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Abstract Many studies demonstrate an important

role of natural enemy biodiversity in the regulation of

agricultural pests, but the role of different aspects of

biodiversity in influencing this crucial ecosystem

service remain controversial. We hypothesised that

the functional diversity generated by combining

divergent consumer groups (roaming coccinellid

predators and parasitoid wasps) fosters complemen-

tarity, enhancing aphid biocontrol. We tested this

using experimental mesocosms containing plants,

aphids and natural enemies located in a greenhouse.

We compared the aphid control efficiency (final aphid

abundance) of low functional diversity treatments

(two parasitoid species, or two predator species) with

high functional diversity treatments (all four possible

predator-parasitoid combinations). We also included

all four enemies as single species treatments to allow

calculation of the non-additive effects of combining

natural enemies. Results showed that biocontrol (final

aphid abundance) was driven by the species identity of

natural enemies and positive non-additive effects in

two treatments in which the most efficient predator

species was combined with a parasitoid species and

the other predator species, respectively. Functional

diversity did not consistently influence biocontrol or

non-additive effects. In conclusion, functional diver-

sity, as defined by differences between roaming

predator and parasitoid functional groups, failed to

consistently explain biocontrol efficiency in our study.

This calls for consideration of finer-scale functional

traits and how they govern natural enemy interactions

and cascading effects across ecosystems.

Keywords Aphid control � Biodiversity � Functional
diversity � Natural enemies � Parasitoids � Predators �
Traits

Introduction

A longstanding issue in pest control has been whether

to introduce one natural enemy species (NE) or more
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than one to maximise suppression of pest populations.

This has remained controversial because trials using

multiple natural enemy species have had contrasting

outcomes on pest control (i.e. negative, positive and

neutral) (Denoth et al. 2002; Letourneau et al. 2009).

These variable results are likely to be triggered by

different ecological mechanisms. For instance, com-

plementarity or facilitation between combined NE

species may lead to a positive relationship between NE

diversity and the suppression of pest populations

(Finke and Snyder 2008; Losey and Denno 1998;

Northfield et al. 2010). On the other hand, natural

enemies may also engage in intraguild predation (IGP)

and/or interspecific competition, e.g., interference

(Schoener 1983), which may cancel out positive

effects or even result in negative effects of NE

diversity on pest suppression (Finke and Denno

2004, 2005; Vance-Chalcraft et al. 2007). Thus, a

key challenge in NE biodiversity research is to

understand which combinations of natural enemies

maximise prey suppression.

The functional diversity (FD) of natural enemies is

one aspect of biodiversity that may help to explain

variation in the size and direction of NE effects on pest

suppression. FD is defined by variation among the

traits of individual organisms within communities or

trophic groups (McGill et al. 2006; Petchey and

Gaston 2002; Tilman 2001). Differences in traits of

natural enemies, such as their mouthparts (e.g.,

chewing, sucking) or mobility (e.g., flying, walking),

may underpin differences in their exploitation of pests,

such as the size/stage of prey consumed (Wilby et al.

2005), or their spatial foraging domain (e.g., leaf

versus ground) (Losey and Denno 1998, 1999). In

turn, these niche differences may lead to relaxation of

interspecific competition (Northfield et al. 2010) and

the generation of positive biodiversity effects, i.e.,

mixtures of species performing better than expected

based only on their component species (Petchey

2003). However, large trait differences between

natural enemies may foster negative interactions,

leading to competitive dominance, interference and/

or IGP. For example, large differences in the body size

of predators are associated with IGP (Krenek and

Rudolf 2014). Although functional diversity is an

increasingly popular lens through which to view

ecological communities (Laureto et al. 2015) and

studies are emerging linking functional diversity to

ecological processes in food webs (Duffy et al. 2016;

Gagic et al. 2015; Schmitz 2009), there remain few

explicit tests of the role of natural enemy functional

diversity in the context of biocontrol.

Contrasting traits of generalist predators and par-

asitoids provide a major element of functional diver-

sity within natural enemy assemblages (Snyder and

Ives 2003). This functional diversity emerges from a

fundamental difference in the nature of prey use and

degree of specialisation. Free-living, generalist preda-

tors (e.g., coccinelid beetles) attack and consume

many individuals and potentially many prey species

throughout their lifetime (Evans et al. 1999; Symond-

son et al. 2002). In contrast, parasitoids develop with a

single host individual, and, for just a limited period of

their lifespan (a few days after the adult emergence)

(Bonet 2009), female parasitoids attack and oviposit

on a restricted number of species. There is some

evidence of complementarity between generalist

predators and specialist parasitoids in the biological

control of aphids (Alhadidi et al. 2018; Gontijo et al.

2015; Snyder et al. 2004). However, many studies that

have included both predator and parasitoid guilds have

reported IGP upon mummified aphids (Bilu and Coll

2007; Snyder and Ives 2003; Wheeler 1977), which

has been confirmed by molecular diagnostics on

predator guts (Traugott et al. 2012). IGP can reduce

complementarity of these NE groups, even on the

timescale of a single parasitoid generation, because

predation on mummified aphids is redundant (the

aphid has already been attacked by a parasitoid) and

may ultimately divert predators from attacking healthy

aphids (see Casula et al. (2006) for a theoretical

treatment). Using a systematic literature search (see

Supplementary information 1 for details), we found

mixed outcomes of combining generalist predators

and specialist parasitoids on aphid biocontrol. The

majority of previous experiments (18 of 30) report that

combinations of generalist predators and specialist

parasitoids enhanced aphid biocontrol. However, over

third (11 of 30) report that combinations of generalist

predators and specialist parasitoids reduced aphid

biocontrol. Although these studies suggest that posi-

tive effects are more common, drawing general

conclusions is challenging because of differences in

experimental design, duration and/or location (see

Supplementary information 1), as well as the specific

identities of predator and parasitoid species, among

studies. There is a particular lack of studies that

include multiple unique predator and parasitoid

123

S. N. Alhadidi et al.



combinations to assess the generality of effects across

species combinations within an individual experimen-

tal setting.

Here we take a step towards testing the generality of

predator–parasitoid interactions in a biocontrol con-

text, by conducting a greenhouse experiment testing

the efficiency of aphid biocontrol performed by all six

possible combinations of two generalist predatory

beetles and two species of parasitoid. Specifically, we

used the two-spotted ladybird Adalia bipunctata

(Linn.) (Coleoptera: Coccinellidae) and the mealybug

ladybird Cryptolaemus montrouzieri (Mulsant)

(Coleoptera: Coccinellidae), and two species of par-

asitoid, Aphidius ervi (Haliday) (Hymenoptera: Bra-

conidae) and Aphelinus abdominalis (Dalman)

(Hymenoptera: Aphelinidae). Although these four

natural enemies overlap in traits such as body size

and foraging mode, they fall into two distinct

functional groups (generalist predators and para-

sitoids) based on the way they attack the aphids.

We hypothesized that (H1) natural enemies in

general suppress aphid density, and (H2) combining

natural enemies from two distinct functional groups

(predator and parasitoid) will strengthen aphid control,

relative to combining natural enemies of the same

functional group. Additionally, we also examined the

effect of functional diversity after accounting for

species identity effects, which may swamp more

subtle non-additive effects of functional diversity. We

hypothesised that (H3) functional diversity would lead

to a relaxation of competition and the emergence of

positive non-additive effects despite the occurrence of

IGP upon the mummified aphids. Finally, based on

previous work (Alhadidi et al. 2018; Griffiths et al.

2008; Wyss et al. 1999), we predicted that (H4) the

coccinellid A. bipunctata will be the most efficient

single NE species and (H5) its combination with the

parasitoid A. ervi would prove highly complementary

and outperform other combinations.

Materials and methods

Greenhouse experiment

To test our hypotheses, the main experiment was

conducted using experimental mesocosms containing

plants, aphids and natural enemies located in a glass

greenhouse at Swansea University, UK between the

14th of August and 18th of October 2016.

Initial plant growth and creation of mesocosms

Dwarf broad bean plants Vicia faba (variety: the

Sutton) were planted on 14th of August in 10 cm

diameter pots, filled with compost (organic and peat

free multi-purpose compost). Plants were watered

every four days before introducing the aphids. Aphids

were introduced 39 days after planting, and pots were

covered with clear cellophane bags (40 lm
polypropylene; dimensions (l 9 w 9 h):

17.8 9 9.7 9 45.6 cm; Transpack Ltd, Southampton,

UK). Cellophane bags were closed around the plant

pots using rubber bands to prevent experimental

insects from escaping. Throughout the experiment

plants were placed individually in a clear plastic

container (dimensions 17 9 12 9 3.5 cm; from

ZUVO, London, UK) and watered by filling the

plastic container with water to the top when dried.

Sourcing and culturing of animals

We established a colony of pea aphids, Acyrthosiphon

pisum, approximately one year before starting the

experiment, in BugDorm-4 insect rearing cages

(dimensions 47.5 9 47.5 9 47.5 cm), a constant tem-

perature room (CT) at 20 ± 2 �C, 47 ± 8% RH and a

16:8 L:D photoperiod on dwarf broad bean plants.

Natural enemies were supplied by Agralan Ltd

(Swindon, UK). Natural enemies were kept in a fridge

(4 ± 2 �C) for five days pending estimation of con-

sumption rates of predators (see Supplementary

information 2) and to allow for parasitoid mummies

to hatch. We used the adults of two generalist predator

species in the experiment, the two-spotted ladybird A.

bipunctata and the mealybug ladybird C. montrouzieri

and adults of two species of specialist parasitoid the A.

ervi and A. abdominalis. We chose these two para-

sitoid species among other parasitoids that attack the

pea aphids A. pisum because they differ in their

mummy colour (A. ervimummies are light bronze and

A. abdominalis mummies are black) making it easier

to distinguish between their mummies in the two-

parasitoid treatment.
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Experimental design and experimental conditions

The design consisted of one NE-free (aphid only)

control treatment, all four single-species NE treat-

ments, and all six possible combinations of two

species. We used a substitutive approach maintaining

respective constant total numbers of predators (6) and

parasitoids (24) across treatments. In single species

treatments there were six individuals of a predator or

24 individuals of a parasitoid; and in each combination

treatment there were three individuals of a predator

species and 12 individuals of a parasitoid species.

Parasitoids were included at four times greater abun-

dance than predators to compensate for their lower per

capita consumption rates and roughly equalize the

daily expected rate of predation across treatments. The

ratio we used was based on comparing the daily per

capita aphid consumption rates of both ladybird

species in our CT room trial (see Supplementary

information 2) (A. bipunctata = 49.3 ± 3.88 SE, C.

montrouzieri = 46.1 ± 3.27 SE) with representative

daily attack rates for the parasitoid taxa used (assum-

ing a sex ratio of 1:1) (He 2008; Couty et al. 2001).

All treatments were replicated seven times (to-

tal = 77). During the experiment, the mean daily

minimum and maximum temperatures in the green-

house were 28.6 ± 3.8 �C (SD) and 11.7 ± 4.4 �C,
respectively. Mean minimum and maximum RH were

37.2% ± 8.9 and 88.1% ± 5.8, respectively, with

natural light.

Establishing the experiment and data collection

we introduced five individual aphids to each plant on

the 22nd of September 2016. After allowing almost

two weeks for colony growth, on the 4th and 5th of

October 2016, we counted the aphid density for each

plant, randomly assigned natural enemy treatments to

mesocosms, and introduced the enemies to appropriate

treatment replicates. The experiment finished on 17th

and 18th of October 2016, when aphids and all

surviving enemies (Supplementary information 4)

were collected directly from the plants. Final data

values were collected in a random sequence across

mesocosms.

Data analysis

To investigate our main hypotheses, we used a

negative binomial generalised linear model with a

log link function, including all 11 treatments, com-

bined with planned treatment contrasts. Since variable

rates of population growth led to differences in aphid

density among mesocosms at the start of the exper-

iment (Supplementary information 3), we used ‘initial

aphid density’, i.e., the aphid density when NEs were

introduced, as an additive covariate in our model. To

investigate H1 we applied a planned linear contrast

between control treatment (NE-free) and all natural

enemies’ treatments combined, to confirm that natural

enemies generally suppressed prey density within our

experiment. To investigate whether treatments with

higher functional diversity (treatments with both

predator and parasitoids) reduce aphid density more

than treatments with lower functional diversity (treat-

ments with two predators or two parasitoids) (H2), we

contrasted these combinations, excluding the single

species treatments from this comparison.

To investigate H3 (i.e., the emergence of positive

non-additive effects) we calculated the net diversity

effect (the deviation from the expected final aphid

density based on the performance of single species

treatments; also known as a non-additive multiple

predator effect) on the final aphid density (McCoy

et al. 2012; Sih et al. 1998). We first calculated the

expected final aphid density (NE) for each combination

treatment as:

NE ¼
ffiffiffiffiffiffiffiffiffiffi

P1P2

p
ð1Þ

where P1 and P2 are the mean proportions of aphids

surviving of the treatment containing species 1 (P1) or

species 2 (P2) at the end of the experiment. We then

calculated the net diversity effect by subtracting the

observed final aphid density of each combination from

the expected final aphid density and divided them by

the expected final aphid density. Finally, to test

whether the net diversity effect was different in low

FD versus high FD treatments, we used Welch’s t test

for unequal variances and/or unequal sample sizes,

which can result in non-integer values for degrees of

freedom, following the Welch-Satterthwaite correc-

tion (Derrick et al. 2016), and we used one-sample
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t test for each combination to find out whether its

observed performance differed from the expected

value (Eq. 1).

To investigate H4 and H5, we again worked with

our main model. To assess which NE species have the

greatest effects on aphid suppression (H4), we applied

planned contrasts to compare all treatments including

each respective species against all other treatments

that excluded this species (e.g., all treatments includ-

ing Adalia bipunctata versus all treatments excluding

A. bipunctata). To assess whether the combination of

the ladybird A. bipunctata and the parasitic wasps

Aphidius ervi (Ab ? Ae) was the best performing

combination in reducing aphid density (H5), we

compared aphid densities under each focal combina-

tion with those under all other combinations (e.g.,

(Ab ? Ae) versus other combinations). Finally, we

used analysis of variance (ANOVA) to test differences

on the final density of parasitoid mummies per

introduced parasitoid across treatments that included

parasitoids. The data were loge(final density of

parasitoid mummies per number of parasitoids intro-

duced ? 1) transformed before analysis to meet linear

model assumptions (normality of residuals).

One replicate of the two parasitoid combination

treatment was removed before analysis due to exis-

tence of spider in the mesocosm, leaving six replicates

in this treatment group. All data analysis and fig-

ures were performed with the statistical program R

version 3.3.3 (R Core Team 2017), using the ‘MASS’

(Venerables and Ripley 2002) and ‘multcomp’

(Hothorn et al. 2008) packages.

Results

As expected, the natural enemy treatments (single

species and combinations) reduced final aphid density

compared to the enemy-free treatment, a result which

was also influenced additively by the initial aphid

density (Tables 1 and 2, Fig. 1). We considered the

possibility that treatment and initial aphid density had

interactive effects, but this was not supported

(P = 0.079) in comparison with the model where it

was included as an additive term (additive df = 13,

AIC = 823.92; interactive df = 23, AIC = 828.67).

Our hypothesis that higher functional diversity will

strengthen aphid control was not supported (H2,

Table 2). Furthermore, the net diversity effect did

not increase with functional diversity (Fig. 2, H3: t = -

0.468, df = 20.109, P = 0.645). One-sample t tests

showed that treatments of A. bipunctata ? C. mon-

trouzieri (t =- 6.374, df = 6, P\ 0.001) and A.

bipunctata ? A. ervi (t = -6.199, df = 6, P\0.001)

performed better than expected based on their perfor-

mance in monoculture, while the performance of other

treatments did not differ from the expected results

(Fig. 2).

The ladybird A. bipunctata was consistently the

most efficient species in aphid suppression, while the

parasitoid A. abdominalis was the least efficient

species in this study (H4, Table 2). The best preform-

ing combination treatment among our experimental

system was that of A. bipunctata and A. ervi which

reflected the efficiency of A. bipunctata and the net

diversity effect of this combination (H5, Table 2,

Figs. 1 and 2).

The average density of A. ervi mummies (per adult

A. ervi introduced) did not vary significantly across

treatments that included them (F3,23 = 2.17, P = 0.12;

Fig. 3a). However, the average density of A. abdom-

inalismummies (per adult A. abdominalis introduced)

differed significantly among treatments where they

were included (F3,23= 8.98, P\ 0.001; Fig. 3b). Thus

the combination treatment of C. montrouzieri and A.

abdominalis had the highest density of A. abdominalis

mummies (Fig. 3b). This suggests that complemen-

tarity increased survivorship of A. abdominalis.

Notably, however, this increased survivorship did

not increase aphid suppression in this combination.

Thus, these results suggested the aphids experienced

no consequence of IGP upon either parasitoid species

in our study (H3).

Discussion

Contrary to our main hypothesis, combining natural

enemies from two distinct functional groups (predator

and parasitoid) did not strengthen aphid control

compared to combining natural enemies of the same

functional group. Rather, aphid control was deter-

mined by a species identity effect of A. bipunctata and

its complementary effects with the parasitoid A. ervi

and the other predatorC. montrouzieri (Table 2, Fig. 1

and 2).

By including four unique combinations of predators

and parasitoids in a single experiment, we were able to
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explore the generality of predator–parasitoid interac-

tions, revealing variability across species composi-

tions. In our study, notably, the frequency of positive

effects of combining predators and parasitoids (1 in 4)

was no greater than that of combining multiple

predators (1 in 2). This finding indicates that interac-

tions between predators and parasitoids, and the

resulting level of biocontrol, is not determined by

the combination of predators and parasitoids (func-

tional diversity) per se. Ecologists and biocontrol

practitioners should not, therefore, assume that com-

bining natural enemies with different foraging traits

(predator versus parasitoid) enhances biocontrol.

Although we found no general effect of combining

generalist predators with specialist parasitoids, the

best performing combination in our study was indeed a

combination of predator and parasitoid (A. bipunctata

and A. ervi) (Table 2). Because this positive effect did

not extend to other predator-parasitoid combinations,

we can conclude that combining predators and para-

sitoids is not sufficient to generate positive effects on

aphid biocontrol. Other species-specific traits (e.g.,

behavioural or physiological) of A. bipunctata and A.

ervi, beyond those considered here, must also have

been involved. We were unable to ascertain what the

enemies were fed before we used them in our

Table 1 Analysis of deviance table for a negative binomial

GLM testing the effects of initial aphid density (at the time of

first enemy introduction) and the different experimental

treatments (n = 7 replicates each, except combination of

Aphidius ervi and Aphelinus abdominalis n = 6 replicates) on

the final aphid density

Final aphid density df Deviance residual Residual df Residual deviance P value

NULL – – 75 196.042 –

Initial aphid density 1 11.23 74 184.82 \ 0.001

Treatments 10 97.99 64 86.83 \ 0.001

Table 2 Planned contrasts testing the null hypotheses corre-

sponding to our original hypotheses H1, H2, H4 and H5 (i.e.,

H01: Pres = Abs; H02: HFD = LFD; H04: each individual

single species = all other species combined; and H05: each two

species combination = all other species combined)

Hypothesis No. Corresponding null hypothesis Estimate SE z value P value

H1 Pres - Abs = 0 - 1.001 0.3528 - 2.836 0.0432

H2 HFD - LFD = 0 0.320 0.768 0.416 0.999

H4 Ab - others = 0 - 5.293 1.118 - 4.735 \ 0.001

H4 Cm - others = 0 1.602 1.081 1.483 0.683

H4 Ae - others = 0 - 1.647 1.251 - 1.317 0.793

H4 Aa - others = 0 4.326 1.143 3.785 \ 0.001

H5 (Ab ? Ae) - combinations = 0 - 1.646 0.509 - 3.233 0.012

H5 (Ab ? Aa) - combinations = 0 0.781 0.569 1.373 0.757

H5 (Ab ? Cm) - combinations = 0 - 0.909 0.396 - 2.298 0.189

H5 (Ae ? Aa) - combinations = 0 0.654 0.526 1.242 0.836

H5 (Cm ? Aa) - combinations = 0 0.844 0.453 1.863 0.410

H5 (Cm ? Ae) - combinations = 0 - 0.909 0.396 - 2.298 0.177

Labels indicate: natural enemies present (Pres), natural enemies absent (Abs), high functional diversity (HFD), low functional

diversity (LFD), Adalia bipunctata (Ab), Cryptolaemus montrouzieri (Cm), Aphidius ervi (Ae), Aphelinus abdominalis (Aa),

combination treatments (combinations) and all treatments except the natural enemy-free treatment (others). Estimates and SE for

linear hypotheses represent differences between log10 [mean (number of aphids)] in contrasted treatments, e.g., H1; log10 [mean

(number of aphids in the NEs-present)] - log10 [mean (number of aphid in NEs-absent)]. The z values are based on a Wald v2 test
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experiments. Other research has demonstrated that

feeding history can affect natural enemies attacking

choice (Finke and Snyder 2008; Turlings et al. 1993).

For instance, the parasitoid wasp Venturia canescens

(Gravenhorst) prefers to deposit eggs in hosts of the

same species from which they themselves emerged,

when exposed to more than one host species (Thorpe

and Jones 1937). However, this tendency (attraction to

host-related cues) was found to be moderated by adult

parasitoid learning in many other parasitoid species.

Thus there was more contribution from adult para-

sitoid learning to the foraging success of insects than

pre-mature learning (Turlings et al. 1993). Although

positive predator-parasitoid interactions like this one

are restricted to particular species combinations, they

are common (see Supplementary information 1,

Greenop et al. 2018). More focused assessments

(e.g., including behavioural observations) of such

positive interactions may point to the particular

mechanisms involved.

We also found that the combination of two

generalist predators enhanced biocontrol. Although

the trait-basis of this is not clear, it could have emerged

from fine-scale differences in traits (e.g., timing of

foraging) resulting in stronger intraspecific versus

interspecific interference (Griffin et al. 2008; Griffiths

et al. 2008). This result provides further evidence that

species that are assumed to be ecologically redundant
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from the expected mean aphid density based on final aphid

density of single species treatments (the dashed horizontal line)

(H3 [net diversity effect = 0]: t = -0.468, df = 20.109,

P = 0.645). Treatments are categorised as low functional

diversity treatments (Adalia bipunctata ? Cryptolaemus mon-

trouzieri (Ab ? Cm), Aphidius ervi ? Aphelinus abdominalis

(Ae ? Aa)); or high functional diversity treatments (A. bipunc-

tata ? A. ervi (Ab ?Ae), A. bipunctata ? A. abdominalis

(Ab ? Aa), C. montrouzieri ? A. ervi (Cm ? Ae), C. mon-

trouzieri ? A. abdominalis (Cm ? Aa)). Error bars show ±

95% Cls. * Denotes combinations with net diversity effect

significantly different from zero (expected mean aphid density

based on final aphid density of single species treatments) at

a = 0.05
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(two ladybirds) may actually show complementarity

and enhance ecological processes such as biocontrol

(Griffin and Silliman 2011). The trait basis of positive

multiple predator effects does not, therefore, lie

exclusively in gross differences between functional

groups (e.g., predators and parasitoids), or between

taxonomically distant relatives (Griffin et al. 2013;

Northfield et al. 2014), but can also emerge from finer-

scale differences that may occur between close

relatives. Further work is needed to elucidate which

traits predict interactions in food webs and in biocon-

trol contexts.

Species identity also had an important effect in our

study, consistent with numerous previous studies of

aphid biocontrol (Denoth et al. 2002; Long and Finke

2014; Schmitz and Suttle 2001; Sokol-Hessner and

Schmitz 2002; Straub and Snyder 2006). The traits of

species (i.e., functional identity) ultimately underpins

differences in the performance of natural enemies. A.

bipunctata achieved the highest level of aphid sup-

pression in our experiment, suggesting that its traits

are particularly well suited to efficient aphid biocon-

trol, consistent with previous studies (Alhadidi et al.

2018; Griffiths et al. 2008; Wyss et al. 1999). Other

traits, such as mobility, metabolic rate or degree of

dietary specialisation, might help to explain species

differences (especially the strong effect of A. bipunc-

tata) and better define the functional role of species in

biocontrol systems. Once these traits are known,

weighted averages of these traits could be used instead

of (or in combination with) functional diversity to

effectively explain biocontrol (Gagic et al. 2015).

IGP of coccinellid predators upon parasitoids,

through consumption of parasitized aphids, has been

reported previously (Bilu and Coll 2007; Snyder and

Ives 2003; Wheeler 1977). We did not find evidence to

support the presence of IGP. On the contrary, the

number of surviving A. abdominalis mummies (per

adult introduced), was in fact significantly higher

when it was combined with the predator C. mon-

trouzieri (Fig. 3b). In light of the substitutive design

we used, which effectively compares interspecific to

intraspecific interactions, it seems that intraspecific

competition among A. abdominalis exceeded any

negative interspecific interactions (competition, IGP)

between A. abdominalis and C. montrouzieri.

Notwithstanding, this apparent relaxation of negative

effects on mummy survival did not translate into a

positive effect of this combination of predator and

parasitoid on aphid biocontrol, suggesting that, at least

in our experiment, it is not an important mechanism.

There are several important limitations of our

study, which may also have contributed to variability

in the effects of predators and parasitoids, and the lack

of any general effect of functional diversity. First,

including only two species within each functional
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Fig. 3 Average density of

parasitoid mummies at the

end of the experiment.

a Number of Aphidius ervi

mummies per adult

introduced, b number of

Aphelinus abdominalis

mummies per adult
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as Adalia bipunctata (Ab)

Cryptolaemus montrouzieri

(Cm), A. ervi, (Ae), A.

abdominalis (Aa). Error bars

show ± 95% Cls. *Denotes

significance differences

between treatment groups at

a = 0.05

123

S. N. Alhadidi et al.



group in our experiment limited the interactions

between the competitors and may have allowed one

species (A. bipunctata) and its superior traits to drive

the process of aphid control in this study. Another

possible reason for the lack of a general FD effect is

the small experimental arena we used, which limited

the scope for spatial complementarity between

species, and/or spatial shifts due to non-consumptive

(‘fear’) effects (Michaud et al. 2016). Furthermore, the

limited duration of the experiment did not allow the

parasitoids or the predators to have multiple genera-

tions. This would have limited the potential for

complementarity between the NE groups to strengthen

aphid control via increased NE population densities

and/or overlapping their life history stages. The size of

experimental arena also determines how many details

of any component of an ecosystem can be examined

and, consequently, how the findings are interpreted.

Thus, it is impossible for any single experiment to

manipulate all components of biological diversity and

measure all the ecological functions in an individual

ecosystem (Symstad et al. 2003), particularly a small

one such as our experiment. Moreover, greater prey

diversity can be another relevant factor worth consid-

ering, that was beyond the scope of our experiment.

Greater prey diversity could support an effect of

functional diversity in aphid control, thus morpholog-

ical and behavioural differences among prey species

can boost functional complementarity between preda-

tors and parasitoids and ultimately increase aphid

consumption (Gagic et al. 2015; Wilby et al. 2005).

Therefore, given the widespread use of both generalist

predators and parasitoids in biocontrol and their

coexistence in agricultural landscapes, we encourage

future, larger and more complex scale work on their

interactions.

In conclusion, the functional diversity of natural

enemies failed to explain the performance of predator-

parasitoid combinations in our study system. Never-

theless, there was evidence of important non-additive

interactions between natural enemies in our study,

with one predator and parasitoid combination (A.

bipunctata and A. ervi) showing especially strong

aphid control—a combination we therefore recom-

mend to control pea aphids, particularly on broad bean

plants. Future studies may wish to consider additional

natural enemies’ traits and/or different functional trait

metrics [e.g., FD, community weighted means

(Petchey and Gaston 2002)] to help explain variation

in biocontrol in this and similar systems.
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