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Abstract

In this paper, we present a novel image segmentation technique, based on hidden
Markov model (HMM), which we then apply to simultaneously segment interior and
exterior walls of fluorescent confocal images of lymphatic vessels. Our proposed method
achieves this by tracking hidden states, which are used to indicate the locations of both
the inner and outer wall borders throughout the sequence of images. We parameterize
these vessel borders using radial basis functions (RBFs), thus enabling us to minimize
the number of points we need to track as we progress through multiple layers, and
therefore reduce computational complexity. Information about each border is detected
using patch-wise convolutional neural networks (CNN). We use the softmax function
to infer the emission probability and use a proposed new training algorithm based
on s-excess optimization to learn the transition probability. We also introduce a new
optimization method to determine the optimum sequence of the hidden states. Thus
we transform the segmentation problem into one that minimizes an s-excess graph cut,
where each hidden state is represented as a graph node and the weight of these nodes
are defined by their emission probabilities. The transition probabilities are used to
define relationships between neighboring nodes in the constructed graph. We compare
our proposed method to the Viterbi and Baum-Welch algorithms. Both qualitative
and quantitative analysis show superior performance of the proposed methods.

1 Introduction

Object detection and tracking of non-rigid shapes (especially those in low quality, noisy
images) is a difficult task for traditional “bounding box” style methods [1]. Using a contour
based model can improve this accuracy [2] and in sequential images tracking the contour
improves overall quality of results compared to bounding box based methods [3]. Object
based tracking often invovles image segmentation in order to delineate the object of interest.
There are various techniques of segmentation methods that have been developed, such as
region-based approaches, e.g., thresholding, region growing, and clustering-based segmenta-
tion [4, 5, 6], energy minimization approaches, including combinatorial optimization [7] and
deformable models [8, 9];,and machine learning based approaches [10, 11].

In this paper, we propose a novel solution, based on hidden Markov model (HMM),
to the problem of tracking and segmenting anatomical borders in lymph vessels. This is
applied over a series of cross-sectional images obtained from confocal microscope sections of
lymphatic vessels in order to obtain a coherent 3D segmentation of the vessel.

HMM is a stochastic model that satisfies Markov property in a finite set of hidden
states. HMM is used in a variety of applications, especially those dealing with time-varying
or sequential series [12], such as speech recognition [13], object classification [14, 15, 16], and
object tracking [17, 18, 19, 20, 21, 22]. In [14], the authors used two HMMs (one for each
class) to detect anomalies in local wall motion during stress echocardiography, utilizing
the suitability of HMMs in dealing with time-varying properties to study the continuous
movements in the cardiac cycle. In [16], the authors used an HMM with convolutional
neural networks (CNN) to identify faults in mechanical systems. CNN is used to extract
features from raw signal data then an HMM model is used as a classifier to recognize faults.
The ability to track and recognize these sequential events is part of the reason HMMs have
such a wide variety of applications. In [22], for example, an HMM is proposed to track 3D
catheter tip inside the 3D vessel tree of the patient. In [17], the authors perform a person
tracking using pseudo 2-dimensional (P2D) HMM with a Kalman filter. P2DHMM consists
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of a number of 1D HMMs where image columns are modeled by super hidden states, each
of these super states consist of another number of HMM hidden states. In [19], the authors
use an HMM to track hand gesture accompanied with a particle filter. In this case, the
particle filter is used to provide an estimate as to which hand region is likely to be detected.
After the particle filter performs this estimation, the HMM can then estimate the hand
shape, using the Viterbi algorithm, where the hidden state are given by a set of quantized
pre-learned examples. However, one problem that arises from these methods is that it could
be very computationally expensive depending on the complexity of the object being studied.

One solution to this was proposed in [18, 20] where the authors sampled the contours into
a set of discrete points. They incorporated region and edge features into the HMM, which
were, in turn, extracted along the normal direction at each of the sampled contour points.
In doing so, the complexity of the problem was greatly reduced, leading to a reduction of the
overall computational expense involved in calculating the solution. An unscented Kalman
filter is then utilized to track an elliptical shape which approximates the contour. This work
was extended by Sargin et al. [21] in order to work with open contours of differing lengths.
The observational probabilities for the HMMs were defined by utilizing an arc emission,
rather than state emission as in traditional approaches. Again, the Viterbi algorithm was
used in order to obtain the sequence of optimal hidden states. One drawback of this work
is that occlusions in the image could be detrimental to the search process. In these cases,
the reliability of the emission probability is compromised and transition probability fails
to guarantee a smooth transition of the border. Furthermore, a problem occurs when the
Viterbi algorithm is used in cases where the starting and ending points of the segmentation
are the same or multiple borders are being tracked. Both such instances occur when tracking
vessel walls.

In this paper, we develop an HMM-based, coupled border tracking and segmentation
method that can deal with both noise and occlusions and provide a satisfactory segmenta-
tion result. We demonstrate our technique on lymphatic vessel confocal images, through
simultaneously delineating the inner and outer borders. Lymph vessels are of clinical sig-
nificance, as fluid build-up in this system decreases post operative recovery rates. Segment-
ing the lymphatic images is a challenge due to high levels of noise, inconsistent intensity
throughout, and occlusions of various sizes.

We propose a novel optimization method using the s-excess graph to find the optimal
sequence of the hidden states instead of the more commonplace Viterbi algorithm, which
has weaknesses in this area. By transforming the problem into solving the minimum-cost
s-excess graph, with nodes of this graph corresponding to the desired border, we can solve
it in polynomial time. The transition probability is inferred based on the proposed s-excess
optimization instead of the Baum-Welch algorithm. Efficiency is maintained despite the
complexity of the object by taking discrete samples. These are taken by transforming the
image into polar coordinates to allow the use of radial basis functions (RBFs) to parameterize
the borders, creating a reduced sample set to work with and thus drastically reducing the
complexity from a large number of points to a much smaller number of RBF centers. The
emission probability is defined via the softmax function obtained from a trained CNN on
the vessel border and background information.

This paper extends our previous work [23, 24] that developed the initial approach. The
main contributions of this paper can be summarized as follows: (1) we propose a novel op-
timization technique to find the optimal sequence of HMM hidden states based on s-excess
optimization to segment and track object contours (Sections 3.2 and 3.3); (2) the proposed
optimization allows us to segment multiple borders simultaneously and enforce some ge-
ometric constraints (Sections 3.3.1 and 3.3.2); (3) the transition probability (Section 3.4)
is learned based on the s-excess optimization in a similar manner to Viterbi training; (4)
the emission probability is computed based on a patch-wise CNN that helps to differenti-
ate between vessel borders and background (Section 3.5); and (5) the experimental result
demonstrate this to be an effective approach to segment lymphatic vessel walls in noisy
confocal images.

2 Related Works

Minimization of closure graph and s-excess problems have been previously applied in image
segmentation, e.g. [25] and more recently in [26]. The problem is formulated as a Markov
random field (MRF) and is solved using the minimum s-¢ cut algorithms.

In [25], the authors investigated segmentation of volumetric images. This was achieved
by formulating the problem as a minimization of a closed graph. This was then used on
synthetic models to find the optimal surfaces (they investigated both single surface and
multiple surfaces in their work) through d-dimensional multi-column graphs (d > 3). One
limitation of this work however is making the assumption that the surface is changing within
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Figure 1: An illustration showing an initial segmenting border and the true border that can
be obtained by using the proposed HMM. We divide the border into a series of M points
that are evenly distributed and draw a normal line of length K at each point. The final
position of border can then be interpolated using RBFs.

the constraint of a global constant. Although this allowed their method to use weighted
graph nodes, it is difficult to define this constant and errors in this may lead to sudden and
undesirable changes in the resultant surface as there is a great deal of sensitivity to changes
in nodal weights.

Recently [25] has been extended, utilizing a different graph construction which allows it
to be used in situations such as volumetric data without image unraveling. Petersen et al.
[27] built on this method to use graph columns derived from flow lines. These flow lines
are non-intersecting, non-parallel lines which they obtain from an initial segmentation. By
using this method, they were able to guarantee their segmentations do not self-intersect and
manage to cope with high curvature in their target surfaces.

In [26], the use of prior information is incorporated into the model. Through the use
of a set of convex functions, the prior shapes are encoded as a series of pairs of adjacent
columns. Our method in this paper uses a similar approach to Song et al. [26] to include
priors, however, in our work the problem is formulated through the tracking of borders across
consecutive frames. We therefore use the transition probability to define the pair-wise cost
in our method. This transition probability is acquired from the training set which we treat
as a stochastic process. This differs from the optimal surface method, which tries to identify
the border as a continuous surface in a volumetric image. Optimal surface segmentation
is, therefore, much more computationally expensive. Another advantage of our proposed
method is that it is more versatile with regards to the shapes it can segment. This allows
us to investigate more complex shapes, for example, both open and closed contours, as well
as those of variable length. These advantages are highly suitable for our application, due to
the nature of the objects being segmented.

3 Proposed Method

The proposed method integrates contour segmentation and tracking in an HMM-based
framework. The HMM problems can be solved in a novel way by converting the opti-
mization problems into minimizing an s-excess graph. The border is parameterized using
RBF functions to be reduced to a set of sample point that needs to be tracked and seg-
mented. At each RBF center, a normal line is defined where its points will be represented as
hidden states that quantify the border location. Finding the best sequence of hidden states
is transformed into an s-excess graph minimization. The transition probability is learned
through solving s-excess minimization problem on the training set. CNN is employed to
learn the emission probability. The block diagram of the proposed model is shown in Fig.
2. The proposed method is compared to traditional HMM in order to segment and track
lymphatic vessel on confocal images.

3.1 Contour parameterization

In our proposed method, we are able to handle both open and closed curves/surfaces in order
to segment our border of interest. In order to ensure our graph optimization is efficiently
carried out, we “unravel” the images, in effect converting them to polar coordinates. The
border (or surface) of interest thus appears to be an open contour in 2D (or an open surface
in the case of a volume). The first column(s) are then connected to the last column(s) of the
image data. This ensures that continuity in the original object is preserved in the process
(as these columns would in fact be neighbors prior to the transfomration). This method is
particularly suitable for segmenting vessel-like structures; as these, once transformed in this
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Figure 2: An overview of the proposed method.

way, provide an open surface that represents our desired border(s). We can then treat the
problem of segmenting both the inner and outer vessel walls in 3D through tracking two
open contours in which there is no overlapping or crossing. These are aligned longitudinally
along our unwrapped image. This method has an advantage over optimal surface methods
such as [25] in that by using this approach in our method the computational overhead when
dealing with 3D data is greatly reduced, even though the optimal surface method in this
case also uses a similar image unraveling system. This improved efficiency is due to only
requiring adjacent cross-sectional slices to be used to predicate the next position, rather than
all cross-sections in order to build the graph for segmentation. Computational complexity
is further simplified through RBF based parameterization when investigating the border of
interest in 2D cross sections, This is possible as it is unnecessary to track each point along
the border and the sample points can be used to interpolate the resultant border in the final
stages.

As shown in Fig. 1, the border is sampled into a series of M points, which are evenly
distributed along the border of interest. At each of these points, we then extend a line
segment perpendicular to the border (a normal line). Each of these normal lines has K
points. The final border is approximated by RBFs with the potential RBF centers being
given by the hidden states of the HMM. We can therefore index the points on normal lines
segments and RBF centers by ¢ € {1,..., K} and ¢ € {1,..., M}, respectively. The initial
border for the current cross-section or frame is defined based upon the segmentation result
of the previous frame, as shown in Fig. 1.

3.2 HMM formulation

The contour segmentation is performed by tracking the RBF centers located across the longi-
tudinal direction. In the HMM, one possible sequence of hidden states @ = {q1,...,¢¢, ..., qrm}
corresponds to one possible RBF center locations along a set of M normal lines. A sequence
of HMM observations drawn from the normal lines is denoted as O = {o1,...,04,...,0u:}-
HMM is characterized by three probability measures for the transition, emission and initial
states. The joint distribution of a sequence of states 2 and observations O can be defined
according to Markov properties as follows:

M
P(Q,0) = [[ P(aglas—1)P(oslqs) (1)
p=1

where P(q1|qo) is the initial probability, P(gg|ge—1) is the transition probability between
states g at two normals ¢ and ¢—1 and P(04|qy) is the emission probability of an observation
04 being generated from a state qg.

Finding the optimal state sequence with respect to the maximum a posteriori (MAP)
criterion is usually attained by the Viterbi algorithm. However, [28, 29] showed the HMM
can be represented by Gibbs distribution and its energy function. Thus, The MAP can
be expressed as a minimization of an energy function. This energy function is analogous
to hidden MRF energy function. In the next section, we show that finding the optimal
sequence of states can be established using s-excess optimization.

3.3 Minimum s-excess graph optimization

The inference problems of the HMM can be categorized into realizing the hidden sequence
of states given a set of observations and estimating the model parameters. Viterbi algorithm
offers feasible solutions for both decoding and parameter estimations. However, the Viterbi
algorithm does not include prior information e.g. the spatial relationship between states
which is important when performing contour tracking and segmentation. Alternatively,



Figure 3: An example of the traditional HMM construction (a), and the proposed HMM
shown in (b).

HMM can be generalized to hidden MRF (HMRF) [30] by converting conditional dependen-
cies into potential cliques, thus instead of applying the MAP, it can be solved in polynomial
time through an energy minimization method, e.g. graph cut. Here, we introduce an opti-
mization method using the s-excess graph to find the underlying hidden sequence of states
and the HMM parameters i.e. transition probability. We express HMM inference problem
as a minimum s-excess problem and it is effectively solved using s-t graph cut.

Given a set of hidden random variables X under a set of observations O, where each
hidden state is associated to a variable referring to its label x; € L and L = {0,1}. According
to MAP, estimating the labeling of each state is achieved by maximizing the posterior
probability defined as follows:

P(X|0) = P(O|X)P(X) (2)

where P(X) is the prior probability defined according to Gibbs distribution. P(O|X) =
Hiil P(0g|z4) is the emission probability of the observation under the states labels. There-
fore, eq. (2) can be written as:

N

M
P(X|0) = L I Ploslze) [T ée(X) (3)
p=1

ceC

where Z is a normalization term, £.(X) = exp(—U (X)) is the potential function defined on
the clique ¢, and C' is the set of all possible cliques. In HMRF, each state is conditionally
depended on the previous state. Then the clique potential is defined on every pair of states.
We construct a graph of all the hidden states Q, where A is a set of pair of states between
normal lines. The problem is then converted to an energy minimization by taking the
negative log transform:

E(X)=> Do)+ Y Ti(zi,z)) (4)
i€Q (i,J)EN

where D;(x;,0;) is the data term, defined as a function derived from the observed data and
measures the cost of assigning the label x; to the state ¢ based on the emission probabil-
ity. The second term is the smoothness term Tj;(x;, ;) that measures interaction of each
pair of states i, j by penalizing label discontinuities between them based on the transition
probability. The two terms are defined as:

Dl(a:z) = —lnP(Oi‘in) (5)

Tij(wi ) = —Inexp(=A(i, j)) @i — 2 (6)



where A is a symmetric transition matrix. The computation of terms P(o;|z;) and A are
explained later in Sections 3.4 and 3.5.

Here, The MRF problem is solved through the optimization of the s-excess graph. The
minimum s-excess problem [31] is a relaxation of minimum closure set problem. An s-excess
set is different from a closed set as it lets some successor nodes be absent from the closed
set with some assigned cost. Let G(V, E) be a directed graph representing the hidden states
trellis, each node ¢ € V has a cost w(4) equivalent to data term in HMRF and on each edge
e € E there is a positive cost defined by the smoothness term. The goal is to minimize the
energy function €(S) by finding a subset of graph nodes S C V with the minimum total
nodal cost added to the separating cost of the set S from the rest of the graph S’ =V — .

E(S) =D w(i)+ Y t(j). (7)
ies (1.)€B
i€S,j€S!
where w(i) = D;(1) — D;(0), and t(7,j) = T3;(1,0). As shown in [32] the eq. (4) and eq. (7)
are equivalent.

3.3.1 Graph Construction

A special graph construction of the trellis diagram is needed to transform the decoding
problem into computing a minimum s-excess graph. The normal lines M are collected
together to form a trellis graph G with dimension M x K, where K is the length of the
normal line. Each vertex in the graph associates with one hidden state. There are two types
of arcs in the graph: intra-chain and inter-chain.

The intra-chain arcs are defined along every chain to prevent the desire border from
intersecting the chains more than once. This is similar to Viterbi algorithm, which returns
single state from each chain that has the maximum probability. Every node v(¢, ) (¢ > 1)
is connected to the below node v(¢, 1 — 1) with a directed arc of cost +oo weight.

For inter-chain arcs, a set of directed arcs are constructed from each node v(¢1, 1)
in chain C(¢1,11) to nodes v(¢2,1%) in adjacent chain C(¢sg,1)2), where 1 < 1) < ;.
Similarly, every node v(¢2,12) € C(¢2,12) has directed arcs to nodes v(d1, 1)) € C(¢1,11)
where 1 < 4] < 1)9. The inter-chain arcs control the smoothness of the border, and the cost
of these arcs is defined based on eq. (6).

The cost of outgoing edges to nodes that lie outside the closed set being counted for
through the minimization of the energy function. The inter-chain arcs directions go from
upper node on one side to lower or the same level nodes on the other side. Thus, the
transition matrix A is redefined by adding the upper to the transpose of the lower triangular
parts of the matrix. The last sequence of states in the trellis graph is tied up to each other
to create the foundation of the closed graph.

In Fig. 3 the comparison between our proposed HMM construction method and the
traditional HMM method is shown. It is essential to have both the intra-chain arcs and
the last row arcs in order for the closed set graph to be computed. We can thus define the
transition between states by using a set of inter-chain arcs from left-to-right and vice versa,
which then ensures to maintain proportionality between the cost of our cut and that of the
distance of border location between neighboring chains.

3.3.2 Coupled Borders Optimization

S-excess optimization has one more advantage, that is allowing to find multiple borders at
the same time in accordance with some geometric constraints. Assume we have n borders,
for each border S}, a graph is constructed as described in the previous section. A new inter-
borders penalization term f(S;(p) —S;(p)) is added to control the inter-border interactions.
The energy function eq. (4) can be rewritten as:

h=14€Qy h=1 (i,5)ENp (8)

> F(Silp) - Si(p)

PEN;

where A}, is a set of all chains representing normal lines for a single surface and A/ contains
all pairing chains in every adjacent surfaces S;, and S;. The inter-border function f is
imposed with the distance constraint between two vessel borders, i.e. A <|[S;(p) —S;(p)| <

A:

f(Si(p) = S;(p)) = (9)

oo otherwise.

{o if A <[S:(p) - S;(p)| < A,



A set of inter-border arcs are defined in such a way in order to enforce the inter-border
function, maintaining separation between two vessel borders. Let C1(¢,v) and Ca(¢, )
denote two corresponding chains obtained from G; and G5 which have borders denoted by
S1 and Ss respectively. Likewise, let 1/; represent the spatial coordinate equivalent to 1 in
the graph domain, and X x Y denote the size of the spatial domain. Therefore, it follows
that for any node vl((bﬂﬁ) in C1(¢,v), we can establish a direct arc between v1(¢, 1[}) and
vy (¢, 1 — A) where ¢ > A and vy € Co(¢,1)). Also, nodes v (¢, 1)) in Co(ep, 1)) are linked to
v1(,1) + A) so that » <Y — A and vy € C1(¢,1)). These arcs have a cost of +0o assigned
to them, with hard constraints defining both the maximum and minimum distance between
them.

3.3.3 Computing min-cut/max-flow

For each node, the unary cost w that is defined based on the emission probability as shown
in Section 3.3 is transformed by u(¢,v) = w(p,v) — w(d,v — 1), except for the bottom
chain, i.e. u(¢,1) = w(¢,1) to facilitate the energy minimization using s-¢ cut algorithm.
Hochbaum [33] showed the equivalence of the minimum s-excess problem to that of
solving for the minimum s-t cut [34] as defined on a proper graph. It therefore follows that
an s-t cut algorithm can be used to find the minimum closed set in polynomial time, with
finding the minimum for this binding the computational time T'(n,m), where we can define
n number of graph nodes and m number of edges. Two special nodes are defined for source
and sink. The positive nodes u™ are connected to the source and the negative nodes u~
to the sink with weight |u|. We can therefore define the cost of the cut (i.e the minimum
s-excess graph) as the total edge cost in separating the graph into source and sink sets.

3.4 Transition Probability

There are two well-known parameter estimation methods for HMM: Baum-Welch and Viterbi
training. The Viterbi training is an approximation of the Baum-Welch method and is com-
putationally much faster. Several modifiled parameter estimation methods have also been
introduced. For example, in [35], smoothness constraints were used in order to define a
transition probability to limit the abrupt changes for the contour by penalizing larger dis-
placements from the initial contour. In [21], transition probabilities are computed through
modeling the measurement of bending between every pair of observations and the contour
position displacement using two Gaussian distributions with weighted coefficients defined for
each transition. Then, the optimal value of these coefficients is calculated using a fixed-point
iterative method.

In this paper, we propose an s-excess based optimization for inferring both the transition
and prior probabilities. Drawing inspiration from Viterbi training algorithm, we use the s-
excess optimization to find the optimal sequence of hidden states given certain observations.
The s-excess training algorithm starts with random initializations of both transition and
initial probabilities and for each training example. It applies s-excess optimization to find
the most likely sequence of states as described in Section 3.3, then updates the HMM
parameters. The transition matrix A(%, j) between states ¢ and j is defined by counting the
number of times a;; the state j follows the state i between every pair of neighboring normal
lines in the most likely sequence, normalized by the total number of transitions from the

state i:
aij

> @ijr
Initial probability ; is defined similarly by counting the number of transitions from each
state ¢ in the first normal line. Since the s-excess optimization by the graph cut provides
a global solution, the training algorithm is only required for one iteration. The symmetric

transition matrix A can be computed by summing upper and lower triangular parts of the
transition matrix A and then apply normalization.

Al j) = (10)

3.5 Emission Probability

Traditionally, emission probability is defined by a Gaussian distribution. However, the
underlying observations may not fit this parametric model making the output probability
inconsistent. A hybrid system using an HMM and neural networks has been used, such as
by [36, 37], to allow the discriminative power of the neural networks to infer the emission
probability. In this paper, the emission probability is defined by using convolutional neural
networks and then encoded in the HMRF data term.

CNN approximates the emission probability by classifying a small patch, centered around
each state, as a border of interest or background. The proposed CNN architecture consists of
one convolutional layer, followed by a rectified linear unit, max pooling layer, fully connected



Table 1: The architecture of the proposed CNN for inferring the emission probability.

Layer Type Input #filters | Kernel | Stripe | Pad
Data input 60 x 20 x 1 - - - -
convl convolution 60 x 20 x 1 64 3x3 1 1
Relu Rectifier Unit | 60 x 20 x 64 - - - -
pooll max-pooling 60 x 20 x 64 - 2 %2 2 0
fcl Fully connected | 30 x 10 x 64 - - - -
Relu Rectifier Unit 500 x 1 - - - -
fc2 Fully connected 500 x 1 - - - -
smax softmax 2x1 - - - -

Table 2: Classification accuracy (mean value and standard deviation) for inner border.
Accuracy (%) 20 x 20 40 x 20 60 x 20 80 x 20
Inner vessel wall | 84.34 £2.45 | 88.81 +1.33 | 90.06 £0.99 | 88.06 +£1.19

layer, and finally ended with 2-way softmax layer. The filter size of the convolution layer is
3 x 3. The max pooling size is 2 x 2. The fully connected layer has 500 hidden units. Table
1 shows the full architecture of the proposed CNN.

The output layer of the CNN is using the softmax function to compute the posterior
probability P(x;|o;) of class x; given the input observations. It has been shown [38, 39] that
by using Baye’s rule and emission probability is the computed by the scaled likelihood:

P(xilo;)

P(oilr;) = Py

(11)
where P(xz;) is the prior probability of class x at state ¢ and it is computed by counting the
number of state class in the training examples.

P(zilo;) = yz = % (12)

where z, is the output neurons from the previous layer multiplied by the weights.

4 Application and Results

We applied the proposed method on a set of lymphatic images to segment the vessel bound-
aries. These images were acquired using confocal microscopy, which can be used to visualize
3D volume objects that are thicker than the focal plane, a problem for a conventional light
microscope. We obtained 8 in vitro volumes using confocal microscopy after charged with
a fluorescent dye and pressure applied to the sample to ensure valve opening. Each vol-
ume has dimensions 512 x 512 x 512. For the purpose of our evaluation, we carry out
leave-one-subject-out cross-validation.

As a pre-processing step, we apply anisotropic vessel diffusion [40] in order to enhance
the image. By using this method, image features are enhanced, alongside improved vessel
connectivity and a reduction in the level of noise typically present in this type of images.
Then the images are unravelled, converting them into polar coordinates of size 200 x 1257.

Every frame where manual labeling has been performed is used in the evaluation process,
with five different evaluation metrics. These metrics include the absolute mean difference
(AMD), Hausdorff distance (HD) in pixel, area overlap (AO %), sensitivity (Sens. %), and

Table 3: Mean (standard deviation) of five different evaluation metrics for inner border segmentation.

AMD HD AO Sens. Spec.

Optimal Surface [25] 7.10(3.50) | 50.60(22.10) | 90.10(5.60) 91.20(5.60) | 99.30(0.60)

BW Training & VT decoding | 4.14(2.45) | 10.06(4.54) | 94.28(3.91) | 95.61(4.37) | 99.10(1.58)
VT Training & VT decoding | 5.46(10.71) | 12.02(12.85) | 93.16(11.90) | 95.20(12.35) | 98.75(1.06

S-E Training & VT decoding | 3.11(1.60) | 8.48(3.32) | 95.82(2.41) | 97.40(2.65) | 98.95(1.27

BW Training & S-E decoding | 3.60(4.03) | 14.13(16.46) | 95.12(5.13) | 96.68(5.19) | 99.05(0.86
VT Training & S-E decoding | 2.58(1.41) 8.04(3.43) 96.44(2.25) | 98.26(2.27) | 98.91(0.96

S-E Training & S-E decoding | 2.39(1.32) 7.27(2.93) 96.69(2.12) | 98.45(2.12) | 98.95(0.92

S-E Training & CS-E decoding | 2.23(1.08) | 6.95(2.57) | 96.94(1.73) | 98.58(1.60) | 99.04(0.89

p < 0.0001



Table 4: Mean (standard deviation) results of five different evaluation metrics for outer border segmentation.

AMD HD AO Sens. Spec.
Optimal Surface [25] 7.00(5.90) | 54.00(26.10) | 91.70(7.30) | 92.70(7.50) | 99.20(0.50)
BW Training & VT decoding | 3.06(1.59) | 8.74(4.76) | 96.54(1.76) | 98.85(1.66) | 98.12(1.69)
VT Training & VT decoding 3.79(1.25) 11.27(4.08) 95.71(1.46) 98.24(1.82) 97.96(1.40)
S-E Training & VT decoding | 2.78(1.27) | 8.20(3.59) | 96.78(1.55) | 97.59(1.80) | 99.36(0.56)
BW Training & S-E decoding | 2.73(5.37) | 8.80(13.21) | 96.96(5.22) | 98.03(5.38) | 99.17(0.70)
VT Training & S-E decoding 2.11(0.95 7.11(3.32) 97.53(1.25) | 98.71(1.39) | 99.09(0.78)
(1.18) (0.69)
( (0.65)

S-E Training & S-E decoding | 1.92(0.80)" | 6.84(3.03) | 97.75(1.06)% | 98.86(1.18) | 99.14(0.69
S-E Training & CS-E decoding | 1.90(0.81) | 6.53(3.11) | 97.77(1.05) | 98.85(1.23) | 99.16(0.65

p < 0.0001, tp = 0.0031, Ip = 0.0001
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Figure 4: Bland-Altman plots for segmentation results of the inner border using (a) VT
training and VT decoding. (b) VT training and SE decoding. (c) SE training and VT
decoding. (d) SE training and SE decoding.

specificity (Spec. %), which are defined as:

AMD = }Vi [par (i) — yar (i), (13)
HD = arggﬁ{brenyagg?[dis(a, b)|}, (14)
AO:TP+;§+FP’ (15)
Sens. = 7TPT+PFN’ (16)

Spec. = %, (17)

where N is the number of border points, yar is the automatically segmented border, yar is
the groundtruth border, and dis(a, b) is the Euclidean distance between a and b sets of points
of the borders yar and ygr. For the purpose of sensitivity and specificity measurements, we
considere the inner region as true positive area T'P of the vessel, F'N denotes false negative,
F'P denotes false positive, and T'N is true negative. Using the polar images, we measured
normal line segments at a length of 101 pixels, and we use 42 regularly spaced RBF centers,
i.e. one RBF center every 30 pixels.
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Figure 5: Bland-Altman plots for segmentation results of the outer border using (a) VT
training and VT decoding. (b) VT training and SE decoding. (c) SE training and VT
decoding. (d) SE training and SE decoding.

We evaluated different input patch sizes for the CNN to classify the inner vessel border
at 20 x 20, 40 x 20, 60 x 20, and 80 x 20 as illustrated in Table 2. The mean and standard
deviation of CNN accuracy at patch size 60 x 20 gives the best result 90.06 + 0.99. This
patch size is adapted in all following experiments.

The experiments are designed to evaluate both the proposed HMM training and decoding
algorithms based on the s-excess optimization. Tables 3 and 4 show the quantitative results
of segmenting the inner and outer lymphatic vessel walls, respectively. A paired t-test was
used to test for significant differences in the computed AMD, HD, and AO between the
borders obtained by the proposed training and decoding methods and all other methods
(p-values < 0.05 are considered significant). p-values is presented in Tables 3 and 4.

In order to evaluate the effect of the HMM training algorithm to infer the transition
matrix, we compared the proposed s-excess (S-E) based training method to two popular
HMM training methods: Baum-Welch (BW) and Viterbi (VT). Viterbi decoding is used
after the three training methods to find the optimal sequence of states as shown in Tables
3 and 4 rows (2-4). It is evidently clear that the proposed S-E training method achieved
better performance in segmenting both inner and outer vessel walls, e.g. the absolute mean
difference of the inner border for the proposed method is 3.11 compared to 5.46 and 4.14
for VT training and BW training respectively and for the outer border the absolute mean
difference of the proposed method is 2.78 compared to 3.79 and 3.06 for VT training and
BW training respectively.

For evaluating the decoding method, we test the proposed S-E decoding based on a
transition matrix acquired by using three different training methods (BW, VT and S-E)
as shown in Tables 3 and 4 rows (5-7). The S-E decoding in conjunction with the S-E
training gives the best result. It also worth noting that the S-E decoding outperforms the
VT decoding even if a transition matrix is based on the VT training, e.g. the absolute mean
difference of the inner border for the S-E decoding method is 2.58 compared to 5.46 and 4.14
for VT decoding and for the outer border the absolute mean difference of the S-E decoding
method is 2.11 compared to 3.79 for VT decoding.

The proposed S-E decoding can segment coupled borders simultaneously (CS-E). The
minimum A and maximum A distance between two borders are limited to 5 and 15 re-
spectively. Coupled S-E decoding shows some improvement over single S-E decoding (i.e.
segmenting the borders separately) as shown in Tables 3 and 4 rows (7-8).

BlandAltman plots of inner and outer vessel borders are shown in Fig. 4 and 5 to assess
agreement between the groundtruth and the automatically segmented vessel by measuring
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(a) ()

Figure 6: Comparison of segmentation results (red: inner, blue: outer) and ground-truth
(green) for both proposed methods using S-E Training. (a) original image (b) S-E decoding
method. (c) CS-E decoding method.

the difference versus average of the vessel area. The segmented vessel border is obtained
by using (a) VT training and VT decoding, (b) VT training and S-E decoding, (¢) S-E
training and VT decoding, and (d) S-E training and SE decoding. By using S-E training
and decoding, all datasets inside the acceptable range of 1.96 times the standard deviation
except some outliers with a minimal bias on the results. Our proposed s-excess optimization
can be clearly seen to outperform the Viterbi algorithm when used to tracking both borders.
Viterbi based method appears to be easily distracted by lymphatic valves attached to the
inner wall which lead to a high distance error and low sensitivity. A much larger amount
of data had to be used to train the transition and prior probabilities in the Viterbi method
when compared to our proposed method.

Some typical segmentation results of single and coupled S-E decoding are shown in Fig.
6. Simultaneous segmentation of both borders was also found to produce results better than
segmenting the borders separately. This was especially true in the case of segmenting the
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Figure 7: 3D visualization of results obtained using the proposed coupled s-excess method
(inner wall: yellow, outer wall: red).

inner border (shown in Table 3). The performance was greatly improved with the addition
of the inter-border constraint, by decreasing its tendency of being distracted by lymphatic
valves in the vicinity.

We also carried out comparisons of the proposed method against the optimal surface
segmentation [25] in Tables 3 and 4. We found that the results of using optimal surface
method showed a particular sensitivity to the distance parameters set between columns. The
proposed method has fully connected arcs between chains, which improved the consistency
and accuracy of the results.

In Fig. 6, a comparison between the proposed method using S-E decoding and CS-E
decoding is shown. CS-E decoding method provides a smoother border transition partic-
ularly in cases of occlusion or missing features. Fig. 7 shows 3D visualizations of some
typical results of the proposed method from three different angles. The results illusrtrate
the robustness and consistency of the proposed method for segmenting the lymphatic vessel.

5 Conclusions

In this paper, an HMM-based method was presented in order to simultaneously segment the
inner and outer vessel borders in Lymphatic vessels, obtained from confocal images. Our
proposed method uses a set of normal lines, which are calculated from the previous frame’s
segmentation, to search for the position of the border in the current frame. In our method,
the emission probability is inferred from the softmax function of a CNN. We show that the
optimal sequence of the hidden states can be calculated via solving a minimum s-excess
problem using s-t cut algorithm, and this can be later used to train the model similar to
Viterbi training. This sequence of the hidden states corresponds to RBF centers of the
border and can therefore be used to interpolate the position of the true border. We provide
both qualitative and quantitative results obtained from a set of lymphatic image sequences
showing our proposed method achieving better performance compared to other traditional
HMM approaches and the optimal surface technique.
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