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19 Abstract 
 

20 In mammals, tight regulation of the maternal endometrial function is critical for 
 

21 pregnancy success. In the bovine species, endometrial expression of members of 



 

 

 
 
 
 
 
22 class A scavenger receptor (SR-A) has been listed in high-throughput analyses 

 
23 but very little is known about the involvement of these immune factors during 

 
24 implantation in mammals. To provide first insights on the contribution of SR-A to 

 
25 endometrial physiology, we analyzed the expression and regulation of all SR-A 

 
26 members during estrous cycle and early pregnancy in cattle. SR-A1 level is 

 
27 increased by the pregnancy at day 20. SR-A3 increases at day 13 of the estrous 

 
28 cycle and the pregnancy. SR-A4 level reduces at day 20 of the estrous cycle but 

 
29 remains high in pregnant animals. SR-A5 increases by day 13 of the estrous cycle, 

 
30 decreases on day 20 but remains high in pregnant animals. Interferon-tau does 

 
31 not affect SR-A gene expression whereas progesterone regulates expression of 

 
32 SR-A3 and SR-A5 transcripts. Eventually endometrial SR-A3 appeared 

 
33 significantly higher in cows carrying in vitro produced embryos than in artificially 

 
34 inseminated cows. Our data suggest that members of SR-A family are involved in 

 
35 endometrial remodeling and regulation of endometrial gland physiology, both 

 
36 processes critical for implantation in mammals. 
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38 Introduction 
 

39 In mammals, implantation is a critical step of pregnancy, that relies on a tightly 
 

40 regulated and synchronized communication involving cellular and molecular 
 

41 interactions between the conceptus and the receptive endometrium (Guillomot, 
 

42 1995; Lee and DeMayo, 2004). Since the pioneer report of Sir Medawar 
 

43 pinpointing the necessity of a “maternal tolerance of the allogenic foetus” graft 
 

44 (Billingham et al., 1953; Medawar, 1953; Colucci et al., 2014), a wealth of data has 
 

45 demonstrated the importance of the maternal immune system for the 
 

46 establishment and the progression of pregnancy (Chaouat et al., 2004, 2007; 
 

47 Chaouat, 2007). During implantation, regulation of the immune function in the 
 

48 endometrium includes modulation of secreted pro- and anti-inflammatory cytokines 
 

49 (Th1/Th2 balance), the regulation of the major histocompatibility complex and the 
 

50 recruitment of immune cells (Chaouat et al., 2004, 2007; Oliveira et al., 2010; 
 

51 Walker et al., 2010; Mansouri-Attia et al., 2012; Fair, 2016). 
 
 

52 In ruminants, progesterone (P4) and interferon-tau (IFNT) regulate the endometrial 
 

53 function and both are required for the success of pregnancy (Bazer et al., 2008). 
 

54 Progesterone actions in pregnancy, involve the regulation of histotroph secretion 
 

55 that is critical for conceptus development (Spencer, 2002; Carter et al., 2008; 
 

56 Forde et al., 2011a). Progesterone was also shown to affect the expression of 
 

57 genes relative to the regulation of macrophage localization (Forde et al., 2011a). 
 

58 During elongation of the hatched embryo until implantation is completed, 
 

59 trophectoderm cells secrete interferon-tau (IFNT), a cytokine considered as the 
 

60 major signal of maternal recognition of pregnancy in ruminants (Martal et al., 1979; 
 

61 Bazer et al., 2008; Ealy and Yang, 2009; Forde et al., 2011b; Bazer and Thatcher, 
 

62 2017). The major function of IFNT has been recognized as the inhibition of the 



 

 

 
 
 
 
 
63 luteolytic mechanisms that leads to the maintenance of P4 secretion by the 

 
64 functional corpus luteum (Gray et al., 2006; Spencer et al., 2007; Bazer et al., 

 
65 2008), thereby contributing to uterine receptivity and conceptus growth (Fair, 

 
66 2016). In addition direct actions of IFNT on the endometrium have been 

 
67 abundantly illustrated and include the regulation of endometrial genes implicated 

 
68 in cellular growth, cell differentiation and apoptosis local immune system (Gray et 

 
69 al., 2006; Spencer et al., 2007; Bazer et al., 2008; Ott and Gifford, 2010). 

 
 
70 In order to decipher the highly dynamic processes that control endometrial 

 
71 physiology of early pregnancy in cattle, numerous high-throughput analyses were 

 
72 performed between day 5 and day 20 of estrous cycle and pregnancy, highlighting 

 
73 a major impact of the conceptus from day 13 of pregnancy onwards (Klein et al., 

 
74 2006; Bauersachs et al., 2008, 2009, Mansouri-Attia et al., 2009a; b; Walker et al., 

 
75 2010; Forde et al., 2011b, 2012; Mamo et al., 2012; Spencer et al., 2013). These 

 
76 molecular data also confirmed the functional differences between the two areas 

 
77 that constitute the ruminant endometrium, namely the caruncules (CAR) and the 

 
78 intercaruncular areas (ICAR) (Mansouri-Attia et al., 2009a; Walker et al., 2010). 

 
79 While CAR areas are aglandular structures being part of the placentomes, ICAR 

 
80 areas contain glandular epithelium, the major source of histotroph (Mansouri-Attia 

 
81 et al., 2009a). Moreover, these studies also unveiled the ability of the endometrium 

 
82 to response to embryos manipulations (Bauersachs et al., 2009; Mansouri-Attia et 

 
83 al., 2009b). Interestingly, a member of the new class of Class A Scavenger 

 
84 Receptors (SR-A) appeared as an endometrial implantation-regulated gene 

 
85 (Mansouri-Attia et al., 2009a) suggesting the involvement of SR-A in the 

 
86 endometrial physiology. 



 

 

 
 
 
 
 

87 The scavenger receptors were identified in 1979 based on their ability to bind 
 

88 modified low-density lipoproteins (Goldstein et al., 1979). The majority of these 
 

89 receptors are transmembrane cell surface glycoproteins first identified in 
 

90 macrophages, dendritic cells and endothelial cells (Mukhopadhyay and Gordon, 
 

91 2004). Based on the recent released consensus classification, SR family 
 

92 encompasses eight classes of protein based on their multi-domain structure 
 

93 (PrabhuDas et al., 2017). The class A (SR-A) is composed of five members: SR- 
 

94 A1, SR-A3 to SR-A6 with SR-A1 and SR-A6 being very closed structurally 
 

95 (PrabhuDas et al., 2017). Both are expressed in macrophages but Sr-a1 
 

96 expression is induced by the differentiation whereas Sr-a6 is induced by infection 
 

97 in sub-populations of murine macrophages (Plüddemann et al., 2007). Unlike the 
 

98 other SR-A members, SR-A3, SR-A4 and SR-A5 do not appear to be expressed in 
 

99 macrophages but in various types of tissues including heart, intestine, lung, and 
 

100 placenta, as well as epithelial cells (PrabhuDas et al., 2017). Scavenger Receptors 
 

101 Class A have been considered as major components of innate immunity via their 
 

102 implication in recognition of various microbial pathogens as well as modified or 
 

103 endogenous molecules derived from the host (Mukhopadhyay and Gordon, 2004; 
 

104 Bowdish et al., 2007; Plüddemann et al., 2007; PrabhuDas et al., 2017). One 
 

105 particularity of SR-A5 is that it is unable to endocytose modified low-density 
 

106 lipoproteins (Plüddemann et al., 2007). Despite their established contribution in the 
 

107 immune function in mammals, little is known about the involvement of SR-A in the 
 

108 endometrial physiology. In cattle, SR-A1, -A3 and -A4 proteins were 
 

109 immunodetected in uterine macrophages (Naito et al., 1991). In mice, the second 
 

110 half of pregnancy is associated with an increase of uterine Sr-a1 expression (Kyaw 
 

111 et al., 1998) and expression of SR-A4 and SR-A5 transcripts is regulated in 



 

 

 
 
 
 
 
112 pregnant endometrium compared with cyclic tissue at day 20 post-estrous 

 
113 (Mansouri-Attia et al., 2009a). 

 
 
114 In order to bring first insights about SR-A in the endometrium, we analyzed the 

 
115 expression and the regulation of all members of this class during estrous cycle and 

 
116 early pregnancy in cattle. Using in vitro and in vivo experimental models, the 

 
117 regulation of SR-A members by P4 and IFNT was investigated. Eventually, to 

 
18 further explore the immune component of the endometrium as a sensor of in vitro 

 
119 manipulated embryos (Sandra et al., 2011), we analyzed the impact of bovine in 

 
120 vitro fertilized embryos on endometrial SR-A expression of recipient cows at 

 
121 implantation. 

 
 
 
 
122 Materials and methods 

 
 
123 Animals 
124 Animal care and all experimental procedures were completed in accordance with 

 
125 European Community Directive 86/609/EC, the Animal Research Ethics 

 
126 Committee of University College Dublin and the French Ministry of Agriculture 

 
127 (authorization B91332). Protocols were registered by the Department of Health 

 
128 and Children (Ireland) or by the Regional Ethical Committee of Animal 

 
129 Experimentation of INRA and AgroParisTech (France, protocol 12-124). In vitro 

 
130 embryo production and embryo transfer protocols were registered by the French 

 
131 Veterinary Services (N°FRPB780 and FRTB910). 

 
 
132 Experiment 1: Endometrial SR-A expression during early pregnancy 
133 As previously described (Forde et al., 2011a; b) synchronised cross-bred beef 

 
134 heifers were artificially inseminated to generate the pregnant group or were left as 

 
135 non-inseminated to generate a cyclic group. Cyclic females were slaughtered at 



 

 

 
 
 
 
 

136 day 5 (n=5), at day 7 (n=5), at day 13 (n=5) and at day 16 (n=5) and uteri were 
 

137 immediately retrieved and flushed. A similar procedure was applied to inseminated 
 

138 heifers (day 5: n=5, day 7: n=5, day 13: n=5 and day 16: n=5) and pregnancy was 
 

139 confirmed when the stage of conceptus development was consistent with the day 
 

140 of pregnancy as determined by stereomicroscopy (Degrelle et al., 2005). Strips of 
 

141 endometrium (containing CAR and ICAR areas) were collected, snap-frozen in 
 

142 liquid nitrogen then stored at -80°C for further analyses. 
 
 

143 Experiment 2: Endometrial SR-A expression during maternal recognition of pregnancy 
144 period 
145 As previously described (Forde et al., 2011b; Eozenou et al., 2012; Vitorino 

 
146 Carvalho et al., 2014, 2016) synchronised cross-bred beef heifers were artificially 

 
147 inseminated (AI) to generate the pregnant group or were left as noninseminated to 

 
148 generate a cyclic group. Cyclic females were slaughtered at day 16 (n=5) and at 

 
149 day 20 (n=6) and uteri were immediately retrieved and flushed. A similar 

 
150 procedure was applied to inseminated heifers that were considered as pregnant 

 
151 (day 16, n=4; day 20, n=5) when the stage of conceptus development was 

 
152 consistent with the day of pregnancy as determined by stereomicroscopy (Degrelle 

 
153 et al., 2005). Based on ovarian morphology (Arosh et al., 2002), all cyclic heifers 

 
154 sampled at day 20 after estrous presented a regressed corpus luteum whereas 

 
155 cyclic and pregnant heifers sampled at day 16 as well as pregnant heifers sampled 

 
156 at day 20 presented a functional corpus luteum. Endometrial CAR and ICAR areas 

 
157 were dissected separately from the uterine horn ipsilateral to the corpus luteum 

 
158 (Mansouri-Attia et al., 2009a), frozen in liquid nitrogen then stored at -80°C for 

 
159 further analyses. 

 
 

160 Experiment 3: Impact of in vivo P4 supplementation on the endometrial expression of 
161 SR-A in cyclic and pregnant heifers 



 

 

 
 
 
 
 
162 As previously described (Carter et al., 2008; Forde et al., 2011a; Eozenou et al., 

 
163 2012), cyclic cross breed heifers received a P4-releasing intravaginal device 

 
164 containing 1.55 g of P4 (Ceva Animal Health Ltd.) on day 3 after estrous. Females 

 
165 were slaughtered after 2 days (day 5 after estrous, normal P4 level in cyclic 

 
166 heifers, n=5, high P4 level in cyclic heifers, n=4, normal P4 level in pregnant 

 
167 heifers, n=5 and high P4 level in pregnant heifers, n=5) and 13 days (day 16 after 

 
168 estrous, normal P4 level in cyclic heifers, n=5, high P4 level in cyclic heifers, n=4, 

 
169 normal P4 level in pregnant heifers, n=5 and high P4 level in pregnant heifers, 

 
170 n=5) of P4 supplementation. Strips of endometrium (containing CAR and ICAR 

 
171 areas) were collected, snap-frozen in liquid nitrogen then stored at -80°C for 

 
172 further analyses. 

 
 
173 Experiment 4: Impact of in vivo IFNT supplementation on the endometrial expression 
174 of SR-A in cyclic heifers 
175 As previously described (Eozenou et al., 2012; Vitorino Carvalho et al., 2014, 

 
176 2016), cyclic Charolais cows were synchronised by the Crestar method (Mansouri- 

 
177 Attia et al., 2009a). At day 14 after estrous, recombinant ovine IFNT (roIFNT; 200 

 
178  μg/mL, 25  mL/horn; Sandra et al., 2005) or control solution (saline buffer) was 

 
179 infused into the uterine lumen. Cows were slaughtered 2  h after the intra-uterine 

 
180 infusion and the endometrium of five IFNT-infused and five control cows was 

 
181 collected. Endometrial CAR and ICAR areas were dissected separately from the 

 
182 uterine horn ipsilateral to the corpus luteum (Mansouri-Attia et al., 2009a), frozen 

 
183 in liquid nitrogen then stored at -80°C for further analyses. 

 
 
184 Experiment 5: Endometrial SR-A in response to embryo transfer 
185 All females (Charolais or Holstein breeds) used in this experiment were 

 
186 synchronized using the Crestar method. Holstein or Charolais heifers were 

 
187 inseminated with semen from their respective breed (as previously described, 



 

 

 
 
 
 
 

188 Vitorino Carvalho et al., 2014). Embryos from other heifers were collected at day 7 
 

189 post insemination. International Embryo Transfer Society quality grades 1 and 2 
 

190 blastocysts were transferred into the uterine ipsilateral horn to the corpus luteum 
 

191 of synchronised Charolais cows for embryo transfer (ET) pregnancies with 
 

192 Charolais embryos (ET-Charolais, n=5) or Prim’Holstein embryos (ET- 
 

193 Prim’Holstein, n=4) (2 blastocysts per recipient). Pregnant cows were slaughtered 
 

194 at day 20 and pregnancy was confirmed when the stage of conceptus 
 

195 development was consistent with the day of pregnancy as determined by 
 

196 stereomicroscopy (Degrelle et al., 2005) and compared to one control group of 
 

197 Charolais AI cows (n=6) at the same pregnancy stage. Endometrial CAR and 
 

198 ICAR areas were dissected separately from the uterine horn ipsilateral to the 
 

199 corpus luteum (Mansouri-Attia et al., 2009a), frozen in liquid nitrogen then stored 
 

200 at -80°C for further analyses. 
 
 

201 Primary cultures of endometrial cells 
202 Epithelial and stromal cells were isolated from bovine endometrium collected from 

 
203 mixed breed beef cows on day 11–17 of the estrous cycle, as previously described 

 
204 (Cronin et al., 2012). The cells were treated with control medium (RPMI-1640 

 
205 medium (Sigma–Aldrich), 10% heat-inactivated foetal bovine serum (Sigma– 

 
206 Aldrich), 1% penicillin–streptomycin (Sigma–Aldrich), 1% amphotericin B (Sigma– 

 
207 Aldrich) or a medium containing roIFNT (100 ng/mL) for 2 h. Each experiment was 

 
208 carried out using isolated cells from four independent animals. 

 
 

209 Total RNA extraction 
210 Total RNA was isolated from frozen tissue by homogenisation in Trizol Reagent 

 
211 (Invitrogen, Cerdy-Pontoise, France) according to the manufacturer’s 

 
212 recommendations and as previously published (Mansouri-Attia et al., 2009a; 

 
213 Eozenou et al., 2012). Total RNA samples were purified on Qiagen columns 



 

 

 
 
 
 
 
214 according to the manufacturer’s protocol (RNeasy Mini Kit, Qiagen, Courtaboeuf, 

 
215 France). RNA was quantified using a NanoDrop-ND1000 Spectrophotometer 

 
216 (Thermo Fisher Scientific Inc., Boston, MA, USA) and all samples were shown to a 

 
217 260/280nm ratio greater than 1.8. RNA quality was determined using the RNA 

 
218 6000 chip on the Agilent 2100 bioanalyzer (Agilent, Les Ulis, France); all samples 

 
219 were shown to have a RNA Integrity Number (RIN) greater than 7.8. 1 µL of 

 
220 RNase inhibitor (RNAsin, Promega, Charbonnières-les-Bains, France) was added 

 
221 to each sample before storing at -80°C. 

 
 
222 Quantitative real-time PCR 
223 As previously described (Mansouri-Attia et al., 2009a; Eozenou et al., 2012), 1 µg 

 
224 of total RNA was reverse-transcribed into cDNA using OligodT and SuperScript II 

 
225 (Invitrogen) for experiments 1 and 4 and using total RNA using the High Capacity 

 
226 cDNA Reverse Transcription Kit (LifeTechnologies) for experiments 2 and 3 

 
227 according to the manufacturer’s instructions in a 20 µL volume. Quantitative real- 

 
228 time PCR (qPCR) was carried out with Master Mix SYBR Green (Applied 

 
229 Biosystems, Saint Aubin, France) and Step One Plus system (Applied 

 
230 Biosystems). Primers were designed using Primer-BLAST (NCBI, 

 
231 http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome) 

 
232 or Primer Express Software (Applied Biosystems) then synthesized by Eurogentec 

 
233 (Angers, France). The oligonucleotide primers used for gene quantification are 

 
234 listed in Table 1. To assess the amplification of the correct cDNA fragments, every 

 
235 amplicon was sequenced and blasted on NCBI RNA bovine collection. For each 

 
236 gene of interest, relative expression was normalized to the expression of the most 

 
237 stable reference genes as determined by qBaseplus software (Biogazelle, Gent, 

 
238 Belgium) from the quantification of six housekeeping genes as previously 



 

 

 
 
 
 
 

239 described (Vitorino Carvalho et al., 2014, 2016). Due to its very low expression 
 

240 level, SR-A6 expression could not be evaluated in bovine endometrium, in our 
 

241 different models (Mansouri-Attia et al., 2009a; Forde et al., 2011a). 
 
 

242 Statistical analyses 
243 All statistical analyses were performed with GraphPad Prism 6 software (La Jolla, 

 
244 CA, USA). SR-A gene expression in tissues was first subjected to a two-way 

 
245 ANOVA followed by paired post hoc Bonferroni to analyze the effect of day, 

 
246 pregnancy status (cyclic or pregnant), endometrial areas (CAR and ICAR) and 

 
247 their interactions. 

 
 
 
 

248 Results 
 
 

249 Endometrial SR-A levels during estrous cycle and early pregnancy 
250 SR-A expression was analyzed in endometrial samples at day 5, 7, 13 and 16 of 

 
251 estrous cycle and pregnancy in cross bred beef heifers (Fig. 1). 

 
 

252 During estrous cycle (Fig. 1), no significant regulation of SR-A1 and SR-A4 was 
 

253 observed whereas SR-A3 and SR-A5 expression increased since day 13 when 
 

254 compared to day 7 (respectively P<0.0001 and P<0.01). At day 16, SR-A5 
 

255 expression then appeared stable compared to day 13, SR-A3 expression 
 

256 decreased at day 16 but remained higher than at day 5 and day 7 (both with 
 

257 P<0.001). 
 
 

258 During the early pregnancy (Fig. 1), SR-A1 levels were similar from day 5 to day 
 

259 13 but higher at day 16 when compared to day 5 and day 7 (respectively, P<0.01 
 

260 and P<0.05). The expression of SR-A3 increased at day 13 and day 16 (both with 
 

261 P<0.0001) whereas SR-A4 appeared up-regulated only at day 13 (P<0.05) when 



 

 

 
 
 
 
 
262 compared to day 5. No regulation of SR-A5 expression was observed during early 

 
263 pregnancy. 

 
 
264 The comparison of cyclic endometrium and pregnant endometrium evidenced no 

 
265 significant regulation of SR-A1, SR-A4 and SR-A5 expression by the presence of a 

 
266 conceptus. The expression of SR-A3 was increased by the presence of a 

 
267 conceptus only at day 16 (P<0.001). 

 
 
268 Endometrial SR-A expression during late estrous cycle and pre-implantation 
269 period 
270 SR-A expression was analyzed in the CAR and ICAR endometrial areas at day 16 

 
271 and day 20 of the estrous cycle and pregnancy in cross bred beef heifers. 

 
 
272 In cycle, from day 16 to day 20 post-estrous (Fig.2), no significant difference of 

 
273 expression was observed in CAR and ICAR areas for SR-A1 and SR-A3 whereas 

 
274 the SR-A4 and SR-A5 levels were significantly reduced at day 20 compared to day 

 
275 16 in CAR and ICAR areas. 

 
 
276 The comparison of the SR-A levels between the maternal recognition of the 

 
277 pregnancy (day 16) and the implantation (day 20) (Fig. 2) revealed a significant 

 
278 increase of SR-A1 expression in CAR areas whereas its expression was not 

 
279 different in ICAR areas, in pregnant cows. On the contrary, SR-A4 level appeared 

 
280 not impacted in CAR areas but its expression significantly decreased in ICAR 

 
281 areas. No significant regulation of SR-A3 and SR-A5 expression were observed 

 
282 during the same period. 

 
 
283 The comparison of pregnant endometrium to cyclic endometrium (Fig. 2) 

 
284 evidenced two distinct patterns of regulation. Indeed, whereas SR-A1, SR-A4 and 

 
285 SR-A5 expression were not impacted at day 16 in both endometrial areas, their 



 

 

 
 
 
 
 

286 expression significantly increased at day 20 in CAR and ICAR areas. Moreover, 
 

287 SR-A3 expression was not different in CAR areas but significantly reduced in 
 

288 ICAR areas only at day 20. 
 
 

289 Regulation of SR-A by P4-supplementation in vivo 
290 In order to investigate the impact of P4 on SR-A expression, cyclic and pregnant 

 
291 cross-bred beef heifers were supplemented with P4 from day 3 post-estrous 

 
292 onwards and the endometrium was sampled at day 5 or day 16 (Fig. 3). 

 
 

293 2 days and 13 days of P4 treatments did not impact SR-A1, SR-A4 and SR-A5 
 

294 expression in cyclic and pregnant heifers. On the other hand, no impact of P4- 
 

295 supplementation was observed on SR-A3 level at day 5 of cycle and pregnancy 
 

296 whereas its expression was increased at day 16 of cycle (P<0.05) but not 
 

297 impacted in case of pregnancy. 
 
 

298 Regulation of SR-A by IFNT supplementation in vivo and in vitro 
299 No impact of IFNT supplementation was observed on SR-A levels in both 

 
300 endometrial areas (Fig. 4). In primary cultures of endometrial cells, no regulation 

 
301 by IFNT was observed on SR-A expression in stromal and epithelial cells (Fig. 5). 

 
302 Interestingly, SR-A1 and SR-A5 levels were lower and SR-A3 and SR-A4 levels 

 
303 were higher in stromal cells compared with their expression in glandular epithelial 

 
304 cells (P<0.01, P<0.0001, P<0.0001 and P<0.0001 respectively; Fig. 5). 

 
 

305 Endometrial SR-A expression in pregnant cows carrying embryos obtained by AI, 
306 ET-Charolais or ET-Holstein 
307 To analyze the importance of difference of genome between pregnant cow and the 

 
308 carrying embryo in SR-A levels (Fig. 6), we designed a protocol of pregnant 

 
309 Charolais cows carrying embryo obtained by AI or in vivo in Charolais or Holstein 

 
310 cows and transferred at day 7 after estrous. Samples were collected at day 20 of 

 
311 pregnancy (day of implantation). 



 

 

 
 
 
 
 
312 No significant regulation by the origin of the embryo was observed for SR-A1, SR- 

 
313 A4 and SR-A5 levels. Nevertheless, SR-A3 expression appeared significantly 

 
314 higher in ET-Charolais than in AI or than in ET-Holstein in ICAR areas. 

 
 
 
 
315 Discussion 

 
316 Implantation involves a tight regulation of the maternal immune system to accept 

 
317 the colonization of the uterus by conceptus cells (Billingham et al., 1953). This 

 
318 regulation is highly complex and includes the modulation of innate and adaptive 

 
319 immunity (Chaouat et al., 2004, 2007). Among the factors involved in innate 

 
320 immunity, SR-A have been recognized as major contributors for recognition of 

 
321 microbial pathogens or endogenous molecules produced by the host 

 
322 (Mukhopadhyay and Gordon, 2004; Bowdish et al., 2007). Nevertheless, very few 

 
323 information are available on the putative roles of SR-A factors in uterine function 

 
324 during pregnancy in mammals (Naito et al., 1991; Kyaw et al., 1998). In order to 

 
325 provide first insights on the implication of SR-A in endometrial physiology, 

 
326 expression and regulation of the five identified SR-A genes (SR-A1, SR-A3 to SR- 

 
327 A6) was investigated in bovine endometrium in order to (i) establish expression 

 
328 patterns during estrous cycle and early pregnancy (ii) define the contribution of 

 
329 IFNT and P4 in SR-A genes regulation (iii) determine if SR-A levels are altered at 

 
330 implantation upon transfer of bovine IVF-produced embryos. 

 
 
331 Despite numerous attempts with different primers, we were unable to detect SR- 

 
332 A6 transcriptional expression in our various bovine models suggesting a very low 

 
333 expression. This very low expression is consistent with the absence of SR-A6 in 

 
334 transcriptome profiles of bovine endometrium (Mansouri-Attia et al., 2009a; Forde 

 
335 et al., 2011b) as well as the undetectable expression of SR-A6 in murine uterus 



 

 

 
 
 
 
 

336 (Kyaw et al., 1998) and in human endometrial cells during the menstrual cycle 
 

337 (Talbi et al., 2006). Altogether, these results suggest little involvement of SR-A6 in 
 

338 endometrial physiology or restricted to a few specialized cells, as suggested by the 
 

339 expression of this factor in specific sub-populations of murine macrophages 
 

340 (Plüddemann et al., 2007; PrabhuDas et al., 2017). More sensitive assay – for 
 

341 instance, based on single cell analyses - will be necessary to conclude about the 
 

342 involvement of SR-A6 in mammal endometrial physiology. 
 
 

343 In the bovine endometrium, we detected SR-A1, SR-A3, SR-A4 and SR-A5 from 
 

344 day 5 to 20 of the estrous cycle, with distinct expression profiles. Whereas no 
 

345 regulation of SR-A1 gene expression was observed, expression SR-A3, SR-A4 
 

346 and SR-A5 transcripts increased during the luteal phase (day 13 or day 16) then 
 

347 remained high (SR-A3) or was greatly reduced at day 20 of the estrous cycle when 
 

348 P4 blood level drops (SR-A4 and SR-A5). In keeping with our observations, mining 
 

349 human transcriptome data sets confirms that SR-A1 expression was constant 
 

350 across menstrual cycle in human endometrium and SR-A5 expression was up- 
 

351 regulated during the secretory phase (Talbi et al., 2006; Duncan et al., 2011; 
 

352 Sigurgeirsson et al., 2017). However, in contrast with our data, expression of SR- 
 

353 A3 and SR-A4 transcripts decreased during the secretory phase (Talbi et al., 
 

354 2006; Kashiwagi et al., 2007; Hu et al., 2014; Sigurgeirsson et al., 2017) when 
 

355 endometrial cells undergo decidualization, a process that is very limited in 
 

356 ruminants but is critical for implantation in species with an invasive blastocyst 
 

357 penetration such as primates and rodents (Guillomot, 1995). Collectively, 
 

358 published reports and our data show that SR-A1, SR-A3, SR-A4 and SR-A5 are 
 

359 expressed in the endometrium of mammals, with SR-A3 and SR-A4 expression 
 

360 being variable with the type of implantation. Interestingly, previous studies report 



 

 

 
 
 
 
 
361 that SR-A protein level is correlated to the mRNA level, especially for SR-A5 (Liu 

 
362 et al., 2013; Lee et al., 2017; You et al., 2017). Thus, even if protein regulation 

 
363 could be extrapolated from the mRNA expression, further analysis should be 

 
364 performed especially to identifying cells that express SR-A in the endometrium of 

 
365 various species. 

 
 
366 Impact of the conceptus on the endometrial expression of SR-A was limited to the 

 
367 increase in SR-A1 transcript level in the CAR area at day 20 of pregnancy i.e. 

 
368 when first permanent contacts between the elongated conceptus and 

 
369 endometrium take place. SR-A1 has been described as a marker of endometrial 

 
370 macrophages (Chang et al., 2009; Oliveira et al., 2010) and its expression is 

 
371 correlated with the recruitment of immune cells, especially B lymphocytes in 

 
372 mouse spleen, leading to tissue reorganization (Plüddemann et al., 2007). Since 

 
373 expression of bovine SR-A1 gene was higher in endometrial epithelial cells than in 

 
374 stromal cells, this factor could be involved in the recruitment of immune cells at the 

 
375 endometrium-conceptus interface particularly in CAR areas where cellular 

 
376 contacts with extra-embryonic tissues of the conceptus will lead to placentomes 

 
377 development. Epithelial localization of SR-A1 may also reflect a potential 

 
378 regulatory role in endometrial protection against bacterial aggression during 

 
379 pregnancy as previously suggested in humans (Senn et al., 2018). Furthermore, 

 
380 absence of SR-A1 leads to an increased secretion of pro-inflammatory cytokines 

 
381 by murine macrophages (Ohnishi et al., 2011) suggesting that SR-A1 could have a 

 
382 role in the control of the Th1/Th2 balance at implantation in the bovine species 

 
383 (Chaouat et al., 2004; Oliveira et al., 2013). Since the recruitment of maternal 

 
384 immune cells (i.e. macrophages and lymphocytes) and the modulation of cytokine 

 
385 secretion are necessary for pregnancy success (Chaouat et al., 2007; Mansouri- 



 

 

 
 
 
 
 

386 Attia et al., 2012; Fair, 2015, 2016), further experiments will help clarify the 
 

387 importance of SR-A1 in the regulation of local immune system of the mother. 
 
 

388 Biological functions reported for Sr-a5 are less related to the regulation of the 
 

389 immune system than other members of SR-A family (Jiang et al., 2006). Sr-a5 has 
 

390 been suggested to act as a tissue remodeler that drives cell fate of adipocytes 
 

391 (Lee et al., 2017). Sr-a5 overexpression regulates cell proliferation, invasion, and 
 

392 migration and can induces apoptosis (Huang et al., 2010; Liu et al., 2013; You et 
 

393 al., 2017). Eventually Sr-a5 is implicated in ferritin uptake and iron traffic regulating 
 

394 organogenesis (Li et al., 2009). Our current report highlights that SR-A5 transcripts 
 

395 are more abundant in epithelial cells that in stroma cells, in keeping with the high 
 

396 expression detected in murine epithelial cells (Jiang et al., 2006) and the weak 
 

397 expression reported in human macrophages (Senn et al., 2018). In the bovine 
 

398 endometrium at day 20 of pregnancy (Mansouri-Attia et al., 2009a), SR-A5 
 

399 transcript was localized by in situ hybridization in the stratum compactum layer as 
 

400 well as in the glandular epithelium that produces histotroph critical for conceptus 
 

401 elongation in ruminants and implantation in mammals (Spencer et al., 2013). 
 

402 Collectively, these data suggest that SR-A5 could be involved in endometrial 
 

403 remodeling and histotroph secretion, two major processes in the context of 
 

404 implantation and placental development. SR-A5 protein localization could be very 
 

405 helpful to gain new insights of endometrial SR-A5 function and to refine our 
 

406 understanding of SR-A5 involvement in early pregnancy. 
 
 

407 Interestingly, despite distinct expression patterns, SR-A4 could also be involved in 
 

408 endometrial remodeling especially in CAR areas. Indeed, Sr-a4 is expressed in 
 

409 vascular epithelia in mouse (Plüddemann et al., 2007) suggesting a function in 
 

410 vascular physiology. Increased SR-A4 expression has been described in 



 

 

 
 
 
 
 
411 trophectoderm cells of implanting embryos in humans and mice (Haouzi et al., 

 
412 2011; McConaha et al., 2011; Simopoulou et al., 2014). Placental development 

 
413 involves the reorganization of endometrial blood vascularization (Spencer et al., 

 
414 2007) especially in CAR areas. Based on SR-A4 secondary structure that 

 
415 integrates collagen-like sequences and carbohydrate recognition domains (Haouzi 

 
416 et al., 2011), SR-A4 as an adhesion factor may be involved in the initial 

 
417 attachment of trophectoderm to the receptive endometrium in mouse and human. 

 
418 Considering the expression of bovine SR-A4 in endometrial stromal cells, this 

 
419 scavenger receptor could take part to the endometrial remodeling as a pre- 

 
420 requisite for implantation in cattle. 

 
 
421 Successful implantation process requires coordinated actions of conceptus- 

 
422 released factors including IFNT and maternal factors including P4. None of the 

 
423 analyzed SR-A was regulated by the IFNT in vitro and in vivo, suggesting that 

 
424 none of them are early immediate target gene of the IFNT signaling pathway 

 
425 (Vitorino Carvalho et al., 2014, 2016). Nevertheless, other factors secreted by the 

 
426 conceptus could be involved in the regulation of SR-A expression, such as TGFB 

 
427 which is expressed by the elongating conceptus in cattle (Hue et al., 2012) and 

 
428 regulates the SR-A5 level in cellular model (Liu et al., 2013). Further 

 
429 experimentations would help to identify conceptus-released factors impacting 

 
430 endometrial SR-A expression. Furthermore, in the present study, the decrease of 

 
431 SR-A3 and SR-A5 level observed during the follicular phase of estrous cycle 

 
432 suggest that P4 may contribute to the transcriptional regulation of these two 

 
433 genes. In our experimental bovine model, 2-days supplementation with P4 did not 

 
434 modify SR-A3 and SR-A5 expression in the endometrium of treated heifers 

 
435 whereas a 13-days treatment only increased SR-A3 level, suggesting an 



 

 

 
 
 
 
 

436 differential impact of P4 on SR-A3 and SR-A5 expression and the involvement of 
 

437 other maternal factors in their regulation. In keeping with our data, endometrial 
 

438 SR-A5 transcripts were more abundant in heifers displaying high P4 levels (Mitko 
 

439 et al., 2008) as well as in human endometrium collected during secretory phase 
 

440 when P4 levels rise (Talbi et al., 2006). Further experiment will be necessary to 
 

441 clarify the molecular mechanisms that drive regulation of SR-A3 and SR-A5 gene 
 

442 expression by P4 in mammals. 
 
 

443 Using embryos with distinct potencies of term development has uncovered a 
 

444 biosensor property of the endometrium in mammalian species (Mansouri-Attia et 
 

445 al., 2009b; Sandra et al., 2011, 2015; Macklon and Brosens, 2014). In the present 
 

446 study, at implantation, SR-A3 gene expression in the ICAR areas was upregulated 
 

447 by the presence of IVF-produced conceptus compared with AI pregnancies. In the 
 

448 mouse, biological functions identified for Sr-a3 include tumor suppression by cell 
 

449 death induction (Zhu et al., 2009) and sensing as well as protection against 
 

450 oxidative stress (Brown et al., 2013; Zani et al., 2015) through Sr-a3 expression by 
 

451 various cell types including macrophages and fibroblasts (DeWitte-Orr et al., 
 

452 2010). Transferred IVF embryos are subject to a higher oxidative stress than AI 
 

453 embryos as a consequence of culture conditions (Yang et al., 1998) and increased 
 

454 expression of SR-A3 as well as regulation of other endometrial factors (Mansouri- 
 

455 Attia et al., 2009b) could represent the response of this tissue to the implanting 
 

456 conceptus produced in vitro. 
 
 

457 In summary, this study documents patterns of expression of all members of the 
 

458 SR-A family in the endometrium of a mammalian species. Significant differences in 
 

459 temporal expression during estrous cycle were reported for SR-A3, SR-A4 and 
 

460 SR-A5 whereas impact of the conceptus was significant on SR-A1 gene 



 

 

 
 
 
 
 
461 expression when apposition phase initiates. Transcript levels between CAR and 

 
462 ICAR areas were affected by IVF-produced conceptuses. Our data including 

 
463 potential roles of SR-A members in the regulation of endometrial physiology are 

 
464 summarized in Table 2. Further investigation will be required to clarify the 

 
465 biological functions of SR-A family in endometrial physiology during cycle and 

 
466 pregnancy. 
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Gene Forward Reverse Amplicon size (pb) Accession number Ct of NTC Slope Y intercept PCR efficiency (%) Linear dynamic range (Ct) 
SR-A1 TCTCTGGTTTACCTGGAGTTCGA CCTGGTCTTTGCATGCTTCC 120 NM_174113 ND -3.296 35.8 101.07 26-31 
SR-A3 TAGACCTCAACGTCCGCAAC GGGGTCTCCTTTTGGTCCTT 188 XM_002689483 ND -3.168 35.2 107.23 24-34 
SR-A4 CAACACCCTTGCTGCGTGTC GCTCTGTCCACCCTTCCCAA 120 NM_001101843 ND -3.570 35.2 90.60 23-36 
SR-A5 GTCTTGCTTTACATCAATGAAAAACC CCCTGAAATACAGGATCATGGCT 120 NM_001102499 ND -3.462 33.8 94.47 24-32 
SR-A6 AGAGGAGCTACTGGGCCAC CGGATTATCGGCTCTAGGAA 90 XM_024981046 ND ND ND ND 33-43 

CNOT11 CCTTCAAGAGCCCCCTGT GGGTCCTTTTCCAACTCTCC 64 XM_002691150 ND -3.430 37 95.68 23-35 
GAPDH GCTGACGCTCCCATGTTTGT TCATAAGTCCCTCCACGATGC 432 NM_001034034 ND -3.382 27.1 97.55 17-30 
RPL19 CCCCAATGAGACCAATGAAATC CAGCCCATCTTTGATCAGCTT 72 NM_001040516 ND -3.515 30.1 92.53 16-34 

SLC30A6 TGATGAGGAAACCTAGCCCTGCC TCGGGCTGCTCCAAAAAGCGT 142 NM_001075766 ND -3.505 37 92.89 22-35 
SUZ12 CGTTGTGAGCAGTTTTGCCCTGT ACCACAGTGCTTGGAGTTGGACT 139 NM_001205587 37 -3.325 33.5 99.9 19-34 

 

 SR-A1 SR-A3 SR-A4 SR-A5 SR-A6 
Oestrus cycle no variation increased from day 13 and decreased at day 20 no variation increased from day 13 ND 

Pregnancy increased in CAR decreased in ICAR increased increased ND 
In vitro cell expression Epithelium>Stroma Stroma>Epithelium Stroma>Epithelium Epithelium>Stroma ND 

Regulation by IFNT no variation no variation no variation no variation ND 
Regulation by P4 no variation increased no variation no variation ND 

Putative(s) function(s) Immunity/Tissue remodeling Oxidative stress Tissue remodeling/Conceptus adhesion Tissue remodeling/Histotroph secretion   
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700 Table 1. Description of the oligonucleotide primers used for bovine gene 
 

701 quantification by real time RT-PCR. NTC, no-template control; ND, not detected 
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703 Table 2. Summary of expression data and putative contribution of SR-A in bovine 
704 endometrial function. ND: not detected 
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707 Figure captations 

 

708  
 
709 Fig. 1: Quantification of SR-A gene expression in cyclic and pregnant bovine 

 
710 endometrium on day 5 to 16 of the estrous/pregnancy. Endometrium samples 

 
711 were collected from cyclic (day 5: n=5; day 7: n=5, day 13: n=5 and day 16, n=5) 

 
712 and pregnant (day 5: n=5; day 7: n=5, day 13: n=5 and day 16, n=5) cross-bred 

 
713 heifers. Expression of SR-A was normalized to that of GAPDH and RPL19 using 

 
714 qBasePlus. Scale Bars (mean±S.E.M.) with different lowercase letters differ 

 
715 significantly (P<0.05 or lower). 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

716 
 

717 Fig. 2: Quantification of SR-A gene expression in bovine endometrium on day 16 
 

718 and 20 of estrous cycle and pregnancy. Caruncular (CAR) and intercaruncular 
 

719 (ICAR) areas were collected from cyclic (day 16: n=5; day 20, n=6) and pregnant 
 

720 (day 16: n=4; day 20: n=5) cross-bred heifers. Expression of SR-A levels was 
 

721 normalized to that of RPL19 and SCL30A6 using qBasePlus. Scale Bars 
 

722 (mean±S.E.M.) with different lowercase letters differ significantly (P<0.05 or 
 

723 lower). 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
724 

 
 
725 Fig. 3: SR-A endometrial gene expression in cyclic and pregnant cross-bred beef 

 
726 heifers supplemented with P4 from day 3 after estrous. The females were 

 
727 slaughtered after 2 days (day 5 after estrous, normal P4 level in cyclic heifers, 

 
728 n=5, high P4 level in cyclic heifers, n=4, normal P4 level in pregnant heifers, n=5 

 
729 and high P4 level in pregnant heifers, n=5) and 13 days (day 16 after estrous, 

 
730 normal P4 level in cyclic heifers, n=5, high P4 level in cyclic heifers, n=4, normal 

 
731 P4 level in pregnant heifers, n=5 and high P4 level in pregnant heifers, n=5) of P4 

 
732 supplementation. SR-A level was quantified by RT-qPCR and normalized to 

 
733 GAPDH and RPL19 using qBasePlus. Scale Bars (mean±S.E.M.) represent the 

 
734 different conditions. Scale Bars (mean±S.E.M.) with different lowercase letters 

 
735 differ significantly (P<0.05 or lower). 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

736 
 
 

737 Fig. 4: Regulation of endometrial SR-A gene expression by IFNT in vivo. 
 

738 Caruncular (CAR) and intercaruncular (ICAR) endometrial areas were collected 
 

739 from Charolais cows infused with control solution (n=5) or recombinant ovine IFNT 
 

740 (200 µg/mL; n=5) for 2 h at day 14 of estrous cycle. SR-A levels were quantified by 
 

741 RT-qPCR and normalized to CNOT11, SLC30A6 and SUZ12 using qBasePlus. 
 

742 Data are the mean± S.E.M. 
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744 Fig. 5: Regulation of SR-A gene expression by IFNT in bovine endometrial cells. In 
 

745 vitro, cells isolated from bovine endometrium were treated with roIFNT (100 ng/ml) 
 

746 for 2 h. For each gene, mRNA expression was normalized to that of RPL19 and 
 

747 ACTB using qBasePlus. Quantitative data are presented as mean +/-SEM and 
 

748 significant differences between cell types were noted using ** : P < 0,01, **** : P < 
 

749 0,0001. 
 
 

750 

 

 
 

751 Fig. 6: Quantification of endometrial SR-A gene expression in pregnant Charolais 
 

752 cows at day 20. Pregnancy was obtained by Artificial Insemination (AI, n=6) or by 
 

753 Embryo Transfer (ET) at day 7 after estrous of two Charolais-bred embryos (ET- 
 

754 Charolais, n=5) or two Prim’Holstein-bred embryos (ET-Prim’Holstein, n=4). 
 

755 Caruncular (CAR) and intercaruncular (ICAR) areas were collected separatly. 
 

756 Expression of SR-A was normalized to that of RPL19 and SCL30A6 using 



 

 

 
 
 
 
 
757 qBasePlus. Quantitative data are presented as mean +/-SEM and significant 

 
758 differences were noted using * : P < 0,05; ** : P < 0,01. 



 

 

 
 
 

Gene Forward Reverse 
SR-A1 TCTCTGGTTTACCTGGAGTTCGA CCTGGTCTTTGCATGCTTCC 
SR-A3 TAGACCTCAACGTCCGCAAC GGGGTCTCCTTTTGGTCCTT 
SR-A4 CAACACCCTTGCTGCGTGTC GCTCTGTCCACCCTTCCCAA 
SR-A5 GTCTTGCTTTACATCAATGAAAAACC CCCTGAAATACAGGATCATGGCT 
SR-A6 AGAGGAGCTACTGGGCCAC CGGATTATCGGCTCTAGGAA 

CNOT11 CCTTCAAGAGCCCCCTGT GGGTCCTTTTCCAACTCTCC 
GAPDH GCTGACGCTCCCATGTTTGT TCATAAGTCCCTCCACGATGC 
RPL19 CCCCAATGAGACCAATGAAATC CAGCCCATCTTTGATCAGCTT 

SLC30A6 TGATGAGGAAACCTAGCCCTGCC TCGGGCTGCTCCAAAAAGCGT 
SUZ12 CGTTGTGAGCAGTTTTGCCCTGT ACCACAGTGCTTGGAGTTGGACT 



 

 

 
 
 

Amplicon size (pb) Accession number Ct of NTC Slope Y intercept PCR efficiency (%) 
120 NM_174113 ND -3.296 35.8 101.07 
188 XM_002689483 ND -3.168 35.2 107.23 
120 NM_001101843 ND -3.570 35.2 90.60 
120 NM_001102499 ND -3.462 33.8 94.47 
90 XM_024981046 ND ND ND ND 
64 XM_002691150 ND -3.430 37 95.68 

432 NM_001034034 ND -3.382 27.1 97.55 
72 NM_001040516 ND -3.515 30.1 92.53 

142 NM_001075766 ND -3.505 37 92.89 
139 NM_001205587 37 -3.325 33.5 99.9 



 

 

 
 
 

Linear dynamic range (Ct) 
26-31 
24-34 
23-36 
24-32 
33-43 
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 SR-A1 

Oestrus cycle no variation 
Pregnancy increased in CAR 

In vitro cell expression Epithelium>Stroma 
Regulation by IFNT no variation 
Regulation by P4 no variation 

Putative(s) function(s) Immunity/Tissue remodeling 



 

 

 
 
 

SR-A3 SR-A4 
increased from day 13 and decreased at day 20 no variation 

decreased in ICAR increased 
Stroma>Epithelium Stroma>Epithelium 

no variation no variation 
increased no variation 

Oxidative stress Tissue remodeling/Conceptus adhesion 
 
 
 

SR-A5 SR-A6 
increased from day 13 ND 

increased ND 
Epithelium>Stroma ND 

no variation ND 
no variation ND 

Tissue remodeling/Histotroph secretion  
AI-Charolais ET-Charolais ET-Pr





 

 

 


