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Abstract: Power quality disturbances commonly observed in power systems have been studied for decades, resulting in numerous
algorithms for detecting the events that affect the voltage and/or current waveforms. However, a considerable amount of distur-
bances are not visually observable in the raw waveforms, especially switching operations. These events must be detected through
an alternative feature, such as abrupt variations in the rms voltage profile. This paper examines the methods commonly used for
detecting power quality disturbances in the waveform or rms voltage profile domains and identifies their limitations. Afterwards, a
novel step change detector is proposed based on a modified median filter and rms voltage gradient values to overcome the defi-
ciencies of the existing methods. The effectiveness of the proposed method is assessed by applying it to both simulated and field
data. This assessment shows that the method detects all switching events with no false-positives for the datasets under analysis.
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1 Introduction

Power quality (PQ) disturbances have been a topic of interest
to researchers and utilities for decades. Concerns with PQ prob-
lems tend to intensify with the increasing use of non-linear loads,
electronic-based equipment, and inverter-interfaced distributed gen-
eration (especially photovoltaics) [1]. The widespread deployment
of power quality monitors by multiple utilities and application of
signal processing techniques allow further developments in the field
of PQ disturbance analysis [2]. Even though new techniques and
methodologies have been developed to identify and classify PQ
disturbances, some issues are still challenging [3-5]. The most
prominent example is the detection of PQ disturbances that are not
directly observable in the raw voltage and/or current wavelorms.

Analysis of PQ disturbances usually involves three steps: (i) sig-
nal analysis (de-noising and computation of derived quantities), (ii)
feature selection, and (iii) disturbance classification [6]. A well-
designed analysis in each step is essential for the performance of
the subsequent steps.

The voltage and/or current waveforms during a PQ disturbance
are valuable assets for power quality data analytics. However, these
raw measurements might not directly provide useful information for
disturbance identification and classification. In fact, various power
system events may not cause conspicuous disturbances in the voltage
and current waveforms; instead, they are characterised by an abrupt
step change in the rms voltage profile. Such events include capacitor
switching (especially the de-energizing operations) [7], transformer
tap-changer operations, and switching of large loads [8].

Identification of these inconspicuous PQ disturbance events might
be a complex task. A variety of methods is found in the litera-
ture to identify conspicuous disturbances, such as Fourier transform
and short-time Fourier transform [9], wavelet transform [10, 11],
S-transform [12—14], Kalman filtering [15-18], ESPRIT [19, 20],
residuals of AR models [21], and residuals of harmonic models [22].
However, none of these methods is suitable for analysis of incon-
spicuous disturbances. Moreover, the rms voltage variation resulting
from the switching events cited previously commonly fall within the
normal voltage range, and are undetected by traditional sag/swell
identification methods.

Therefore, rms voltage step changes are an alternative triggering
feature that simplifies the identification of switching events. They
also constitute a data reduction technique, where the raw voltage
and current waveforms are thoroughly analysed only if a step change
has been detected. This process reduces the time and computational
effort for the analysis of triggerless power quality data.

Given the limitations mentioned earlier, this paper proposes a
novel PQ disturbance detection technique, which uses rms voltage
step changes as an alternative triggering feature and is able to detect
subtle variations. Initially, the rms voltage profile is computed as a
derived quantity from the raw voltage waveforms. The de-noising
process of the resulting rms voltage profile is performed by a modi-
fied version of the median filter. This new filter is able to significantly
attenuate the noise in the rms voltage profile while preserving the
sharp edges caused by the switching events. Once filtered, the rms
voltage profile is used to detect step changes based on rms voltage
gradient values and a pre-specified threshold.

The paper is organised as follows. Section 2 discusses the most
commonly used techniques for detection of PQ disturbances, which
are based on a time-frequency decomposition of the waveforms,
and concludes that these techniques are not applicable to the anal-
ysis of inconspicuous PQ disturbances. Section 3 proposes the step
changes in an rms voltage profile as an alternative feature for detect-
ing these types of PQ disturbances. It introduces the recommended
approach for obtaining the rms voltage profile from the raw data and
techniques to filter it. Moreover, this section examines two methods
commonly used for detection of rms voltage step changes; synthetic
and field voltage waveform data are employed to illustrate their lim-
itations, even under proper selection of the algorithm parameters.
Section 4 presents the novel technique for filtering the rms voltage
profile, which is a modified version of the two-model approach and
median filtering, and the corresponding technique for rms voltage
step change detection. Considerations about the practical implemen-
tation of this detection method are discussed. The performance of the
proposed method is demonstrated through simulated and field data in
Section 5. Moreover, this section examines the benefits of employ-
ing voltage rather than current data for detection of inconspicuous
switching events. Final considerations are addressed in Section 6.
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Fig. 1: Wavelet transform coefficients of the voltage waveform
during capacitor switching operations. (a) Energizing. (b) De-
energizing.

2 Literature Review

Analysis of PQ disturbances generally involves a time-frequency
decomposition of the original signal. Fourier transform is a well-
known technique for decomposing a signal into its harmonic compo-
nents. Although it has been commonly applied for analysis of voltage
and current waveforms, it assumes that the signal is stationary, which
is not true during PQ disturbances. Therefore, this technique is not
suitable for analyzing abrupt changes in the voltage and/or waveform
data [3].

Many techniques have been proposed to resolve this issue, such
as short-time Fourier transform, S-transform and Kalman filtering.
Among these techniques, the wavelet transform became the most
popular in the PQ field. It is implemented as a set of low-pass
and high-pass filters, and the frequency resolution increases at each
successive decomposition level [23]. This transform has been suc-
cessfully applied to detect rapid changes in voltage and/or current
waveforms (e.g. switch transients and voltage sags) [3, 10]; how-
ever, it fails when the underlying system event does not create a
disturbance in the waveforms [24]. Another issue with the wavelet
transform is the increased computational burden if multiple decom-
position levels are required, posing a serious limitation for real-time
operation of DSP-based instruments [25].

Given its popularity, the wavelet transform is chosen to illus-
trate the limitation of time-frequency signal decomposition tech-
niques for analysis of inconspicuous disturbances. Fig. 1 depicts the
wavelet transform coefficients of a voltage waveform during capac-
itor energizing and de-energizing operations; the mother wavelet is
Daubechies 4 [7]. The high-frequency voltage transients caused by
a capacitor energizing translate into severe spikes in the wavelet
transform coefficients, as can be observed in Fig. la. On the other
hand, the transient-free capacitor de-energizing operation results in
a minor rise in the values of these coefficients, as shown in Fig.
Ib. However, this increase is not sufficient to detect them as out-
liers, i.e. this PQ event is undetectable through the wavelet transform
coefficients.

More in general, time-frequency decomposition techniques are
applicable only to PQ disturbances that create a conspicuous
anomaly in the waveforms. Fig. 2 represents superimposed cycles
of voltage waveform data for a 30-second measurement interval
(absolute values for around 1800 cycles), corresponding to the same
capacitor switching events depicted in Fig. 1. While the capacitor
energizing transients are clearly distinguishable, no voltage wave-
form variation is observable for the de-energizing operation. In other
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Fig. 2: Superimposed cycles of voltage waveform data (abso-
lute values) for a 30-second measurement interval during capacitor
switching operations. (a) Energizing. (b) De-energizing.

words, no PQ disturbance is detectable from the point of view of the
waveflorms only in Fig. 2b, and, therefore, a derived feature is needed
for detecting the de-energizing event.

Inconspicuous PQ disturbances caused by events such as capaci-
tor de-energizing, transformer tap-changer operations, and switching
of large loads are characterised by a step change variation in the
rms voltage profile. Therefore, the identification of step changes in
an rms voltage profile allows detecting and classifying these dis-
turbances. Even though this task appears simple, it may result in
multiple false-negative classifications if the rms voltage profile is
not properly pre-processed.

The magnitude of the rms voltage step changes due to incon-
spicuous PQ disturbances might be significantly small (even lower
than 0.5% of the nominal voltage). Such small values are commonly
hidden in the superimposed background noise, and, therefore, unde-
tectable. To resolve this shortcoming, the following sections present
an approach to process an rms voltage profile and detect even subtle
step changes.

3 Traditional rms Voltage Step Change Detector

The most straightforward approach to detect inconspicuous switch-
ing events in power systems is through a time-dependent rms
sequence. This section examines the standardised procedure to
obtain an rms voltage profile, and its application in the detection of
rms voltage step changes.

3.1 The rms Voltage Profile

According to industrial standards, rms voltage values must be com-
puted from the sampled instantaneous voltage data over one-cycle
long sliding windows and updated every half cycle [26-28]. The
rms voltage sequence is denoted Vims, and its computation is
implemented as shown in (1).

kN/2

kN 1
Vims [T] =% Z v[p]2 (1
p=(k—2)N/2+1

fork =2,3,...,and where N is the number of samples per cycle of
the voltage waveform data. The resulting discrete rms voltage profile
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Fig. 3: Example of filtering an rms voltage profile with a linear fil-
ter (M = 120), and either single-stage (M = 120) or three-stage
(M7 =20, Ma = 60, M3 = 120) median filters around rms voltage
step changes. (a) Capacitor de-energizing. (b) Capacitor energizing.

assumes the shape of a stairstep graph, and its time resolution is
half-cycle [24, 29].

3.2 Filtering of the rms Voltage Profile

The rms voltage profile computed according to (1) can be modeled as
Vims(t) = 0(t) + £(t), where @(¢) is the deterministic component
(the signal itself) and £(¢) is additive noise. The noise component
arises from the measuring device and a non-integer number of cycles
within the rms sliding window; the latter factor is caused by the con-
tinuously time-varying power system frequency. Moreover, the rms
voltage profile is non-smooth due to the intermittent load variation
between consecutive rms voltage computations.

The standard approach to estimate the signal deterministic com-
ponent in a noisy environment is low-pass filtering [30]. Linear
filtering, such as the moving average filter over a fixed-length slid-
ing window, is effective in removing or attenuating the rapid voltage
fluctuations while preserving the slowly varying signal. However, it
blurs out the signal edges [31, 32]. More precisely, when a mov-
ing average filter with length M is applied around an rms voltage
step change, the filtered rms voltage profile gradually changes from
the pre-step to the post-step voltage levels. This transition intro-
duces (M — 1) intermediary points between the two steady-state
conditions [33].

Itis well-documented in the literature that median filtering outper-
forms linear filtering in removing noise from a signal that contains
sharp edges [32]. In fact, median filters are recognised to be robust
against bias caused by data contamination [34, 35]. For a time
sequence X (t) = {zy,x9,...,Zn,...}. the output of a median
filter with length M at the index n is given by (2).

where med(-) represents the median operator.

In the context of an rms voltage profile containing step changes,
rms values near the edge contaminate the filtering process (post-step
rms values affect filtering of pre-step rms values, and vice-versa).
While linear filters are highly sensitive to this contamination, median
filters can resist it. However, this superiority of median filters is
observed only at large signal-to-noise ratios (low noise levels) [32].

An iterated and multiscale filtering approach can be used to over-
come the limited superiority of median filters at high noise levels
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Fig. 4: Illustration of the voltage waveform data employed for com-
putation of successive rms voltage values and rms voltage gradient
profiles forp =2 and p = 4.

[32]. Median filters are applied sequentially over windows of dif-
ferent lengths, from a fine scale (narrow window) to a coarse scale
(wide window). This process aims at increasing the signal-to-noise
ratio at each stage to leverage the advantages of median filtering at
increasingly lower noise levels.

It is important to emphasise that a similar approach is not applica-
ble to linear filtering. In fact, the results of sequential iterated linear
filtering can be achieved by a single linear filter with an appropriate
kernel [32]. Therefore, both single-stage and iterated linear filtering
have similar poor performance near the signal edges.

A three-stage median filtering is adopted in this work, as sug-
gested in [32] for noisy signals that contain sharp edges. The window
lengths are chosen as M = 20, My = 60, and M3 = 120, which
correspond to 1/6, 1/2, and 1 second of the raw rms voltage profile,
respectively. Fig. 3 illustrates the performance of single-stage and
three-stage median filters in filtering the rms voltage profile around
capacitor energizing and de-energizing operations. While both fil-
ters are able to significantly reduce the rapid voltage fluctuations, the
three-stage median filter presents a faster transition from pre-step to
post-step voltage levels. This figure also illustrates that linear filters
are not suitable for portions of the signal around step changes; note
that the duration of the transition segment between pre-step and post-
step voltage levels is equal to the filter length (A = 120 samples or
1 second in this case).

3.3 RMS Voltage Gradient

The simplest detection method of sudden rms voltage step changes
uses the rate of change as the triggering criteria, and it is described
through Fig. 4. Such an event is detected when the absolute differ-
ence between two rms voltage values exceeds a threshold, as shown
in (3).

AVrms -

ﬁrms [%} - f}rms {W” > 53tsp (3)

where Vs is the filtered rms voltage profile, dstep is the pre-
specified threshold, and p is the number of steps back in time in
the rms voltage sequence. Note that increasing p by one unit moves
the rms sliding window backwards by a half-cycle over the voltage
waveform data, as can be observed in Fig. 4.

It has been recommended to adopt p = 2 [8]; however, this value
might not be appropriate for all situations. The rms voltage values at
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Fig. 5: Example of the rms voltage gradient for unfiltered and fil-
tered rms voltage profiles. (a) Capacitor de-energizing (p = 4). (b)
Capacitor de-energizing (p = 2). (¢) Capacitor energizing (p = 4).
(d) Capacitor energizing (p = 2).

EN/2 and (k — 2)N/2 utilise adjacent cycles of the voltage wave-
form, as illustrated in Fig. 4. If an rms voltage step change occurs
within one of those cycles, the corresponding rms voltage value is
between the pre-step and post-step voltage levels, as illustrated in
the rms voltage gradient profile for p = 2 in Fig. 4. Therefore, the
resulting AVyms value is smaller than the true size of the rms volt-
age step, and the event may be undetected. This work adopts p = 4,
such that there is a one-cycle gap of voltage waveform data between
the two rms voltage values. It allows the dissipation of possible tran-
sients caused by the switching event and guarantees that the total
size of the voltage step change is correctly obtained, as shown by the
gradient profile for p = 4 in Fig. 4.

3.3.1 Threshold selection: An appropriate choice for the
threshold ds¢ep is essential to improve the detector performance.
False alarms might occur if d4sep is too small and the detector is

triggered by frequent load changes; on the other hand, step change
event underdetection oceurs if d¢ep is too large.

The selection of the threshold is based on the most subtle
switching events observed in power systems, as discussed below.

e Voltage regulators: these devices allow to adjust the voltage
level by changing the tap positions in an autotransformer [36]. They
commonly provide a range from -10% to +10% with 32 steps, so that
each step corresponds to £0.625% of the nominal voltage [37].

e Capacitor banks: the steady-state voltage variation (AV")
caused by capacitor switching depends on the capacitor bank size
(Q¢) and the short-circuit capacity (Ss.) at the bank location. This
voltage variation, given as a percentage of the nominal value, can be
approximated as [38]:

2
av =22 <1007~ (fny) x100% (&)

se 8§

where fsystem is the system power frequency in Hz, and fs is the
switching transient frequency in Hz. The magnitude of the voltage
variation computed through this equation is valid for all locations
downstream the capacitor bank. The upstream locations also expe-
rience a voltage rise; however, the voltage rise magnitude varies
from AV (at the bank location) to zero (at the substation) [37].
The frequency of capacitor energizing transients commonly falls in
the range 300 Hz - 1000 Hz, such that the corresponding voltage
variation is between 0.36% and 4% for a 60 Hz system.

As a rule of thumb, the threshold ds¢ep is chosen as half of the
minimum expected step change [30]. Therefore, this work adopts
dstep = 0.0018 pu.

3.3.2  Results: Fig. 5 illustrates the AVigys profiles for the
capacitor switching events analysed in Fig. 3 for p = 2 and p = 4.
Red dots correspond to the rms voltage gradient values that exceed
the threshold dst¢p: note that any single event might contain up to
p consecutive of such points. Both switching events were detected
using either unfiltered or filtered rms voltage profiles, and either
p value. However, it is not possible to generalise this result to all
unfiltered voltage profiles. For example, note in Figs. 5b and 5d
that using p = 2 does not allow to obtain the true size of the step
changes, as discussed previously, and AVims in both cases were
only slightly above the threshold. Moreover, the magnitude of the
step change in Fig. 5S¢ would be overestimated by the unfiltered rms
voltage profile even with p = 4 (the incorrect rms voltage gradient
values in this instance are due to the voltage waveform transients
caused by the capacitor energizing operation). Therefore, applying
a filtering approach for the rms voltage profile is highly recom-
mended. Median filtering, however, is not applicable to all plausible
rms voltage profiles, as will be discussed in the following section.

3.4  Alternative Standard Detector

An rms voltage step change is denominated rapid voltage change
(RVC) in [26]. This standard proposes to detect an RVC event based
on the rms voltage profile computed as (1). An rms voltage value
is assumed to represent a quasi-steady-state condition if the differ-
ence between its value and the arithmetic mean of the immediately
preceding 120 (60 Hz system) or 100 (50 Hz system) rms voltage
values does not exceed an user-specified threshold (d; ). Mathe-
matically, an RVC event occurs at the instant » when the inequality
in (6) is satisfied (for a 60 Hz system).

1 n
Va'vg.IEC [n] = 120 Z Vims[p] (5)
p=n—119
Vims[n] = Vaugrpo )l > 01 pe (6)

where d;pe and the rms voltage values are in pu. The computa-
tions in (5) and (6) are repeated whenever a new rms voltage value is
available. The standard recommends adopting 0.01 pu < drpc <
0.06 pu, which is chosen according to the application. This tech-
nique is similar to linear filtering, which, as discussed previously,
blurs out the signal edges.
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Fig. 6: Illustration of an RVC event detection with d; pr = 0.0036
pu. (a) Detected RVC. (b) Undetected RVC.

To facilitate the discussion, two examples of capacitor switching
will be analysed as follows:

1. A distribution system is in quasi-stationary state at a voltage
level of 0.996 pu. At t = 8 s, a capacitor bank is energized,
instantaneously increasing the rms voltage to | pu (an increase
of 0.4% of the nominal value), as represented in Fig. 6a.

2. A large amount of load is gradually connected into the system
over | second, starting at ¢ = 7 s. As a result, the rms voltage
drops linearly 0.4% of the nominal value (from 1 pu to 0.996
pu), as represented during the time interval 7 s - 8 s in Fig. 6b.
This voltage drop triggers the energizing of a capacitor bank at
t = 8 s, instantaneously increasing the rms voltage by 0.4% of
the nominal value.

The rms voltage values in Fig. 6 are sampled from a normal dis-
tribution with the specified mean and standard deviation of 0.00025
pu. Adopting d; g = 0.0036 pu, only the first switching event is
successfully detected, even though the step change magnitude is
the same in both cases (0.004 pu). The undetected rms voltage step
change in Fig. 6b suggests that this technique performs reasonably
well only when the segments of data immediately before and after
the event correspond to quasi-steady-state conditions. This assump-
tion, however, is not true in general. Also, note that the three-stage
median filter proposed in Section 3.2 is not able to track the rms
voltage signal in the second case (see Fig. 6b between 7.5 s and 8 s).

The analysis presented in this section highlighted the drawbacks
of the commonly used methods for identification of rms voltage step
changes. While the rms voltage gradient technique seems promising
(assuming a suitable threshold selection), it would fail if the rms
voltage profile is not properly filtered (as occurred with the three-
stage median filter in Fig. 6b). On the other hand, the alternative
standard detector is subjected to attenuation of the signal edges, as
commonly observed in linear filtering.

The drawbacks of both methods are implicitly associated with the
process of discriminating between the deterministic component and
the additive noise in the rms voltage profile through low-pass filter-
ing. Therefore, the following sections focus on the development of
a novel filter that removes the rapid fluctuation of the rms vollage

4  Proposed Method

This section presents a novel procedure for filtering an rms volt-
age profile and detecting step changes through a modified version of
the two-model approach. This detection technique assumes that the
deterministic component () of Vims(t) is piecewise constant or
slowly-varying most of the time. The time instants between adjacent
segments of the piecewise constant sequence correspond to abrupt
changes in 8(t). The detection problem is concerned with estimating
the time instants 7; where the magnitude of ¢(t) suddenly changes
from @; to 041, as represented in (7). Each time instant 7; indicates
a transition between two adjacent quasi-stationary segments of data.

0 +c(t), for0 <t <7

Oy + 2(t), form <t <y
Vr“nw(t) = . . (7
O + e(t), formp_1 <t <7y

The underlying idea in the two-model approach is to analyse the
similarity between the current model (1) and a nominal model ().
The current model is based on a segment of data containing M data
samples, while the nominal model is obtained from another segment
of data (some or all of the past data except the samples used to
obtain the current model) or off-line analysis (system identification
or physical modelling) [30]. In this work, the two-model technique is
employed during the filtering process of the rms voltage profile, and
both models are obtained from adjacent, non-overlapping segments
of data with size M.

Consider the time series Yrms(£) = {y1,¥2, - - Uty Yty -+ }
represents the rms voltage profile computed as (1), where y is
the rms data sample computed at the time instant under analysis
(t"). Then, the models 7 and 1 are obtained from the data sam-
ples within the reference () and observation (O) sliding windows,
respectively, as defined in (8).

Y My Y= U =1 U Ul e Y M -1 (8)

Reference window (R)
Nominal model (1))
M elements

Observation window ()
Current model (1))
M elements

For notational simplicity, these sliding windows at the time instant
t' are redefined as follows:

R(t) = (yo—m» -
o) = (yer, - --

Je—1) = (r1,7r2, . rm—1ra) (9)

Y ym—1) = (01,02, ... ,0p—1.0p7)  (10)
where 7y, ...,rpr and 01,...,0p7 are the M rms voltage samples
within the reference and observation windows, respectively, ordered
by increasing time.

The choice of the window size is a compromise between model
accuracy and detection delay. While long sliding windows result in
more accurate models, short windows are needed for quick detec-
tion (quasi-real-time analysis) [39]. Note that the time analysis is
performed with a delay of (M — 1) samples.

The proposed filtering procedure and detection of step changes in
an rms voltage profile are described below.

4.1  Filtering of the rms Voltage Profile

As discussed previously, neither moving average nor median fil-
ters performs satisfactorily for rms voltage profiles that contain step
changes. Given the time series Yipq(t), the goal is to obtain its
filtered version (ygy(t)) without affecting the step changes. The
strategy proposed in this section is a modified version of a median
filter, where thdFhGeBemaiormianimEson ¢ OREWemPmdniA
operator is determined according to the occurrence of a step change
within either sliding window R(t") or O(t")

There are three mutually exclusive possibilities for the location
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Fig. 7: Illustration of the possible locations of an rms voltage step
change in relation to the reference and observation windows.

as described below. These three cases are illustrated in Fig. 7 (note:
even though the reference and observation windows are adjacent at
each time instant, a small gap has been introduced between them for
better visualization).

e Case 1: an rms voltage step change occurs at ¢/, such that
the reference and observation windows correspond to pre-event and
post-event data only, respectively. In such case, the filtered rms
voltage value at the instant ¢’ is determined by the post-event data
samples (observation window), as shown in (11).

vin(t) = med(yyr, ..,y ar—1) = med(O()) (1)

An rms voltage step change at the time instant ¢’ is detected
through the median absolute deviation and it is presented in Section
4.1.1.

e Case 2: an rms voltage step change occurs within the observa-
tion window, posterior to ¢’. In this case, it is necessary to identify
the index i* where the possible step change happens, such that
1 < #" < M. Section 4.1.2 describes the procedure to determine this
parameter.

A combination of samples from the reference and observation
windows is used to compute the filtered rms voltage value, as shown
in (12). Note that the samples selected from the observation window
include only points prior to the possible step change.

GYptis—1)  (12)

yan(t') = med(yp —i=. oo Y —1. Yprs - -

4= samples from R(t’) i* samples from O(t’)

Although the whole reference window corresponds to pre-event
data, only its last 7* samples are considered, i.e. the reference and
observation windows contribute with the same number of samples to
compute the filtered value. This condition is especially important if
the pre-event data is slowly varying rather than in quasi-steady-state.

e Case 3: neither of the two sliding windows contain an rms volt-
age slep change. The respective filtered rms voltage value is given as
the median point of both windows, as represented in (13).

yan(t") = mcd(?tr,ﬂ_,, oY 1Y ;yr'+i\f711) (13)
R() o)

The occurrence of these cases is analysed sequentially and the fil-
tered rms voltage value at the time instant ¢’ is defined by the first
case identified (i.e. Case | has precedence over Case 2, which has
precedence over Case 3). The proposed filtering technique is sum-
marised in Fig. 8, and additional details regarding Case 1 and Case
2 are provided in the subsequent sections.

4.1.1 Case 1 and Median Absolute Deviation: An rms volt-
age step change detection at ¢’ is based on the similarity between the
models ¥ and «). This problem is formulated through the following
hypotheses:

(14)

Hp (no step change): — M(t') < 4(¢)
‘H (with step change): M(t') > 6(¢))

where M(1') is a divergence measure between the modefs g and b
at the time instant ¢, and 6(¢) is the adaptive threshold. An abrupt

‘ Assign values to /', M, and Jye,

‘ YES
i
‘ Define R¢¢’) and J¢’) per (9) and (10) FN End of file?
i

’ Compute med(Ry’)) and MADxz, per (15)‘

<o 05>

Increment 1" by
one unit

Compute yeu(t) ||

T per (1)
NO
" Compute yg(t') | |
per (13)

YES

¥
| Determine i* using (18), (19), and (20) |—>

Compute yay(?’) | |
per (12)

Fig. 8: Summary of the proposed filtering procedure.

change in the rms voltage data at ¢’ is reflected as an inconsistency
between the models ¥ and ?/. In other words, the data samples
within the observation window behave as outliers compared to the
model . Under this condition, the null hypothesis H is rejected
and a step change has been detected.

The goal of defining a threshold is to decide whether the growth
in M(t') is significant. The threshold value represents a tradeoff
between sensibility and robustness. The most ubiguitous approach
for outlier detection is setting a threshold at +2 or £3 standard devi-
ations around the dataset mean. However, this technique is unreliable
as both mean and standard deviation are highly sensitive to the pres-
ence of atypical or incorrect data samples. An alternative consists in
using the median and median absolute deviation (MAD, as defined
in (15)), which are also a measure of central tendency while being
mostly insensitive to the presence of outliers.

The robustness of an estimator against outliers is commonly
assessed through the breakdown point [40]. This index is defined as
the largest proportion of atypical points that the dataset may contain
while the estimator still produces a correct result about the distribu-
tion of the typical points [41]. For a reasonable estimate, the dataset
must contain more typical than atypical data samples; therefore, the
breakdown point cannot exceed 0.5. For example, the breakdown
points for the mean and median estimators are 0 and 0.5, respec-
tively. Similarly, the MAD has a breakdown point of 0.5 and it is
considered the most robust estimate of scale, while the classical
interquartile range has a breakdown point of 0.25 only [42].

For an univariate dataset X = {x1,22,....2n}, the median
absolute deviation (MADy) is defined as:

MADy =bx med(|z; — med(X)|),i=1.2,....,n  (15)

where b is a scale factor needed for making the M AD x a consistent
estimator of the parameter of interest [42] (this factor depends on
the underlying distribution). A previous study indicates that it is rea-
sonable to assume that the rms voltage profile converges to a normal
distribution during quasi-steady-state conditions [33]; in such case,
b~ 1.4826.

The reference window is used to determine the boundaries of
expected values for the observation window. These values are com-
puted through the Hampel identifier [43], which is the counterpart
of using a given number of standard deviations around the mean,
as shown in (16). An rms voltage step change occurred at ¢’ if
all observation samples exceed the threshold set by the Hampel
identifier.

0; Z med(R(t')) £ x MADgn,Vi € {1,2,...,M} (16)
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Fig. 9: Illustration of the multiple partitions of the observation window and computation of the maximum median deviation.

where R(t) and o; are defined as in (9) and (10), respectively. The
choice of the multiplicative factor r is subjective and regulates the
sensitivity of the detector. In [44], r equals Lo 2 or 3 is suggested as
a reasonable choice.

4.1.2  Case 2 and Maximum Median Deviation: The first step
to detect a possible rms voltage step change within the observation
window consists in computing the difference between the maximum
and minimum values of the data points included in this sliding win-
dow. The observation window might contain a step change if, and
only if, this difference exceeds a specified threshold, as represented
in (17).

max(O(t")) — min(O(t)) > Ostep (17)

where dg¢¢p is the threshold for rms voltage step change detection
defined in Section 3.3.

Note, however, that this condition does not guarantee the occur-
rence of a step change within the observation window, as intermit-
tent load variation might cause voltage fluctuations that satisfy the
inequality above. This shortcoming is overcome by determining the
maximum abrupt change within the observation window using a
filtered version of the rms voltage profile.

The observation window is split into two non-overlapping, adja-
cent segments of data, S1(p) and Sa(p), with lengths p and (M —
p), respectively, as defined in (18).

S](P) (01:02: s :015)
Sa(p) = (op41,---,001) (18)
forp=u,(u+1),....,(M —u)

where u = max{5, | M/8]}. This constraint is imposed over u to
prevent applying the median operator (see (19)) to very short seg-
ments of data, which could result in an estimator highly affected by
outliers. According to this definition, a window with M samples has
(M — 2u + 1) unique partitions. The goal of this segmentation is to
move p through the observation window to obtain a partition where
81(p) contains only pre-step data and Sz (p) contains only post-step
data.

For each partition p, the median of each segment is computed (this
is equivalent to filtering each segment separately), and the absolute
difference between them, Afi(p), is defined as follows:

Ap(p) = |med(S1(p)) — med(S2(p))] (19)

Finally, the possible step change within the observation window is

assumed to have occurred at the index i* where Afi(p) is maximum,
as shown in (20).

i" = arg max{Af(p)|lu < p < (M —u)} (20)

The quantity Azi(i*) is denominated maximum median devia-

tion. Among all possible partitions defined by (18). the discrep-

ancy between S1(i*) and Sa(i*) is maximum, i.e. the possible
step change within the observation window is most lik ly to have
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occurred at the index i*. The procedure described in this section
is illustrated in Fig. 9, where the left plot illustrates the reference
and observation sliding windows for multiple time instants, and the
right plot corresponds to the computation of the maximum median
deviation for a specific time instant.

4.2 RMS Voltage Step Change Detection

Once the rms voltage profile has been filtered according to the pro-
cedure described above, resulting in the time sequence yg) (), step
changes are detected through the rms voltage gradient, as discussed
in Section 3.3. For clarity, the test condition for step change detection
att’ presented in (3) is repeated below.

AVims(t) = lyan(t) — yan(t — p)| > dstep (21)
where p and ds4¢p are the same parameters defined in Section 3.3.

4.3  Voltage vs. Current Data

Theoretically, the filtering and detection techniques proposed in this
paper can be used with either voltage or current data. However, a cur-
rent step change is considered a power quality event only when the
corresponding voltage step change is sufficient to trigger its detector
[26]. Furthermore, some challenges arise when considering current
data, as discussed below:

1. Current is more sensitive to load variations than the system
voltage. For that reason, a large number of relatively small load
variations may trigger the step change detector.

2. The expected magnitude of the rms current step change dur-
ing a switching event is not well defined. This value is highly
dependent on multiple characteristics of the system under anal-
ysis. Therefore, the value chosen for the parameter dg¢ep must
be re-evaluated for each different system, i.e. the detector would
have a poor generalization.

3. In the specific case of capacitor switching, an rms current step
change is observed only for capacitor banks located downstream
the monitoring location [7].

Therefore, the development of this technique assumes the use of
voltage data only.

4.4  Practical Implementation Considerations

Modern PQ monitors are capable of real-time computation of param-
eters derived from the sampled voltage and current waveforms, such
as rms values, harmonic distortion, active and reactive power, and
power system frequency [45]. These parameters are commonly used
as triggering features for detection and recording of PQ disturbances,
such that only a few cycles of data before and after the disturbance
are stored. The rms voltage step change proposed in this study has
the potential to be used as a sophisticated trigger feature for detecting
inconspicuous switching disturbances in real-time operation.

IET Generation, Transmission & Distribution, pp. 1-10
7



1.036 Unfiltered rms voltage Filtered rms voltage ‘
é 1.034
o 1.032
S iy
< 1.03
2 1,028 w

1.026 | I | | | | ]

3:50 PM 3:55 PM 4:00 PM 4:05 PM 410 PM 415 PM
Time
(a)
Unfiltered voltage difference Filtered voltage difference — — —Threshold ®  Voltage step change I l _

0.004

Voltage difference (pu)
(=] o o
(=] [=] o
(=] o o
- no w

3:50 PM 3:55 PM 4:00 PM

Fig. 10: Illustration of the proposed filtering and rms voltage step change detection techniques. (a) rms voltage profiles.

gradient.

This method can be implemented for either off-line or on-line
wavelorm data analysis. The on-line analysis is more challenging, as
PQ monitors may have a relatively small processing power. The pro-
cesses that demand the highest computational effort in this method
arc the calculation of the rms voltage profile and median filtering.
As mentioned previously, PQ monitors are already able to compute
the rms voltage profile in real-time, thus the only issue remaining
to be analysed is their ability to perform fast median filtering. Even
though a hardware implementation has not been done in this study,
there are algorithms for recursive and fast median filtering compu-
tation [46, 47]. Therefore, this rms voltage step change detector is
simple enough to be implemented in commercial PQ monitors.

5 Results of the Proposed Method

This section analyses the performance of the proposed filter in
detecting rms voltage step changes in two datasets. In both cases,
p=4, 6,,mp = 0.0018 pu, and r = 3 (see (16)). The parameter M
is chosen such that the reference and observation windows cover the
same amount of data samples as in the standard method discussed in
Section 3.4, and therefore M = 60.

5.1 Dataset 1 - Field Data

The first dataset corresponds to voltage waveforms collected at the
feeder head of a 25-kV, 60 Hz radial distribution system, imme-
diately downstream the substation transformer. The power quality
monitor collects 128 samples of voltage waveform data for each
cycle. This dataset covers 28 minutes of continuous measurement
and contains 8 rms voltage step changes caused by capacitor switch-
ing (4 energizing and 4 de-energizing operations).

The rms voltage profile for the entire monitoring interval, com-
puted according to (1), is shown in Fig. 10a. This plot also shows
the profile obtained through the filtering procedure proposed in
this paper. Fig. 10b presents the respective rms voltage gradient,
where one can observe that all rms voltage step changes have been
successfully detected without any false-positives.

Figs. 11a and 11b represent the detailed view of the rms voltage
profile around capacitor de-energizing and energizing Operations,
respectively. Note that the voltage fluctuations are not pr sent in the
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Fig. 11: Detailed view of the filtered rms voltage profile. (a) Capac-
itor de-energizing. (b) Capacitor energizing. (c) Load energizing.

filtered profile and the abrupt step changes remain unaffected, as ini-
tially desired. As shown in Fig. 11b, in some instances, the unfiltered
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rms voltage profile contains spikes at the capacitor energizing instant
due to the voltage waveform transients; these spikes are successfully
removed by the proposed filter.

The rms voltage profile shows a small step change between 3:59
PM and 4:00 PM. Upon closer inspection, it was determined that the
magnitude of this step change is about 0.001 pu only, as illustrated in
Fig. 11c. This value does not exceed the threshold set by ds¢ep, and,
therefore, this small step change is not detected. This relatively small
rms voltage step change is caused by a load energizing operation;
the power flow at the substation, computed through the voltage and
current waveforms [48, 49], increases about 10 kVA at that instant.

The limitation on the use of current data is illustrated through
this dataset, which contains data for the switching operations of both
upstream and downstream capacitor banks. The relative capacitor
location is defined as follows: a capacitor bank on the monitored
feeder is downstream the power quality monitor, while a capacitor
bank on any of the other parallel feeders or at the transmission net-
work is upstream the monitor. The location of each capacitor bank
relative to the monitoring point (i.e. the substation transformer) is
determined by the measured reactive power flow, as this quantity
is affected only if the capacitor bank is downstream the monitor-
ing device [50]. Fig. 12 represents the unfiltered rms current profile,
where 4 step changes are noticeable. The four additional steps
changes observed in the rms voltage profile in Fig. 10a correspond to
the switching of upstream capacitor banks, and therefore they cannot
be observed in the rms current profile.

5.2 Dataset 2 - Simulated Data

The next analysis is performed on the rms voltage profile of the
hypothetical scenario 2 presented in Section 3.4, In this case, the
rms voltage linearly decreases from 1 pu to 0.996 pu over an interval
of 1 second.

Fig. 13a shows the filtered rms voltage profile using either a three-
stage median filter (adopting the same filter lengths suggested in
Section 3.2) or the proposed filter. It is clear that only the pro-
posed filter is able to successfully track the linearly varying rms
voltage prior to the step change. Moreover, Fig. 13b illustrates that
the step change is detected when the rms voltage gradient technique
is applied to the rms voltage profile filtered by the proposed filter,
but not with the three-stage median filter.

5.3 Comparison with a Previous Approach

A previous study employed the same unfiltered rms voltage profile
depicted in Fig. 10a to detect subtle rms voltage step changes [33].
The method proposed in the previous study and the current approach
have the same performance, i.e. all rms voltage step changes caused
by capacitor switching operations are detected without any false-
positive. The differences between the two methods are discussed
below.

The previous study uses a combination of median and linear fil-
ters to obtain the filtered rms voltage profile. The filter choice at each
time index is based on statistical tests (two-sample t-test and F-test
for mean and variance equality, respectively), which assume that the
rms voltage values converge to a normal distribution. The normality
assumption has been verified to be true for multiple datas ts of field
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stage median filtering or the proposed technique. (a) RMS voltage
profile. (b) RMS voltage gradient.

data through the Shapiro-Wilk test. However, there is no mathemat-
ical proof to assure that this strong assumption will always be true.
On the other hand, the technique proposed in this paper does not
depend on the underlying probability distribution of the rms voltage
values.

Regarding the statistical tests described in the previous study, the
user is required to set a significance level; a value of 5% was chosen
in [33]. This value has no physical meaning, so that extensive prior
analysis may be necessary for determining it. On the other hand, the
threshold value used in this paper (ds¢ep) is obtained from the well-
understood capacitor switching operations, as discussed in Section
3.3.1.

Finally, the previous study employs an adaptive technique for
determining the threshold for rms voltage step change detection.
This approach works without the need of setting a fixed threshold,
which is an advantage. However, the algorithm requires a wait inter-
val immediately after a step change detection to determine the new
operating voltage level and the boundaries for normal operation; i.e.,
multiple successive step changes may not be detected if they occur
within a short interval. The approach proposed in this paper does not
have this limitation.

6 Conclusion

The novel filter proposed in this paper successfully attenuates the
rapid voltage fluctuations in an rms voltage profile, without blur-
ring out the abrupt step changes caused by switching events. It

IET Generation, Transmission & Distribution, pp. 1-10
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was demonstrated that the shape of rms voltage profiles is useful
for finding information about rms voltage step changes caused by
either conspicuous (capacitor energizing) or inconspicuous (capaci-
tor de-energizing) power quality disturbances. Therefore, these step
changes in an rms voltage profile behave as an alternative triggering
technique for continuously recorded PQ data. However, these trig-
gering points are only an approximation and have a relatively low
accuracy in relation to the true inception instant of the underlying
event. This limitation is caused by the time resolution of the discrete
rms voltage sequence, which is associated with the window size and
refresh rate employed in the rms computation.

One application of the proposed rms voltage step change detec-
tor is as a power quality data mining and data reduction algorithm,
where an abrupt variation in the rms voltage value represents a
change in the steady-state conditions of the system. Once such vari-
ation has been detected, the instantaneous voltage and/or current
waveforms are analysed in further detail (for example, through the
computation of rms profiles with a 1-sample time resolution).

The method proposed in this paper was able to detect all rms volt-
age step changes caused by capacitor switching operations without
any false-positive detection for a dataset including voltage wave-
forms recorded continuously for 28 minutes. Moreover, it was
shown that the proposed technique correctly detects rms voltage step
changes even if the system is not in quasi-steady-state before their
occurrence, as illustrated through field and simulated data. Even
though this paper focused on capacitor switching events, the pro-
posed detector is applicable to any PQ disturbance accompanied by
rms voltage step changes.
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