graft, which is 193 

localized by the position vector 
sx  during the contact occurs, by its projection !! on the 194 

corneal master surface. The quadrilateral element of the master surface is divided into 195 

four triangular facets by means of a temporary centre node ‘0’, such that each master 196 

triangular facet has 3 nodes; 0, 1, 2. The coordinates of the temporary centre node are 197 

defined by: 198 

4

0
1

1
4 i
i

x x
=

= ∑
,     (8) 199 

 200 

The tangential edge vectors e1 and e2 are given by: 201 

1 1 0e x x= − , 2 2 0e x x= −  ,   (9) 202 

The normal of the triangular facet is defined as: 203 

1 2n e eΔ = × .    (10) 204 

For each corner node (belonging to the quadrilateral element) the average normal is 205 

calculated by considering the normal of triangular facets connected to the node. The 206 
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normal at the temporary central node of the quadrilateral element !! is calculated by 207 

averaging the normal at the corner nodes, i.e,  208 

 

4

0 0
1

1
4 i
i

n n n
=

= ∑
 .    (11)

 209 

The initial step of the contact procedure is to project the slave node !! along the 210 

calculated facet normal nΔ onto the master surface (Figure 3(a)). This identifies the 211 

projected point x!, lying within the triangular facet, where the contact actually occurs. 212 

In order to check the location of the projected point !!, a natural coordinate system ξ is 213 

employed (see Figure 3(c)). The natural coordinates of the projection point are 214 

calculated from the edge vectors, dual basis vectors and normal of the facet. The dual 215 

basis vectors are calculated as: 216 

1 1w n eΔ= × , 2 2w n eΔ= ×  ,   (12) 217 

The natural coordinates of the projected point  !! are defined as: 218 

2 0 1 0
1 2

2 1 1 2

.( ) .( )
,

. .
s s

p p

w x x w x x
w e w e

ξ ξ
− −

= = ,  (13) 219 

It is worth noticing that the projected point px  lies within the triangular facet domain 220 

only if the natural coordinates ξ1p, ξ2p and their sum are in the range between 0 and 1. 221 

The coordinates of the projected point  !! are linearly interpolated by using the finite 222 

element shape functions iN  223 

2

0
p i i

i

x N x
=

=∑ ,     (14)
 

224 

where 225 

0 1 2 1 1 2 21 , ,p p p pN N Nξ ξ ξ ξ= − − = = . 226 
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Every time the slave node changes position, the projected or contact point is re-227 

calculated for each iteration of the algorithm. 228 

The second contact step is to measure the gap vector !! between the coordinate of the 229 

slave node and projected point, in order to check if the points are actually in contact. 230 

This gap vector is calculated along the interpolated normal pn  at the projection point on 231 

the triangular facet, which is given by 232 

2

0
p p i i

i
n n N n

=

=∑ ,     (15) 233 

s pg x x= − ,     (16) 234 

.i pg g n= .      (17) 235 

 236 

The gap vector, ig ,  refers to the following impenetrability conditions:  237 

    0ig <      penetration;           (18) 238 

0ig =   perfect contact;       (19) 239 

0ig >   no contact.        (20) 240 

Penalty constraints are applied to prevent the violation of impenetrability condition in 241 

order to satisfy the conditions (17) and (18). This is carried out by means of penalty 242 

parameter,ε, which is imposed in the contact stiffness matrix and contact force vector in 243 

order to avoid penetration.  244 

This penalty parameter depends on the amount of penetration of the slave body into the 245 

master body. A higher value of penalty parameter decreases the amount of penetration 246 

of slave body into the master body. However, very large values of penalty parameter 247 

may lead to numerical instabilities. 248 
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 In order to solve the non-linear system of contact equations, Newton-Raphson method 249 

is employed to linearize the equations at the region of contact, and iterations are 250 

performed to obtain the solution. The linearization procedure for the finite element 251 

contact formulation can be found in [Laursen et al., 1993].  252 

The contact force f of the slave node at the contact point is defined as 253 

if gε= .     (21) 254 

Since the two bodies are flexible, an equal and opposite contact force f at the master 255 

triangular facet nodes (0,1,2), are distributed based on the shape function of the 256 

corresponding nodes at the contact region, in order to impose equilibrium conditions. 257 

Therefore, the residual contact force vector matrix at contact region, Rc is given as: 258 

0 1 2
T T T TN f N f N f f⎡ ⎤= −⎣ ⎦cR  . (22)

 259 

The contact stiffness matrix Kc is defined at the point of contact between slave and 260 

master bodies as: 261 

2
0 0 1 0 2 0

2
0 1 1 1 2 1

2
0 2 1 2 2 2

0 1 2

N m N N m N N m N m

N N m N m N N m N m

N N m N N m N m N m

N m N m N m m

⎡ ⎤−
⎢ ⎥
⎢ ⎥−
⎢ ⎥=
⎢ ⎥−⎢ ⎥
⎢ ⎥
− − −⎣ ⎦

cK
,

 (23) 

262 

where m is 3 x 3 matrix given by: 263 

T
p pm n nε= .    (24) 264 

Finally, the derived contact stiffness matrix Kc and contact residual force !! are added 265 

to the stiffness matrix and external force vector, respectively, 266 

/ /
C CK  = K + K , T  = T + R .     (25) 267 
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The procedure developed by the authors is then applied to a benchmark problem for 268 

verification. 269 

3.  Results and discussion  270 

3.1. Model verification: bending of plates over a cylinder 271 

Before simulating the keratoplasty procedure, the proposed non-linear finite element 272 

contact model is tested by employing a typical contact mechanics benchmark problem: 273 

“bending of two plates over a cylinder”. The computational domain is depicted in 274 

Figure 4(a)(left). Simulation parameters and boundary conditions of this problem can be 275 

found in the reference [Kopačka et al., 2015]. Due to symmetry of the stress and 276 

displacement fields, only one-eighth of the geometry is considered. The material 277 

properties of the elastic plates and cylinder are as follows: Young’s Modulus, E = 2.1 278 

×10! MPa, Poisson ratio, υ = 0.36. The plates are loaded with a uniform surface traction 279 

of 22.5 MPa in ‘y’ direction.  It should be noticed that the benchmark problem has 280 

employed three dimensional second-order serendipity elements while the present model 281 

has used linear hexahedron elements to discretise the geometry. A penalty parameter ε 282 

= 5 ×10! N/mm is selected to impose the impenetrability conditions in order to prevent 283 

the penetration of plates into the cylinder. This way the plates bend under the influence 284 

of the uniform pressure load. The distribution of σyy contours of the deformed plates 285 

over the cylinder are shown in Figure 4(a)(right). The contact pressure on the plate at z 286 

= 102.07 mm is within the range of values available from the literature (Figure 4(b)). 287 

The discrepancies between the present and the reference studies can be attributed to the 288 

variability in the discretised element used and difference in contact algorithm employed.  289 
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3.2. Dynamics of the impact between cornea and graft 290 

In this section the dynamics of endothelial keratoplasty procedure is numerically 291 

reproduced and analysed.  For this case, a time step equal to Δt = 5 ×10!! seconds is 292 

used whilst the graft Young’s Modulus is set equal to 0.3 MPa. The thickness and 293 

stiffness of cornea are considered to be the same throughout the study. The bubble 294 

pressure load is applied to the graft and gradually increased each time step up to a 295 

prescribed maximum pressure of Pmax = 3.0 mmHg, in order to complete the 296 

attachment of the two bodies. Figure 5 depicts, at different time stages, the cornea and 297 

graft before and during the impact. At the initial time, the distance between centres of 298 

graft and cornea is equal to 0.65 mm. 299 

The first contact occurs when the circumferential corners of the graft hit the cornea after 300 

0.0001 seconds. At this point contact forces are exerted on the graft corners. As a 301 

consequence, stress intensity rises on the graft corners as well as on the corneal body 302 

surface, while the core regions of the graft undergo deformation (measured in terms of 303 

displacement with respect to the reference configuration) due to inertia and increase in 304 

pressure load. The graft completely attaches to the cornea after approximately 0.02 305 

seconds. Since then, the effect of the impact is more prominent in the central region of 306 

the cornea, where higher stress is recorded. This may be caused by the higher load 307 

acting on the central region of the graft.   308 

Figure 6(a,b) shows, for graft and cornea, the displacement magnitude (module) with 309 

respect to the reference configuration (configuration before the impact) and VM stress 310 

intensity after the complete attachment. The displacement is plotted for cornea and graft 311 

corresponding midsections with respect to y axis, whilst VM stress intensity is plotted at 312 

master and slave surfaces. The cornea exhibits a maximum displacement of 0.005 mm, 313 

whilst the graft attains a more pronounced displacement, with a maximum value of 0.6 314 
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mm. It is worth mentioning that the structural deformation (measured in terms of 315 

displacement with respect to the reference configuration) of the graft depends on several 316 

factors such as the stiffness and thickness of the material employed, bubble pressure and 317 

corneal stiffness. The maximum VM stress intensity values of graft and cornea are 318 

0.015N/mm2 and 0.0176 N/mm2, respectively.  319 

In order to analyse the contact force on the graft during the endothelial keratoplasty, the 320 

mean contact force on the slave nodes lying on the circumference of the graft (red thick 321 

line) is plotted against time in Figure 6(c). The recorded force rises with time, 322 

presenting also a high-frequency oscillatory behaviour due to non-linearity involved in 323 

the contact mechanics problem at the corneal-graft interface.   324 

It is worth mentioning that the mean contact force also depends on the parameter which 325 

guarantees the impenetrability condition during the contact. The choice of the penalty 326 

parameter is based on trial and error method and it depends on various factors, like 327 

bubble pressure load, graft stiffness and thickness. The penalty parameters used for the 328 

cases with different bubble pressure load conditions and graft’s Young’s Modulus 329 

values, are reported in Table 1. It is shown that, for imposing the impenetrability 330 

condition, a higher penalty parameter is required for larger bubble pressure load and 331 

Young’s Modulus. 332 

3.3.  Effect of graft stiffness on corneal biomechanics 333 

The stiffness of the graft may vary during the donor graft preparation, depending on the 334 

methods employed and experience of the ophthalmologist. Moreover, the structural 335 

properties of graft depend on the donor age, gender and storage time.  In this section, 336 

three different Young’s Moduluses (E= 0.1, 0.2, 0.3 MPa) are considered for the graft. 337 

This allows analysing the effects of the graft stiffness on the contact mechanics. The 338 

maximum bubble pressure load, Pmax, to attain during the complete expansion of 339 
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bubble, is set as 3.0 mmHg. Figure 7(a-c) depicts the Von Mises stress intensity plotted 340 

at the central section of master surface of cornea and slave surface of graft while the   341 

displacement is plotted at the central -section of  mid-surface of graft and cornea. 342 

For lower values of E, the graft exhibits a more deformable behaviour and 343 

consequently, the impact of the graft induces larger stress and strain on the cornea. The 344 

curve corresponding to case E = 0.2 MPa (green dashed dot line) lies between the other 345 

two cases. Figure 7(d) shows that a stiffer graft involves a higher contact force. On the 346 

contrary, if the graft is able to deform more, the smaller reaction-contact force between 347 

the two body forces favour penetration. 348 

3.4. Effect of bubble pressure load on corneal biomechanics 349 

In endothelial keratoplasty surgery, the bubble pressure load plays a fundamental role 350 

for the complete adhesion of the graft. It is indeed possible to experience a partial 351 

attachment due to an insufficient bubble expansion. Moreover, if the graft stiffness is 352 

higher, an additional pressure load, through expanding the bubble, is required to deform 353 

the graft for the complete attachment. At the same time, a very large pressure load can 354 

lead to abnormal stress on the contact surface, involving potentially dangerous 355 

consequences on the health of the corneal cells. In order to elucidate the corneal 356 

structural response dependency on pressure, three different values of bubble pressure 357 

loads, (1.5, 2.3, 3.0 mmHg) are considered. The Young’s Modulus of the graft is set 358 

E=0.1 MPa. Simulation results show that, for larger bubble pressure loads (2.3 mmHg, 359 

3 mmHg), the graft and cornea sustain higher stress (0.03-.032 MPa) after the 360 

attachment, as shown in Figure 8 (a-c) (green dashed dot line, blue dashed double dot 361 

line). The cornea deforms more when the graft is under larger loads (Figure 8(c)). As 362 

the bubble pressure load increases, the mean contact force on the graft becomes higher 363 

as shown in Figure 8(d). It is also important to mention that the time required for the 364 
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graft to attach is significantly smaller (0.017-0.020 seconds) for larger pressure loads 365 

(2.3-3.0 mmHg). 366 

3.5.  Effect of graft thickness on corneal biomechanics 367 

The thickness and diameter of the graft depends on the technique adopted (DMAEK, 368 

DSAEK). Based on the patient’s need, ophthalmologists usually develop a donor graft 369 

within the thickness range: 50-120 µm. Here the influence of graft thickness (50, 80, 370 

100 and 120 µm) on corneal deformation (evaluated in displacement module with 371 

respect to the reference configuration) and stress intensity is investigated (see Figure 372 

9(a-c)). The maximum bubble pressure load is set Pmax=2.5 mmHg and Young’s 373 

Modulus E=0.2 MPa. The graft stress recorded are higher at the central regions for 374 

thickness of 50 µm (thick red line) and 80 µm (green dashed double dot line) than in the 375 

case of 100 µm (blue dashed dot line) and 120 µm (pink dashed line). This is due to the 376 

fact that deformation decreases for larger graft thickness.  377 

For the same applied bubble load, a graft with thickness 50 µm has a higher acceleration 378 

than the thicker ones and consequently the impact will produce larger corneal 379 

deformation and stress, as shown in Figure 9 (thick red line). On the contrary, for a 380 

higher graft thickness (100 µm and 120 µm), the deformation is more uniform and it 381 

occurs in a more controlled manner. It is important to notice from Figure 9(d) that the 382 

mean contact force developed at the contact surface increases with the graft thickness. 383 

4. Conclusions 384 

In the present work, endothelial keratoplasty, a corneal transplantation technique, is 385 

computationally modelled by employing a hyper-elastic finite element framework. The 386 

automated air bubble technique is also numerically reproduced in order to induce the 387 

graft attachment to the cornea. Since this surgical technique involves contact between 388 
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graft and cornea, a penalty-based node-to-surface contact model is integrated into the 389 

hyper-elastic finite element model. 390 

Displacement and VM stress analysis show that the changes in geometrical and material 391 

properties of graft have significant effects on biomechanical behaviour of the cornea. A 392 

lower stiffness and thickness of the graft induce higher corneal stress intensity and 393 

deformation during the impact. This is more evident for high bubble pressure loads. 394 

Undoubtedly, the air bubble pressure load condition plays a fundamental role in the 395 

graft-cornea attachment. 396 

Simulation results can provide a valuable insight for a more efficient endothelial 397 

keratoplasty surgery design, accounting for geometric, material and air bubble pressure 398 

conditions. The current study serves as a foundation for the future work which involves 399 

the effect of Aqueous Humor (AH) flow on the graft attachment with cornea. In this 400 

way, the detachment sites of graft can be analysed which provides some valuable 401 

information for the surgeons in order to reduce the post-operative complications. 402 
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 514 

 515 

 516 

 517 

 518 

 519 

 520 

 521 

                           Pmax (mmHg)                           
E (MPa)                              

1.5 2.3 3.0 

0.1 0.0050 N/mm 0.0080 N/mm 0.01 N/mm 

0.2 0.0055 N/mm 0.0085 N/mm 0.017 N/mm 

0.3 0.0070 N/mm 0.0095 N/mm 0.025 N/mm 

	522 

Table 1. Penalty parameter ε for different bubble pressure loads Pmax and graft 523 
Young’s Modulus E. 524 
 525 

 526 

 527 
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 529 
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 531 

 532 

 533 
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Figure captions 534 

Fig. 1  Endothelial Keratoplasty procedure (DMAEK and DSAEK) 535 

Fig. 2  Computational domain and boundary conditions of graft and cornea. The 536 

graft is initially positioned parallel to x and z axis, with the slave surface facing 537 

the master surface of the cornea 538 

Fig. 3 (a) Projection of slave node xs onto the master surface, (b) tangential 539 

vectors of triangular facet and (c) local coordinate system (ξ) of the projected 540 

point xp 541 

Fig. 4 (a) Plates mounted over a cylinder (left) Computational domain of the 542 

bending plates over a cylinder (right) (b) Contact pressure distribution on the 543 

plate 544 

Fig. 5  Von Mises stress intensity plotted at (a) different time steps for the 545 

cornea and graft, (b) different time steps at central-section of the cornea and 546 

graft and (c) graft and cornea after complete attachment (left), posterior and 547 

anterior parts of the cornea after complete attachment (right) 548 

Fig.  6  (a) Displacement at cornea (left) and graft (right), (b)VM stress at cornea 549 

(Master surface) (left) and graft (slave surface) (right) and (c) mean contact 550 

force at the slave nodes of the circumference of graft 551 

Fig. 7  VM stress intensity at (a) graft (slave surface), (b) cornea (master 552 

surface), (c) displacement at cornea and (d) mean contact force at the slave 553 

nodes of the circumference of graft 554 

Fig. 8 VM stress intensity at (a) graft (slave surface), (b) cornea (master 555 

surface), (c) displacement at cornea and (d) mean contact force at the slave 556 

nodes of the circumference of graft 557 
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Fig. 9 VM stress intensity at (a) graft (slave surface), (b) cornea (master 558 

surface), (c) displacement at cornea, and (d) mean contact force at the slave 559 

nodes of the circumference of graft 560 




















