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ABSTRACT 

Large volumes of slags are formed as by-products during the refinement of pig iron 

by basic oxygen steelmaking or electric arc furnace steelmaking. In order to lower 

the environmental impact of the steel industry and ensure its economic sustainability, 

there have been significant studies finding the ways to recycle by-products. The 

formation, composition and physical properties of steel making slag are discussed 

with regard to the problems associated with its reuse. The volume instability caused 

by free lime exposure to moisture means that the reuse of steelmaking slag is often 

limited as many potential applications, and the leaching behavior of steelmaking slag 

is important for environmental considerations. Land-based applications that have 

been demonstrated include replacing natural sand as aggregate in cement, which may 

be combined with the CO2 sequestration properties. Steel slag shows use as a liming 

material (when spread over acidic soils to help to raise the pH to a more neutral 

level) and to enhance the physical properties of soft soils. Potential benefits to the 

marine environment is due to high porosity and large surface area, making slags ideal 
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for coral reef repair (e.g., overcoming coral bleaching) and replacement (e.g., 

artificial reef to promote growth of green marine plants and seagrass), as well as a 

growth promoter for seaweed growth and phytoplankton are microscopic organisms 

that are an essential component of ecosystems in oceans around the world. The 

chemistry of steelmaking slag also makes it a contender for adsorption of H2S and 

metalloids from marine environments.  

 

 

GRAPHICAL ABSTRACT 
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1. Introduction  

 During the steelmaking process, various slags are produced as by-products 

(Shen and Forssberg, 2003). The first stage of steel production is blast furnace 

steelmaking, in which raw iron ore is converted into pig iron, which contains various 

amounts of carbon, silicon, manganese, sulfur and phosphorus. Due to the high 

carbon content, the material is extraordinarily brittle and unsuitable for secondary 

processes (e.g., rolling or shaping) (Biswas, 1963). Therefore, the pig iron must be 

refined by basic oxygen steelmaking (BOS), which produces slag by-product. 

Electric arc furnace (EAF) steelmaking, another form of secondary steelmaking also 

produces slag as a by-product. BOF and EAF slags are generically known as 

steelmaking slags.  BOS slag is also known as BOF (basic oxygen furnace) slag, and 

the choice of acronym depends on the source material; however, herein we will use 

BOS as a default.  

Around 20 million tons of slag is produced annually in Europe, half of which 

is produced is BOS slag (Liu et al., 2016), meaning that large quantities of industrial 

by-products are produced each year. One obvious alternative to landfilling such by-

products would be to reutilize the slag in steelmaking or use for secondary 

applications (Joulazadeh and Joulazadeh, 2010). Records show that as early as 1589 

steelmaking slag has been used to make cannon balls in Germany (Joulazadeh and 

Joulazadeh, 2010), and in the 1950’s slag was utilized to stabilize riverbanks as well 

as railway ballast, artificial stone and acoustic and thermal insulation (Garside, 1956; 

Motz and Geiseler, 2001).  

As part of a broader move to lower the environmental impact of the steel 

industry and ensure its economic sustainability, there are significant incentives to 

find ways to recycle slag by-products both to protect the environment and ensure the 

sustainability of the steel industry. Herein, we review approaches to the re-use of 

steel making slag, with particular focus on those that lower the environmental impact 

of industry, in the hope to promote further research and application of a material with 

potential as resource rather than a by-product.  
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2. Blast furnace steelmaking 

 Raw iron ore is characterized by the most abundant iron-containing mineral 

found in the ore: magnetite (Fe3O4), hematite (Fe2O3), siderites (FeCO3), and 

limonites (2Fe2O3.3H2O) (Walker, 1986). All the impurities in iron ore (silica, 

alumina, titania, sulfur, and phosphorus) are collectively known as gangue. All iron 

ore that is mined has to be crushed, and if the particles are of suitable size are 

directly charged to a blast furnace; however, if the particles are too fine, then they 

are processed in a sinter or pellet plant prior to introduction in a blast furnace 

(Walker, 1986).  

 During sintering, fine iron ore particles are mixed with a small amount of 

coal (5% by weight), and the mixture is then ignited (Peters, 1982). The process is 

driven by the decrease in surface energy (surface area) that causes the edge of the 

particles to fuse together (Fig. 1). The particles produced in this manner have a lower 

density than particles produced by a pellet plant (Walker, 1986). 

 

 

Fig. 1. Schematic diagram of the sintering of two particles that shows the reduction 

in surface area, a-lens, b-neck and c-shrinkage. (Walker, 1986). The presence of a 

liquid accelerates the process of bonding between particles, meaning that material 

may be transported from the lens area (a) to the neck area (b) by viscous flow.  

 

 The first step of the pelletizing process is known as balling. The ore is mixed 

with a binder (bentonite clay), and then placed into a rotating drum with excess 
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water. Where the particles come into contact, a liquid bridge between the particles is 

formed (Fig. 2); capillary suction occurs which bonds the particles together, first by 

flocculation and then agglomeration until small ‘green' balls are formed, which have 

a low crush strength (2-4 psi) (Peters, 1982; Walker, 1986). Heating the pellets to 

300 °C allows the excess water to evaporate, and heating to 1250-1350 °C results in 

consolidate of the pellets with a concomitant increase in crush strength (500-1000 

psi).  

 

 

Fig. 2. Schematic diagram showing the processes for balling during the pelletization 

process: (a) liquid bridge formation, (b) flocculation, (c) agglomerate growth, and (d) 

spherical agglomerate formation.  

 

 Since the 18th century, coke has been the dominant fuel used in the blast 

furnace. Coke comes from heating coal in an airless atmosphere (coking) to remove 

any volatiles. The primary function of coke is to generate the heat required for blast 

furnace steelmaking. The combustion provides carbon and CO to chemically reduce 

iron oxides to elemental iron. The coke also provides structural support for the layers 

of iron ore in the furnace (Peters, 1982; Walker, 1986).  

 During the blast furnace process limestone (CaCO3) flux is added, to collect 

the waste products produced: silica (SiO2), phosphorus pentoxide (P2O5), calcium 

sulfide (CaS), magnesia (MgO) and alumina (Al2O3). This forms blast furnace (BF) 

slag, which floats on top of the surface of the hot metal (Peters, 1982). The blast 
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furnace is designed to work in a counter-current manner, meaning that the solid 

charge of ore and coke descends while the gases that are generated at the bottom of 

the furnace ascend. As the charge descends, it is chemically reduced resulting in 

swelling, as a consequence, the blast furnace slopes outwards in the stack of the 

furnace, see Fig. 3 (Coudurier, et al, 1978; Walker, 1986; Zhang, 2016; Xinliang et 

al., 2018; Gao, et al., 2014). After the charge has swelled, it begins to decrease in 

size as it changes into liquid iron so the bosh area the furnace (Fig. 3) begins to slope 

in again (Peters, 1982; Evans, 2015). Blast furnaces are generally over 50 m high and 

up to 14 m wide in the hearth area. A typical furnace produces 10000 tons of pig 

iron, 3000 tons of slag and dispose of 1.5x106 m3 of exit gas over a period of 24 

hours (Coudurier et al., 1978). 

 

 

Fig. 3. Schematic diagram showing the features of the blast furnace design.  

 

 The overall chemical reaction that occurs in the blast furnace is that the ore is 

reduced to molten iron by the coke; however, in detail it is more complex. The 

carbon in the coke ignites (Eq. 1) in the area of the tuyeres (Fig. 3). As the carbon 

dioxide produced is in contact with incandescent coke it is reduced to carbon 

monoxide (Eq. 2). The CO produced travel upward and reacts with the iron ore 



Submitted to Resources, Conservation & Recycling 

7 

converting it from hematite via magnetite and würstite (FeO) to metallic iron, Eq. 3-

5.  

 

C + O2 → CO2         (1) 

CO2 + C → 2CO         (2) 

3Fe2O3 + CO → 2Fe3O4 + CO2      (3) 

Fe3O4 + CO → 3FeO + CO2       (4) 

FeO + CO → Fe + CO2       (5) 

 

 The direct reduction of magnetite to iron (Eq. 6) only occurs once the system 

is in equilibrium and at low temperature, while the reduction of wüstite to iron by 

solid carbon (Eq. 7) occurs as the charge enters the bosh area of the blast furnace 

(Fig. 3). The direct carbon reduction reactions are endothermic, and more heat needs 

to be added to compensate for the loss of heat. 

 

Fe3O4 + 4CO ⇌ 3Fe + 4CO2       (6) 

FeO + C → Fe + CO        (7) 

 

 The gangue is also reduced in the blast furnace (Eq. 8-10). The phosphorus 

produced dissolves in the metal and has to be removed in the next stage of 

steelmaking. The silicon and manganese separate themselves between the metal and 

slag (Peters, 1982; Walker, 1986).  

 

P2O5 + 5C → 2P + 5CO       (8) 

SiO2 + 2C → Si + 2CO       (9) 

MnO + C → Mn + CO       (10) 

 

3. Basic oxygen steelmaking (BOS) 

 After pig iron is produced in the blast furnace process; the molten iron is sent 
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to the BOS furnace where it is combined with steel scraps and lime (CaO/Ca(OH)2) 

or dolomite (CaMg(CO3)2). The BOS method can manufacture 300 tons of steel in 

less than one hour. The most commonly used design is a cylindrical BOS vessel (Fig. 

4), at the top of which is an open-topped cone (Shi, 2004), with a refractory lining 

made of periclase (cubic-MgO) (Barker et al., 1998; Peters, 1982; Barker et al., 

1998). There is a tap hole on the side of the BOS vessel for sampling, tapping and 

disposing of slag. A tilting mechanism on the side of the BOS vessel allowing for 

several different functions: (a) if the vessel is tilted backwards at about 60°, then the 

vessel can be charged, or the steel can be sampled; (b) if the vessel it tilted back 

beyond 90° then slag is removed from the vessel; (c) the vessel can also be tilted 

135° forwards then the steel can be tapped out through the taphole.  

 

 

Fig. 4. Schematic illustration of a basic oxygen furnace. 

 

 Initially, steel scrap is charged to the furnace and then molten iron is placed 

on top (Singh, 2012). The addition of the steel scrap helps maintain the temperature 

of the furnace (1600-1650 °C) allowing the necessary chemical reactions to take 

place. A water-cooled oxygen lance (Fig. 4) is lowered into the furnace and sits 

about 2 m above the surface of the molten metal. The lance blows 99% pure oxygen 

through the mixture at nearly supersonic speeds. Immediately after the oxygen lance 

has been lowered either lime or dolomite are added, which combine with unwanted 

elements to form slag (Brandt and Warner, 2005). Initially, as the oxygen is being 

blown through the charge, three separate oxidation reactions take place (Eq. 11-13).  
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O2 → 2O         (11) 

Fe + O → FeO         (12) 

4FeO + O2 → 2Fe2O3        (13) 

 

The distribution of the oxygen between the metal and slag is controlled by the lance 

height and oxygen flow rate. The most important reaction that takes place is the 

removal of carbon (Eq. 14 and 15). 

 

C + O2 → CO2         (14) 

C + 2FeO → CO2 + 2Fe       (15) 

 

 Fig. 5 shows how the concentrations of different elements change in the 

furnace change during the oxygen blowing process. Carbon oxidation is a critical 

reaction as the reaction produces large amounts of CO and CO2 gases that help to 

agitate the bath and aid in the removal of hydrogen, nitrogen and some of the non-

metallic inclusions.  

 

 

Fig. 5. Graph showing the changes in metal bath composition during oxygen blowing 

(reproduced with permission from Singh, 2012). 
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 The removal of silicon (Eq. 16 and 17) occurs early in the blowing process 

(Fig. 5). Similar reactions occur to manganese (Eq. 18 and 19); however, the time 

profile for the manganese reaction can be attributed to the rising temperature and the 

variable slag composition (Fig. 5). 

 

Si + 2O → SiO2        (16) 

Si + 2FeO → SiO2 + 2Fe       (17) 

Mn + O → MnO        (18) 

Mn + FeO → MnO + Fe       (19) 

 

The reaction of phosphorus (Eq. 20) is very sensitive to the conditions in the 

metal bath. During the blowing period 12-25% of dissolved sulfur is directly 

oxidized (Eq. 21), but desulphurization is slow because it is controlled by diffusion. 

Part of the sulfur is removed near the beginning of the process when the temperature 

is still low due to its reaction with manganese, Eq. 22.  

 

4P + 5O2 → 2P2O5        (20) 

S + O2 → SO2         (21) 

Mn + S → MnS        (22) 

 

 The chemical composition of the metal produced determined by sampling 

from molten metal near the end of the blowing cycle. Once the desired composition 

is reached, the lance is removed and the molten steel is poured into a ladle. If 

required, alloying elements can be added to the molten steel. The steel is then poured 

into ingot molds or into a continuous casting plant, and the slag is poured into a 

separate ladle and cooled by natural air-cooling, water spraying, water quenching, air 

quenching or shallow box chilling. 

 As large amounts of oxygen have been blown into the steel bath, there is 

often excess oxygen in the steel. To deoxidize the steel, materials are added that have 



Submitted to Resources, Conservation & Recycling 

11 

a high affinity for oxygen, including: manganese, silicon, aluminum, chromium, 

vanadium, boron and titanium (Peters, 1982). If there is too large a concentration of 

deoxidizer added there is a risk of the steel deoxidizing (Singh, 2012; Zhang and 

Chou, 2015).  

 

4. Slag  

4.1. Composition and physical properties  

 The typical chemical composition of basic oxygen steelmaking slag is shown 

in Table 1 (Shi, 2004). Slag is a mainly non-metallic by-product that is made up of 

silicates, alumina silicates, calcium aluminum silicates, and iron oxides (Joulazadeh 

and Joulazadeh, 2010). During the BOS process a proportion of the molten iron 

cannot be recovered so elemental iron is often observed in the slag (Yildirim and 

Prezzi, 2011). Slags can be classified into three different categories: ferrous slag 

(contains iron), non-ferrous slag and incineration slag. The slag often contains a large 

amount of harmful and heavy metals, so the uses of slag has to be carefully managed 

to ensure no environmental impact (Shen and Forssberg, 2003). There are also large 

amounts of phosphorus present in basic oxygen steelmaking slag, which 

compromises its reuse in steelmaking since the phosphorus content can negatively 

affect the quality of steel produced (Gautier et al., 2013). The proportions of each 

element vary from batch to batch, depending on the raw materials and processing 

conditions (Shi, 2004). Typically, steel slag is non-porous, has a high density and a 

high crushing strength (Table 2). The variations between individual pieces of slag are 

clearly shown in Fig. 6.  

 

Table 1 

Constituents of steel slag (values sourced from Shi, 2004). 

Constituent Mass(%) 

CaO 30-55 

SiO2 8-20 
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FeO 10-35 

Al2O3  1-6 

MgO 5-15 

MnO 2-8 

TiO2 0.4-2 

S 0.05-0.15 

P 0.2-2 

Cr 0.1-0.5 

 

Table 2 

Physical properties of steelmaking slag (values sourced from Lee, 1974). 

Property  

Specific gravity 3.1 to 3.5  

Bulk density 1600 – 1760 kg/m3 (100 – 110 lb/ft3) 

Aggregate crushing value 12 to 25 

Aggregate impact value 18 to 24 

Aggregate abrasion value 3 to 4 

Water adsorption (per cent by mass) 0.2 to 2 

Polished stone value 53 to 72 

 

 

 

Fig. 6. Image showing the typical physical appearance of BOS slag with sizes in (a) 

6-12 mm and (b) 2-5 cm (adapted from Chazarenc et al., 2014).  
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 The presence of calcium silicates in BOS slag such as dicalcium silicate 

(Ca2SiO4, C2S), tricalcium silicate (Ca3SiO5, C3S), and wollastonite (CaSiO3) induces 

BOS slag to have cementitious properties (Shi, 2004). In slag characterization 

basicity refers to the ratio of CaO to SiO2 in a slag sample (Řeháčková et al., 2015). 

The higher the amount of CaO there is then the higher the basicity of the sample will 

be. As the basicity of a slag sample increase the cementitious properties of that slag 

sample will also increase. When in a liquid form a higher basicity can increase the 

viscosity of slag (Řeháčková et al., 2015).  

 Both BOS and EAF slag may contain anywhere from 10-40wt% as metal iron 

(excluding iron oxides) (Horii et al., 2013). To remove the metallic iron the slag is 

crushed to facilitate separation, using rotating magnetic drum process (Alanyali et 

al., 2006; Ma et al., 2014; Matino et al., 2014; Bölükbaşı and Tufan, 2014). Crushing 

the slag to a smaller particle size and as well as increasing the distance between the 

rotating drum and the blade. The way that the slag has been cooled can have an 

influence on the amount of metallic iron that can be recovered from the slag (Wang 

et al., 2012).  The magnetic separation process and the crushing process are often 

repeated several times to increase the amount and quality of metallic iron that can be 

recovered from the process (Horii et al., 2013). There are also additives that can be 

added to slags (kaolin (Al2Si2O5(OH)4), carbon powder, alumina and silica) that 

reduce the melting temperature and basicity of the slag, improving the amount of 

iron that can be recovered (Guo et al., 2018). 

 

4.2. Free lime volume instability  

 Steel slag is stored in large stockpiles outdoors making it vulnerable to the 

short and long-term hydration of lime and magnesium oxides. This process, known 

as free lime volume instability, means that the reuse of BOS and EAF steelmaking 

slag is often limited as many potential applications are outside where moisture could 

easily cause volume expansion (Eq. 23) (Wang et al., 2010). For example, if the slag 
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is used in a road surface that gets wet, the free lime expansion can cause the road 

surface to fracture (Gautier et al., 2013). Basic oxygen steelmaking slag volume 

expansion has been recorded to be as much as 10% (Mikhail and Turcotte, 1995). At 

ambient temperature, the reaction proceeds with the formation of the hydroxide (Eq. 

23), but >547 °C, dehydration occurs (Wang, Wang and Gao, 2010). 

 

CaO + H2O ⇌ Ca(OH)2       (23) 

 

4.3. Free lime volume stabilization  

 In recent years two methods have been developed to stabilize the free lime in 

slag and prevent volume expansion: air oxidation or carbothermic reduction.  

The first method involves the slag being heated to a temperature of 1673 K 

under an air atmosphere, and then cooled down to room temperature at a rate of 5 

K/minute. When the slag is heated up in air wüstite is oxidized to form hematite, Eq. 

13, the latter reacts with the free lime (≈1370 °C) and precipitates the mineral 

brownmillerite (Ca2(FexAl1-x)2O5, C2AF) during solidification (Eq. 24). This method 

eliminates free lime from the slag, creating many more possibilities for recycling 

(Liu et al., 2016). 

 

2CaO + xFe2O3 + (1-x)Al2O3 → Ca2(FexAl1-x)2O5    (24) 

 

 In the second method, the BOS slag undergoes a carbothermic reduction 

reaction. The Fe and P phases are reduced along with the CaO. Carbon (5-8 wt%), 

alumina and silica are added to a homogeneous powder of BOS slag. The mixture is 

then mixed and dried and placed into a furnace at 1600 °C for 1 hour, followed by 

water quenched (Liu et al., 2017). As the amount of carbon increased the 

phosphorus-rich phase moved from the slag to the metal. This means that the carbon 

addition must be kept low to avoid contamination of metallic Fe. The SiO2 addition 

stabilizes the free lime and causes C2S to form, which has cementitious properties, 
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and its strength gradually increases as it ages. Therefore, the slag can be recycled as 

some kind of cement product (Liu et al., 2017). 

 

4.4. Leaching behavior of steelmaking slag  

 With the utilization of steelmaking slags in various applications, there is a 

risk that the metals contained with the steelmaking slag may begin to leach out 

causing problems such as water or soil pollution (Shen and Forssberg, 2003). 

 A study was completed in 2000 in which slag samples were taken from 58 

different steel plants in the United States (Proctor et al., 2000). Samples then 

underwent two separate leaching tests in acidic and neutral conditions. None of the 

materials that were leached (Table 3) exceeded the safe criterion set out in the 

Resource, Conservation and Recovery (U.S Environmental Protection Agency, 

2006). Since metals are more susceptible to leaching under acidic conditions, the 

results suggested that it is unlikely that metals would leach out of steelmaking slags 

under neutral solution. This means slag can generally be categorized as a non-

hazardous by-product from the steel industry and could potentially be recycled for 

use elsewhere. 

 

Table 3 

Comparison of slag leachate concentrations from blast furnace (BF), basic oxygen 

steel (BOS), and electric arc furnace (EAF) slag after leaching at pH 2.8 (values 

sourced from Proctor et al., 2000). 

Element Criterion  TCLP Leachate Concentration  

  BF BOS  EAF 

Arsenic  5 0.0048 0.0054 0.011 

Barium 100 1.2 0.88 1.67 

Cadmium  1 0.0054 0.01 0.037 

Chromium(VI) 5 0.026 ND 0.018 



Submitted to Resources, Conservation & Recycling 

16 

Chromium (Total)  5 0.22 0.04 1.0 

Lead  5 ND 0.015 0.063 

Mercury  0.2 ND 0.0005 0.00089 

Selenium  1 ND ND 0.0073 

Silver  5 ND 0.029 0.027 

 

5. Land applications  

 If oils and greases can be removed (and zinc where appropriate) then the slag 

could be used as a source of iron ore replacement, with the advantages of lowering 

mining and transportation, both of which contribute significantly to the overall 

carbon footprint of steel production. However, re-use in steel production is limited at 

present, but for many years steelmaking slags have been utilized and recycled in the 

civil engineering industry as cement, roadbed material, aggregate in concrete and in 

the stabilization of riverbanks (Motz and Geiseler, 2001).  

 

5.1. Concrete  

 In the production of concrete, aggregate makes up about 70% of what is 

added into the cement mix. Traditionally natural sand has been used to make up the 

aggregate in cement, but it is dredged up from riverbeds, which can be damaging to 

the environment (Takahashi and Yabuta, 2002). In the 1980s scientists began to 

consider recycling waste materials to replace aggregate in concrete. Testing whether 

or not cementitious and pozzolanic by-products such as fly ash, granulated BF slag 

and condensed silica fume could be added as aggregate to create concrete (Lupu et 

al., 2006; Lupu et al., 2007; Wu et al., 2010). The addition of BF slag as aggregate to 

cement matched the strength of cement with natural sand as aggregate. In some 

cases, the BF slag cement was stronger than the natural sand cement (Mehta, 1989).  

 The replacement of coarse and fine aggregates with steelmaking slag found 

that the optimum percentage of fine and coarse aggregate was 40% and 30%, 

respectively (Subathra et al., 2014). The type of steelmaking slag is not specified in 
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the paper. Higher levels resulted in tensile strength declined. The strength of the 

resultant concrete is shown for the optimum loadings in Fig. 7. The fine aggregate 

replacement had significantly better acid resistance comparable to that of 

conventional cement; however, the concrete created was much less workable than the 

coarse aggregate concrete (Subathra et al., 2014). 

 

 

Fig. 7. Figure showing the compressive, tensile and flexural strength of concrete 

after 28 days made with optimum amounts of course aggregate (CA) and fine 

aggregate (FA) compared to sand (values sourced from Subathra et al., 2014). 

 

 A similar study looked at the influence of adding BOS slag instead of BF slag 

(Carvalho et al., 2017), although BF slag was still included. It was observed that 

initially after a period of 28 days the mechanical strength increased (25%), however, 

after 91 days, the mechanical strength gain decreased (5%). The free lime volume 

instability in the BOS slag did not appear to be a problem. The use of BOS slag also 

has economic and environmental benefits. Therefore the replacement of BF slag as 

aggregate is a viable option (Carvalho et al., 2017).  

 

5.2. Carbon dioxide sequestration  

 As early as 1995 industrial alkaline residues, including BOS slag, have been 

exposed to CO2 to undergo carbonation, as a form of CO2 sequestration. In the case 
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of BOS slag, the CO2 reacts rapidly with the calcium and magnesium silicates (Eq. 

25) making it a good option for CO2 sequestration. In the same process, iron 

carbonates can also form, however this may not be desirable as the iron may be of 

better use removed as metallic iron (Huijgen and Comans, 2005). 

 

Ca/Mg-silicate  + CO2  → (Ca/Mg)CO3 + SiO2    (25) 

 

 It has been found that the maximum uptake of CO2 by BOS slag occurs at 

830-850 °C under 1 atm CO2 (Santos et al., 2012). In addition, BOS slag samples 

with more free lime absorbed more CO2, as shown for ‘BOS (II)’ versus ‘BOS (I)’ in 

Fig. 8. The carbonation of the slag caused the amount of vanadium and chromium 

leaching to increase, but this heavy metal leaching could merely be suppressed by 

using the carbonated steel slag as fine aggregate in concrete where the matrix 

surrounding the slag could act as a sink for any mobile metals (Santos et al., 2012). 

 

 

Fig. 8. Graph showing thermogravimetric analysis of BOS slag exposed 1 atm. CO2 

as a function of temperature (adapted from Santos et al., 2012). 

 

 One of the issues with the use of BOS slag for CO2 sequestration is the 

question as to whether it would simply end up as a waste product, albeit while 
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storing CO2 (Sipilä, Teir and Zevenhoven, 2008). Thus, the use of carbonated BOS 

slag has been investigated as a replacement of aggregate (Pang et al., 2015). 

Comparing carbonated steel slag aggregate (CSA), un-carbonated steel slag 

aggregate (SSA), and natural aggregate (NA), the CSA concrete absorbed 5.27 times 

more water than the NA concrete, and 2.69 times more than the SSA, without 

affecting the workability of the concrete. After 28 days the compressive strength of 

the CSA concrete was 20% stronger than the NA concrete and 60% stronger than the 

strength of the SSA concrete. It was also found that the size and shape of the CSA 

particles enhanced the compressive strength of the concrete (Scrivener, Crumbie and 

Laugesen, 2004). A steam test assessing the volumetric stability of the samples, 

found within 48 hours the SSA concrete cracked and fractured whereas after a period 

of 240 hours the CSA concrete did not break or show any signs of volume instability 

(Pang et al., 2015). These results indicated that CSA would be a suitable and cost-

effective replacement for natural aggregate as well as being able to store CO2.  

 Accelerated carbonation of BOS slag (<10 min.) is possible using a rotating 

packed bed to accelerate carbonation with lower energy consumption, known as the 

high gravity carbonation method (Chang et al., 2012). The BOS slag thus produced 

can be utilized as aggregate in concrete. It was found that up to 0.2 kg of CO2 could 

be stored per kg of BOS slag at 30 °C (Chen et al., 2016). It was also shown that 

when Portland cement is blended with 10% carbonated BOS slag the setting time of 

the concrete is significantly shortened. The addition of carbonated BOS slag also 

accelerates the rate at which mechanical strength is gained as the concrete sets. In 

terms of cost, it was shown that the process would be profitable as the income from 

capturing CO2 would exceed the cost of operating high-gravity carbonation (Chen et 

al., 2016). There is an inverse relationship between particle size and CO2 uptake 

(Bodor et al., 2016). Particle size also has a significant bearing on the consistency of 

the fresh cement: influencing the compressive strength when the cement has set as 

concrete.  
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 In light of all the above results, CO2 sequestration for the valorization of BOS 

slag seems like a realistic solution to many of the environmental problems caused by 

the steelmaking process. A lot more long-term testing is required before this method 

can become commercially available.  

 

5.3 Fertilizer 

 Since the 1950s BOS slag has been used in Germany as fertilizer for crops. 

The slag caused the crops to grow in larger quantities, without causing any adverse 

effects in the soil in the short term. Although in long-term studies increased levels of 

vanadium and chromium have been recorded. BOS slag has also shown good use as 

a liming material when spread over acidic soils to help to raise the pH to a more 

neutral level (Annunziata Branca et al., 2014). 

 

5.4. Soil stabilization on land 

 Before 2006 steelmaking slag was only utilized in the form that it cools (i.e., 

as coarse aggregate) because of the cost in processing into a fine material. 

Researchers began to look at if the slag could be used as a soil stabilization material 

because of its successful use as a fertilizer (Jafer et al., 2018). Soil stabilizers are 

used to enhance the physical properties of soft soils that are not considered very 

useful due to their low compressive strength. Ordinarily, Portland cement is used as a 

soil stabilizer; however other alternatives are needed due to the cements many 

negative impacts on the environment. Investigation of two different soils (both with 

clay like properties) combined with the three samples of BOS slag was tested with 

and without the use of an activator (Poh et al., 2006). The activators used were 

quicklime and sodium metasilicate pentahydrate (Na2SiO3.5H2O), both having the 

ability to accelerate the setting time and hydration of the pozzolanic agents in the 

slag. The result of the study was that BOS slag was successful in stabilizing both of 

the soil samples and there were considerable improvements in the compressive 

strength of the soils. But it was shown that a large percentage of the slags used 
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required an extended curing period to be able to reach these properties, due to the 

differing chemical composition of the slags. It was also found that the presence of 

Na2SiO3.5H2O as an activator had the best results, through the creation of soluble 

silica, which enabled the formation of calcium silicate hydrate (C-S-H) and an 

insoluble metal silicate, which formed the bonding between the fines of the slag and 

the matrix of the soil. Even though the strength development time of the soils was 

much slower with slag than with Portland cement, it was concluded that there was 

high potential for the use of BOS slag in soil stabilization (Poh et al., 2006).  

 Slag soil stabilization technology has also been utilized in natural disasters 

such as tsunamis (Gao and Kitamura, 2015). In 2011 the Tokuku earthquake in Japan 

triggered an enormous tsunami that left behind 13-28 million tons of debris. After the 

debris was cleared, the soil was ruined for rice production that is so essential to the 

economy of the area. As the tsunami bought in a large amount of seawater, the soil 

was saturated with sodium, and the calcium content was much lower than typical. 

These changes meant that the electrical conductivity of the soil dramatically 

increased, and the way the soil drained was disrupted, preventing rice being grown. 

The soil was also highly acidic meaning the ground was high in hydrogen sulfide 

(H2S). It was recommended by the Japanese government that steelmaking slag, both 

BOS and EAF could be used to rectify these problems, since the slag would provide 

an adequate supply of Ca, Si and Fe. The addition of the calcium ions encouraged the 

sodium ions to be exchanged from the surface of the soil particles (Fig. 9). The 

sodium ions were then washed away by rainfall. The iron addition meant that the H2S 

was converted to stable ferrous sulfide (FeS). Due to the slags high alkalinity the soil 

was also de-acidified (Gao and Kitamura, 2015). In Italy in a 2017 study soils that 

had been affected by excess sodium underwent remediation through the application 

of BOS slag to the soil (Pistocchi et al., 2017).  
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Fig. 9. Flow diagram showing the ion exchange that takes place on the surface of the 

soil particle between alkali metal (violet) and alkaline earth metals (green) (adapted 

from Gao and Kitamura, 2015). 

 

5.5 Slag wool  

 As early as the 1840s slag wool has been manufactured in Wales from 

steelmaking by-products. The process of making slag wool involves melting the slag 

and drawing it through a tap hole. The slag then passes through a jet of air, which 

disperses the slag into a cone of liquid droplets, which then develop into long fibers. 

The long fibers are then placed into a chamber to dry where small additions of 

limestone and silica may be added to enhance the properties. Slag wool is often used 

as insulation in houses due to its good density and insulation properties. Slag wool is 

resistant to attack from pests, oxidation and is entirely incombustible. All of these 

properties mean it is extremely suitable to be used as home insulation. In the 1970s 

slag wool was one of the most significant uses of slag (Lee, 1974). 

 

6. Marine applications  

 Steelmaking slag is also potentially beneficial to the marine environment due 

to its high porosity and large surface area. For this reason research into the marine 

applications of steelmaking slag has increased significantly over the past few years 

(Yi et al., 2012). 
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6.1 Restoration of coral reefs  

 Coral reefs are the most complex and diverse ecosystems on the planet with 

the number of different species that they can support (i.e., twice as many basic forms 

of life than all dry land ecosystems combined). This rich biodiversity makes coral 

reefs essential to the evolution of biological diversity. They also provide significant 

economic value to humans, especially in developing countries where ecotourism is 

critical to their economy. In spite of this over one half of the world's population now 

live in coastal areas having an extremely adverse effects, including: climate change, 

overfishing, coastal deforestation and pollution.  

 Coral bleaching has become a significant issue directly caused by climate 

change. In recent years coral reefs have been subjected to sea temperature rise. When 

the sea temperature rises above 30 °C for an extended period, the coral begins to 

expel its symbiotic algae and starts to bleach, losing its color and turning white (Fig. 

10) (Glynn, 1993). If this occurs for a prolonged amount of time it kills the coral 

(Carleton Ray and McCormick-Ray, 2014). In recent years coral bleaching has 

worsened until 2016 when it was found that 80% of the Great Barrier Reef in 

Australia had been bleached. There is an extensive research effort going into what 

would be the most environmentally friendly way to restore coral reefs and the 

ecosystems surrounding them. Coral reefs are a highly porous material made up of 

CaCO3, similarly, the surface of steelmaking slag is also highly porous and made up 

of CaCO3; therefore steelmaking slag makes a very suitable artificial reef material.  
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Fig. 10. Image showing the effects of coral reef bleaching on the Sesoko Island 

fringing reef (reproduced with permission from Glynn, 1993).  

 

 In testing the potential of using slag to create coral reefs, slag cubes (25 cm in 

diameter) were placed on the sea floor in an inland sea area in Hiroshima prefecture 

(Takahashi and Yabuta, 2002). After 3 months it was seen that that marine plants and 

shellfish had begun to colonize the surface of the slag and were growing (Fig. 11) 

(Takahashi and Yabuta, 2002). Around the bottom of the slag blocks, the same green 

marine plants were also growing, suggesting that the slag block was having a 

positive effect on the surrounding environment. 

 

 

Fig. 11. Photograph of the carbonated BOS block artificial reef with green marine 

plants and Zostera marina seagrass (adapted from Takahashi and Yabuta, 2002). 
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A comparison between a carbonated slag block, a granite block and a 

concrete block of the same size, placed in the same area on the ocean floor, and 

monitored for 9 months. Sargassum plants, a type of seaweed began growing on all 

of the blocks, however, the highest number of marine organisms was found to be 

growing on the carbonated steelmaking slag block, see Fig. 12 (Takahashi and 

Yabuta, 2002). The slag block was the most porous of the materials and hence bears 

a strong resemblance to the surface of a natural coral reef. The slag block surface 

was significantly rougher (328 µm) than the granite (67 µm) and concrete (273 µm), 

which, gave the embryos of the sargassum plants (100-300 µm) a larger surface 

cavity to live in, which they prefer, explaining the higher number of marine 

organisms (Fig. 12). The slag blocks are also not high in alkalinity, which was a 

favorable condition for the Sargassum plants (Takahashi and Yabuta, 2002). 

 

 

Fig. 12. Graph showing the mean number of Sargassum plants on carbonated slag, 

granite and concrete blocks as a function of date (values sourced from Takahashi and 

Yabuta, 2002). 

 

 In a subsequent experiment 15 blocks of carbonated steelmaking slag were 

arranged into a pyramid shape and placed on the ocean floor (Takahashi and Yabuta, 

2002). It was discovered that marine plants began to grow in the gaps in between the 

blocks and in turn this encouraged shoals of fish to start to reside there. This was a 
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very positive result as many shoals of fish have been driven from the area due to 

sediment dredging in the area. There were also additional benefits from the pyramid 

of slag blocks in that effects of sand capping were seen in which nutrient salts were 

prevented from leaching out and affecting the environment (Takahashi and Yabuta, 

2002). 

 Subsequent to the work in Japan least 40 countries around the world have 

now adopted artificial reef technology. North America and Australia have begun to 

use their artificial reefs for recreational use such as diving and fishing meaning their 

natural reefs cannot get as damaged (Shokry and Ammar, 2009). In an effort to 

determine whether it is possible to transplant damaged coral species from an 

unhealthy environment to a healthy environment through the use of EAF slag, 

several different coral species such as Acroporiidae (Acropora), Pocilliporiidae 

(Stylophora) and Faviidae (Favia and Favites) were collected from damaged reefs. 

The coral samples were then transported to another location. The samples of slag 

used in this experiment were not carbonated into blocks, but of irregular shapes and 

sizes and were collected directly from the steel plant after being cooled. The coral 

species were fixed to the slag using a small amount of epoxy and seawater cement. 

After 3 months a thin layer of CaCO3 began to form over the slag caused by the 

reaction between the CO2 in the surrounding seawater and the CaO in the slag. It was 

found that 70.18% of the 550 coral reef species survived suggesting that EAF slag is 

a suitable rehabilitation medium for coral reefs in polluted or damaged areas 

(Mohammed et al., 2012). 

 Further development of the technology involves an adapted artificial coral 

reef technology has been created. Granulated BF slag, BOS slag, cement clinker, flue 

gas desulfurization (FGD), fine and coarse aggregate made of granulated BOS slag 

and water are mixed to create what is known as a green artificial reef concrete 

(GARC) (Huang et al., 2016). The concrete was then molded into a cube (100 mm3) 

and were then left to set for 24 hours and then cured for 28 days at 20 ±2 °C under 90 

±2% humidity. Nine specimens were placed into the sea for 8 months, near a 
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naturally occurring coral reef. The density of the GARC (2765.6 kg/m3) was higher 

than normal Portland concrete (2400 kg/m3); the higher density is particularly 

advantageous as it means that the concrete is more resistant to sea wave action and 

storms. The GARC also showed an excellent compressive strength (71.4 MPa) and 

after curing in artificial seawater (92.5 MPa); the increase shows that the artificial 

seawater worked well with the GARC. After 8 months testing in the sea algae had 

colonized the entire surface of the specimens. This was a positive result because if 

barnacles had begun to grow on the surface then it would mean that the GARC had a 

high pH value. Lower pH value artificial reef materials are known to more easily 

attract shoals of fish and other marine organisms (Huang et al., 2016). All of the 

results of this research were very promising however the long-term effects of 

artificial reefs still require a considerable amount of research. For example, it is 

unknown how artificial reefs would affect marine communities and food chains (Lee 

et al., 2018).  

 

6.2. Regeneration of seaweed  

 Over the past 30 years, the amount of seaweed surrounding Japans coastline 

has decreased by 40% due to sea desertification, which is thought to be a direct cause 

of climate change, rising sea temperatures, overgrazing by sea urchins and changing 

ocean currents. However, it has also been thought it could be caused by changing 

mineral levels in the sea such as a decline in the concentration of iron. In light of 

this, a fertilizer consisting of BOS slag and humus soil was developed by the Nippon 

Steel Company in Japan (Uemura, 2015). The choice of slag was dictated by its high 

divalent iron concentration. The fertilizer performed well in the town of Mashike in 

Hokkaido when it was bought by the fishing cooperative there. It was embedded into 

the seabed in October 2004 and studied until June 2005, during this time it was found 

that there was more than 100 times more kelp in the experimental area than there was 

located in the non-experimental area. The growth of the seaweed has also 

encouraged fish to come to the area as the seaweed provides not only a food source, 
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but a place for them to live and procreate. At present kelp and other seaweed species 

can still be found to be growing very healthily in the area. Several other coastal 

towns around Japan have now introduced the same technology. Laboratory 

experiments concluded that it was highly likely the iron eluted from the slag caused 

the growth of the seaweed (Fujimoto et al., 2012).  

Since seaweed has the ability to absorb CO2 through photosynthesis it is 

possible that slag can be additionally used to curb climate change (Uemura, 2015). 

The 40% decrease in seaweed surrounding the coast of Japan, was estimated to have 

lost the absorption of 7,300,000 tons of CO2 per year. Thus, a project was initiated 

with the aim of growing seaweed for the sole purpose of CO2 sequestration. 

Carbonated blocks of slag were created (sequestering additional CO2) and then 

placed in an experimental area of sea (Uemura, 2015). After 2 months seawater 

samples were taken and it was found that there was dissolved iron in the water 

(Uemura, 2015). After 4-6 months it was found that kelp and other seaweed species 

had settled on the blocks. In this time the seaweed was also sequestering CO2 in its 

photosynthesis process. The seaweed was then tested to see if it could be used as a 

source of biofuel. Only samples of seaweed known as thalli (a green shoot) were 

collected which were parts of the seaweed that had broken off and were floating 

through the water. The thalli was successfully converted into oil or resin, although it 

is also not known how well the oil produced would perform in an industrial oil 

application; however, it has been reported that different seaweed species produced 

different amounts of biomethane (Tabassum et al., 2018) suggesting a promising 

application. 

 

 6.3. Phytoplankton application  

 An innovative marine application of steelmaking slag has been its use for 

elution of iron-ions to stimulate Phytoplankton to absorb CO2 (Futatsuka et al., 

2004). Phytoplankton are microscopic organisms that are an essential component of 

ecosystems in oceans around the world, which can sequester 2 kg/m2.year of carbon, 
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making them useful in the reduction of carbon (Futatsuka et al., 2004). Certain types 

of phytoplankton, specifically diatoms, grow fastest in the presence of iron, silicon, 

phosphorus and nitrogen, which could be sourced from steelmaking slag (Nakamura 

et al., 1998). Thus, the use of slag as a nutrient resource using seawater taken from 

Sendai Port in Japan showed a positive effect on the growth of marine phytoplankton 

(Haraguchi, Suzuki and Taniguchi, 2003). However, a concentration of >330 mg/L 

resulted in growth inhibition due to an extreme pH increase (Haraguchi, Suzuki and 

Taniguchi, 2003). Similar experiments have been reported (Yamamoto et al., 2016) 

and there are various studies on how phytoplankton could be used as biofuel 

(Tabassum, et al., 2018).  

 

6.4. Sand capping  

 Overfishing and waste products leaching consequences have had extremely 

harmful effects on coastal ecosystems around the French Riviera (Carleton Ray and 

McCormick-Ray, 2014). In the 1980s 8000 m3 of artificial reefs created of waste 

rubber tires were deployed to try and remediate the effects of the steadily increasing 

coastal population (Risso-de Faverney et al., 2010). The artificial reefs intended 

purpose was to restore the coastal ecosystems, however, they had the opposite effect 

(Collins et al., 1995).  

 It is observed that high amounts of zinc were detected leaching into the sea. It 

was estimated that 10 mg per tire leached out every 3 months (Collins et al., 1995). 

This was inline with the previous observation that mussels growing on an artificial 

tire reef in the French Riviera did not develop as well as those growing in a separate 

location not in the presence of rubber tires (Risso-de Faverney et al., 2010). To avoid 

further pollution the French Government would like to remove the tires, 

unfortunately, the effects that this would have on the environment are unknown, as 

the sediment left behind would be polluted. In the past to remove polluted sediment 

methods such as dredging have been used but this is costly and can lead to secondary 

pollution, as well as disruption of the ecosystem. In a pilot scheme at Université de 
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Nice Sophia Antipolis the potential of using steelmaking slag to cap the 

contaminated sediment has been initiated.  

 Previously activated carbon (AC) has been used to cap contaminated soils in 

oceans. But the cost of AC has significantly risen in the past few years, making 

steelmaking slag a suitable replacement. Steelmaking slag and bauxaline (a by- 

product of creating aluminum products) were chosen as candidates as they are both 

low cost by-products from industrial processes. Sediment samples, polluted with 

cadmium, zinc, arsenic and chromium, were collected from the sites at which the 

tires were located. A 1-1.5 cm layer of the steel slag, bauxaline and a mixture of both 

were applied to the artificial polluted sediment; uncapped sediment was also assessed 

(Taneez et al., 2018). The samples were then topped with an unpolluted artificial 

seawater solution and an aliquot collected weekly. The concentration of each element 

was assessed, and both of the capping materials performed well yet steelmaking slag 

was the only material that was capable of capturing Cr; however, the steel slag did 

cause highly alkaline conditions in the sediment, the pH of the seawater to 12.3. It 

was concluded that it might be better to use a mixture of bauxaline and slag, as this 

would create a more neutral pH environment (Taneez et al., 2018). 

 

6.5. Sand alternatives  

 In some areas around the world such as in coastal regions of Japan soft clayey 

soils are found, caused by dredging (Juneja, 2015). To improve stability a process 

called sand compaction piling involves injecting sand into the ground to a 

predetermined depth. The sand forms a column and forces the surrounding clay 

material to become a lot more compacted and stronger (Juneja, 2015). An alternative 

to sand would be BOS slag, and initial studies have shown that the slag did not cause 

a drastic pH increase in the surrounding sea (Horii et al., 2013). Before being 

compacted into the ground, the slag was stabilized by carbonation, or the slag was 

mixed with some of the clay-like soil from the area that had been dredged. 

Steelmaking slag is characterized as being high in calcium; therefore, calcium ions 
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are often eluted from the slag, which have the ability to lower the phosphorus content 

of the water by absorbing part of the insoluble phosphorus. The sulfate concentration 

is also reduced by the elusion of the calcium ions, therefore, preventing the 

formation of hydrogen sulfide, which can have detrimental effects on marine 

organisms. As steelmaking processes vary day to day the by-products produced may 

also vary, so the slag must undergo a leaching test to check for any heavy metal 

leaching before it can be used as a sand alternative. In light of these results, many 

ports in Japan began to use steelmaking slag to improve the soil in their ports with 

excellent results and no adverse effects (Horii et al., 2013). 

 

6.6. Hydrogen sulfide removal  

 An increase in hydrogen sulfide in oceans is a direct effect of the effects of 

dredging to make sure that boats have enough depth to be able to navigate in waters 

close to harbors. The process causes sludge to form on the bottom of the dredged 

area, and H2S is produced from the degeneration of the biological environment under 

decreased oxygen concentrations (Hayashi et al., 2013). Areas that have been 

dredged are often refilled with natural materials such as sand or crushed stone. BOS 

slag has been shown to be more effective at the suppression of H2S than natural 

materials (Hayashi et al., 2013). It was also found that the sludge in contact with the 

slag had a lower sulfide concentration, and a higher concentration of oxygen in the 

sludge, reducing H2S generation. X-ray absorption near edge structure (XANES) 

analysis showed that the mechanism of H2S removal involved the formation of iron 

and manganese sulfides and the precipitation of sulfur by oxidation. Fe(OH)3, and 

not  FeS2, was identified as the major iron species formed on the slag at the end of 

the experiment suggesting that iron cannot play an important role in the removal of 

H2S. The content of MnS was found to increase significantly at the end of the 

experiment (19%), the remaining sulfur (81%) was found to be in its elemental form. 

MnS is thermodynamically unstable it can be assumed that the MnS is oxidized to 

become elemental sulfur. In seawater, it has been observed that the oxidation of 
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sulfides occurs via manganese oxide, Eq. 26 (Kim et al., 2012). 

 

Mn2O3 + H2S + 4H+  → 2MnS + 3H2O     (26) 

 

 The difference was between adding steelmaking slag, FeO, or metallic iron to 

artificial seawater on sulfides has been investigated (Hayashi et al., 2014). In the case 

of slag, Fe in the slag reacted with the sulfide irons to form sulfides of iron, known 

as troilite (FeS) and pyrite (FeS2). There was a shift to an oxidizing atmosphere, 

which caused sulfide ions (S2-) to form sulfate ions (SO4
2-) (Hayashi et al., 2014). 

These are in agreement with studies in which it was seen that the H2S reduction 

mechanisms were the oxidation of sulfur by the reduction of manganese oxide and 

the formation of pyrite (Asaoka et al., 2013). 

 Field experiments have been undertaken in Fukuyama Harbor that has had 

problems with residents noticing an odor caused by H2S throughout the spring to 

summer (Miyata et al., 2018). Blocks made of slag known as “Marine Stone™” were 

placed onto the sea floor in the areas where the odor was a problem, and the water 

and sediment quality were assessed as well as the gases produced by the area. Over a 

2-year period it was observed that the amount of dissolved sulfide was dramatically 

reduced and the amount of oxygen in the water increased, importantly, the odor 

emitted by the sea was also significantly reduced (Miyata et al., 2018).  

 

6.7 Metalloid removal from wastewater  

 Hexavalent chromium (Cr(VI)) salts are used extensively in industry as it 

provides absolute protection against corrosion (Thuy et al., 2016). It has been found 

to be toxic so is being banned under REACH legislation from the year 2019 

(Montemor, 2014); however, it has already leached into wastewater and given its 

carcinogenic nature there is a need to remove Cr(VI) from wastewater to prevent 

further harm. Studies of the interaction of Cr(VI) with slag has shown that the 

mechanism of removal involves release of Fe2+ (Fig. 13), which leads to the 
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reduction of Cr(VI) to not toxic trivalent chromium (Cr3+) and concomitant formation 

of Fe3+ (Park et al., 2008; Han et al., 2016). These results were very promising for the 

problem of hexavalent chromium wastewaters.  

 
 

 

Fig. 13. Graph showing the removal dynamics of 50 mg/L of Cr(VI) by 5 g/L waste 

slag, consisting of Fe(II) and Fe(III) (reproduced with permission from Park et al., 

2008). 

 

 Arsenic is extremely toxic to humans (Gomez-Caminero et al., 2001), and the 

World Health Organization has stated that the safe limit for arsenic in drinking water 

is 0.01 mg/L, as a consequence many countries have implemented technology to 

remove arsenic (Mohan and Pittman, 2007). It has been shown that one of the 

optimum ways to remove arsenic is to use steelmaking slag. As shown in Fig. 14, 

slag can eliminate 90% arsenic from a solution concentrated at 1.25 g/L in 2 hours 

(Chakraborty et al., 2014). Arsenic removal is more efficient in alkaline solutions. In 

acidic solutions, silica and phosphate leach more that iron meaning arsenic removal 

is hindered. At higher pH calcium leaches out to form Ca(CO3), which helps to 

remove arsenic by co-precipitation (Chakraborty et al., 2014). 
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Fig. 14. Graph showing the rate at which steelmaking slag removes arsenic from 

water (values sourced from Chakraborty et al., 2014). 

 

6.8 Phosphorus removal from wastewater 

 Phosphorus is a common nutrient that is found in water, but surface runoff 

from sewage treatment works, and the use of phosphorus in fertilizers is one of the 

biggest causes of phosphorus pollution in surface water. High amounts of 

phosphorus can lead to eutrophication (an excessive amount of nutrients), which 

causes a layer of algae to form on the surface of the water, preventing any exchange 

of gases between the atmosphere and the water, meaning that all plant and marine 

life deteriorates in the body of water (Mortimer, 1971; Fillos and Molof, 1972). As 

the adsorption capability of calcite (Freeman and Rowell, 1981) and magnesium 

silicate (Smith and Mine-Yun, 1978) is good, researchers tested whether steelmaking 

slag could be used in a similar application since it contains both calcite and 

magnesium silicate (Yamada et al., 1986). Assessing the influence of pH, NaCl 

concentration and the surface characteristics of the slag in the research, the optimal 

pH for the adsorption of phosphorus onto slag was found to be pH 8, with slags that 

had a larger pore size.  

 Between 1990 and 2015, the average orthophosphate (PO4
3−) concentration 

found in European rivers and lakes has been reduced to 0.05 mg P/L (from 0.12 mg 

P/L) and 0.027 mg P/L (from 0.04 mg P/L), respectively (European Environment 



Submitted to Resources, Conservation & Recycling 

35 

Agency, 2015). The decrease is due to less phosphorus being used in detergents as 

well as wastewater outlets being diverted away from rivers and lakes. In spite of this 

effort, there is still a problem with phosphorus runoff from fertilisers used in 

farming. The EU framework directive stated that all member countries must achieve 

good water quality status by 2013. In light of these demands BOS slag has been 

tested to see if it could be used (Bowden et al., 2009). The slag was placed in a flow 

through reactor for the experiment. The initial phosphorus concentrations reflected 

values that had been recorded in the real world in agriculture. The experiments ran 

for a total of 406 days and showed that the maximum amount of P removal was 62% 

(Bowden et al., 2009). 

 EAF and BOS slag were compared in a 2-years field experiment in an area of 

constructed wetland, which had a high concentration of phosphorus in its effluent 

(Barca et al., 2013). It was observed that the EAF slag filter only removed 37% of 

the total phosphorus whereas the BOS slag filter removed 62%. Calcium slag 

dissolution and calcium phosphate precipitation were the two mechanisms of 

phosphorus removal observed (Bowden et al., 2009; Blanco et al., 2015). The pH of 

the filtered wastewater was elevated during the first 5 weeks of the experiment and 

then stabilized to below pH 9.  

 Several methods are currently being investigated to optimize phosphorus 

removal. First, the combination of BOS slag and bacterium Alteromonas 552-1 

performed well to remove 90% phosphorus at pH 7.8-8.0 (Zhou et al., 2016). 

Second, applying a NaOH coating to the slag was meant to allow a higher pH to be 

maintained for a longer period, unfortunately, it was still compromised with its 

exposure to aqueous solution (Park et al., 2017).  

 

7. Carbstone Process  

 The transformation of steelmaking slag into a strong structural material 

through high gravity carbonation (Chang et al., 2012). Now known as the carbstone 

method (Quaghebeur et al., 2015), it consists of three steps: pre-treatment, shaping 
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and curing.  

The BOS slag is first homogenized into a powder and then mixed with the 

appropriate amount of water. The amount used in the method being referenced was 

10 wt%, but it does depend on the initial moisture content of the slag. The mixture is 

compacted into the desired shape using a hydraulic press (75-609 kgf/cm2). The 

shape depends on the desired application of the slag block. The block is then placed 

into an autoclave at 20-140 °C, for 16 hours, with a CO2 enriched atmosphere at a 

pressure of 0.5-10 MPa (Quaghebeur et al., 2015). The carbonated block shows 

excellent compressive strength and environmental properties making it suitable to be 

used as a construction material. One of the advantages of this process is there is no 

need for an additional binder (Pang et al., 2015). 

 The carbstone process has not been tested in a marine environment, but a 

similar experiment using slag have been conducted using concrete blocks containing 

different amounts of slag. Located on Treat Island (Maine, USA) is a marine 

exposure site, which has been used for 75 years to assess the effects that a marine 

environment has on different kinds of concrete (Thomas, 2016). The site is exposed 

to the North Atlantic environment, which is a very severe environment with tides up 

to 6.7 m, chloride concentration of 19.3 g/L, a salinity of 35.2 g/L and approximately 

100 freeze-thaw cycles per year. From 1978-1987 various concrete blocks containing 

slag on Treat Island to be assessed for 25 years (Malhotra and Bremner, 1996). The 

blocks contained other constituents, but there was a set of concrete blocks that 

contained different percentages of slag, which were visually assessed.It was found 

that there was the most significant deterioration on the block with 65% slag after 25 

years. The blocks that had lower water/cementitious material (W/CM) ratios 

deteriorated the least. It was also seen that the resistance to chlorine permeability was 

significantly increased with the addition of BOS slag. The study highlighted the 

importance of having a low W/CM ratio when BOS slag is used in concrete 

(Thomas, 2016). A method has been developed to predict the performance of marine 

concretes by using numerical modeling and some laboratory-based tests (Nanukuttan 
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et al., 2015). It has been shown that the data collected from chloride testing can be 

used to predict the effects of chlorine in any given environmental conditions. The 

model is an encouraging start to modeling marine concrete behavior although the 

accuracy of the model for predicting more extended periods in the future still needs 

to be improved.   

 

8. Conclusions 

• The viability of the steelmaking industry being able to continue in the long 

term can be said to strongly depend on whether the adverse effects caused by 

the industry can be lessened and the process made much cleaner.  

• This depends on how the steel industry can be transformed from a linear 

economy into a circular economy in which the by-products produced by the 

industry can be reused.  

• The by-products can be used in a way that reduces resources as well as 

providing added benefits such as CO2 sequestration.  

• Given the critical need of global heavy industry to decarbonize, the re-use of 

steelmaking slag offers an alternative to both the use of raw materials whose 

production is environmentally impactful, and the control of existing 

environmental damage.  
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