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ABSTRACT: It is important to be able to predict creep strains in aeroengine so as to enable 

small punch disc test results to be related to uniaxial creep test results using finite element 

models. The capability of the Wilshire equation to interpolate creep curves was assessed using 

creep tests on Waspaloy. This assessment required modifying the Wilshire equation for time 

to strains so that the parameters of this equation could be predicted as a function of strain in a 

way that did not allow predicted creep curves to double back on themselves. An artificial neural 

network was used to achieve this. It was found that the modified model was capable of 

interpolating the shape and the end points of the experimental creep curves. These 

modifications enabled the activation energy to be measured and it was found that the activation 

energy is dependent upon the average internal stress and thus strain.  
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1. Introduction 

 

Since the 1950s, the introduction of new materials have supported major improvements 

in the power, efficiency and reliability of aeroengines, underpinning impressive advances in 

the performance and safety of aircraft [1]. However recent escalating energy prices, growing 

environmental concerns, and the rising demand for travel, are requiring further increases in 

engine efficiency to minimise fuel consumption and greenhouse gas emissions. However, 

achieving greater efficiencies through higher operating temperatures requires materials with 

enhanced temperature capabilities and the nickel based superalloy, Waspaloy, is an example of 

one such material. Unfortunately, the ‘materials development cycle’ from concept to 

application currently takes many years [2]. In particular, long duration test programmes are 

needed to establish the tensile stresses which can be sustained over the planned design lives 

without creep failure occurring at the temperatures encountered during service. 

 

In order to prevent aeroengine blades rubbing against the engines outer casing, strain is 

a very important design and material development criteria. Being able to realistically predict 

strain at given times is also very important for converting small punch test data into equivalent 

uniaxial test results given that the most promising way of doing this is via finite element models 

of the punch test, These finite element models require equations for working out incremental 

increases in strain with time and so require accurate predictions of all points along a creep 

curve. The successful correlation of small punch and uniaxial test results will help release the 

full potential of the small punch test. The Wilshire equations have shown great potential in 

reducing the length of the development cycle because it has been shown in the literature to 

produce reliable failure time and minimum creep rate predictions for operating conditions (or 

close to) from very short term accelerated tests [3-12]. However, this literature is quite sparse 

on how to modify the Wilshire equations so as to be able to predict times to specified strains 

and therefore complete creep curves [13-14]. Given the importance of strain for developing 

new aeroengine materials, the aim of this paper is to I. in a novel way rework the existing 

Wilshire equations, so that whole creep curves can be predicted at any test condition within the 

experimental range of test conditions and ii.  introduce various performance statistics that can 

be used to evaluate the interpolated creep curves. A final aim of this paper is to highlight the 

different creep regimes working within the data set used in this paper, a phenomenon that the 

original investigators of this data set failed to identify -Wilshire and Scharning [16] 

 

  To achieve this objective the paper is structured as follows. The next section describes 

the creep tests of the polycrystalline nickel alloy Waspaloy that have been conducted at 

Swansea University. Section 3 reviews the Wilshire equations as applied to minimum creep 

rates, failure times and times to various strains. The role on the Monkman – Grant relation in 

tying all these equations together is explained, together with the few attempts that have been 

made to amend the Wilshire equation to enable interpolation/extrapolation of complete creep 

curves. In section 4, criteria are outlined for assessing how good the creep curve predictions 

are, with all these techniques then being applied to Waspaloy in section 5. The paper concludes 

by outlining some suggestions for future research. 

 

2.  The data 

 

Thirty cylindrical test pieces were machined from the as received Waspaloy bar, with 

a gauge length of 25.4mm and a diameter of 4mm. The chemical composition of this batch of 

Waspaloy (in wt. %) was determined to be within the compositional limits for Waspaloy -  18–

21Cr, 12–15Co, 3.5–5Mo, 2.75–3.25Ti, 1.2–1.6Al, 0.02–0.1C and 0.003–0.01B, balance Ni 



(wt.%). These test pieces were solution treated at 1315 K (4 h), stabilised at 1115 K (4 h) and 

aged at 1030 K (16 h), with the samples air cooled between each heat treatment stage. The 

tensile strength (TS) values for this batch of materials were 1154, 1120, 975 and 827 MPa at 

873, 923, 973 and 1023 K respectively. 

 

Thirty specimens were tested in tension over a range of stresses at 873K, 923K, 973K 

and 1023K using high precision constant-stress machines described elsewhere [15]. At 873K, 

seven specimens were placed on test over the stress range 1050 MPa to 700 MPa, at 923K 

seven specimens were placed on test over the stress range 1000 MPa to 550 MPa, at 973K nine 

specimens were placed on test over the stress range 950 MPa to 200MPa and at 1023K seven 

specimens were tested over the stress range 700 MPa to250 MPa. Up to 400 creep strain/time 

readings were taken during each of these tests. Because Waspaloy can serve at temperatures 

up to 920 K for critical applications and 1040 K for less demanding situations, the test 

programme covered stress ranges giving creep lives up to 5500 h (around 19852000 s) at 873 

to 1023 K. This data set was first published by Wilshire and Scharning [16]. However, in their 

analysis they considered only part of their data set and so failed to identify the different creep 

regimes actually present in this material. They also limited their analysis to failure times (time 

to rupture strain) and did not consider times to other strains 

  

 3.  Review of the Wilshire equations 

 

In the initial published article describing the Wilshire methodology [3], three equations 

were postulated to describe the behaviour of the minimum creep rate, times to failure and times 

to any strain. 

 

3.1.  The minimum creep rate 

 

Since the first appearance of the Wilshire equations in the engineering literature, the 

exact form of these equations has evolved to cope with the different properties of the high 

temperature materials to which they have been applied. The following representation of the 

Wilshire equation for the minimum creep rate, ε̇m, captures most of this evolution 

 

 σ σTS⁄ =exp{-k2j[ε̇mexp(Qcj
* RT⁄ )]

vj
}   

j = 1 when σ σTS ≤⁄ 𝜎1
𝑐;   j = 2 when  𝜎1

𝑐  < σ σTS ≤⁄ 𝜎2
𝑐;   …. ; j = p when σ σTS >⁄ σp

c             (1a)      

 σ1
c  < σ2

c  < ..…….. < σp
c  

where T is the absolute temperature,  the stress, TS the tensile strength, R the universal gas 

constant, Q*
cj the activation energies for ε̇m  in each of the p normalised stress ranges and k2j 

and vj are further model parameters that require estimation. c
j are critical values for the 

normalised stress and so fall between 0 and 1. In this approach, there are p creep regimes that 

occur in distinct ranges for the normalised stress and the p versions of Eq. (1a) then apply to 

each regime. Typical, p varies between 1 and 4 depending on the material being studied.  Some 

of the first studies to appear in the literature include applications to Copper [3] and 1Cr-1Mo-

0.25 steel [4] where p was found to equal 2 and where the activation energy was the same either 

side of 𝜎1
𝑐 (so Qcj

* = Qc
*). Latter studies by Whittaker and Wilshire using 2.25Cr-1Mo steel [5] 

found p to equal 3 and again the activation energy was the same either side of 𝜎1
𝑐and 𝜎2

𝑐, Evans 
[6]  found p = 2 but with a varying activation energy either side of 𝜎1

𝑐 when studying a 12Cr 

steel. Wilshire et. al. found similar results in their application to 316 stainless steel [8]. Finally, 



Whittaker et. al. [9] found p = 2 with varying activation energies around 𝜎1
𝑐 when studying a 

particular grade of Waspaloy. 

For estimation purposes, and making use of the natural logarithmic transformation ln[], 

Eq. (1) can be rewritten as 

ln[ε̇m] = a0j + a1jln[- ln( σ σTS⁄ )]+a2j [1 RT]⁄            ;        j =  to  p    (1b) 

where vj = 1/a1j, k2j = exp(-a0j/a1j) and Q*
cj = -a2j. In this format, and with p  = 1, the parameters 

a01 to a21 can be estimated using the least squares technique through a regression of ln[ε̇̇ m]  
on ln[- ln( σ σTS⁄ )] and 1/RT. When p = 2, estimation requires the construction of two new 

variables by initially estimating (by eye) a value for 𝜎1
𝑐 

ln[ε̇m] = a0 + a1ln[- ln( σ σTS⁄ )]+a2 [1 RT]⁄ + a3Max(0, σ∗)+a4 [D RT]⁄                                (1c) 

where * = ln[- ln( σ σTS⁄ )] - ln[- ln( 𝜎1
𝑐 )], D = 0 when * ≤ 0 and D = 1 when * > 0. When j = 

1 and so * ≤ 0, Eq. (1c) collapses to  

ln[ε̇m] = a0 + a1ln[- ln( σ σTS⁄ )]+a2 [1 RT]⁄  

and so a01 =  a0, a11 =  a1  and  a21 =  a2. Thus v1= 1/a1, k21 = exp(-a0/a1) and Q*
c1 = -a2. Then when 

j = 2 and so * > 0 with D = 1, Eq. (1c) can be re-arranged as  

ln[ε̇m] = {a
0 

−  a3ln[− ln( σ∗)] } + (a
1
+ a3)ln[- ln( σ σTS⁄ )]+ (a

2
+ a4) [1 RT]⁄                       (1d) 

and so a02 =  a0 − a3ln[− ln ( 𝜎∗)],  a12 =  a1 + a3 and  a22 =  a2 + a4. Thus v2= 1/a12, k22 = exp(-

a02/a12) and Q*
c2 = -a22. All these parameters are estimated by a regression of  ln[ε̇m] on ln[-

ln( σ σTS⁄ )], 1/RT, Max(0, 𝜎∗) and D/RT. This regression will have an associated coefficient 

of determination (R2) - that shows what percentage of the variation in ln[ε̇m] that can be 

explained by variations in all the variables on the right hand side of Eq. (1c). This regression 

is carried out for all values of 𝜎1
𝑐 within the experimental range of normalised stresses and the 

value 𝜎1
𝑐  is that value which gives the largest R2 value. 

3.2.       The time to failure 

The above Wilshire equation for the minimum creep rate is the fundamental relationship 

from which all the others should be derivable. Thus, the second Wilshire equation, for the time 

to failure tf, has traditionally been written as  

σ σTS⁄ =exp {-k1j [tfexp (-Q
cj
*

RT⁄ )]
𝑢𝑗

}  ;    j = 1 to p              (2a) 

and k1j and uj are additional model parameters that require estimation. In fact, k1j and uj can be 

linked back to k2j and vj in a number of ways. The simplest possibility is through the Monkman 

-Grant [17] relation of the form 

 ε̇m = M tf⁄                                (2b) 



so that uj = -vj and k1j = k2jM
vj. For many high temperature materials however, the exponent on 

ε̇m is not unity, so that more generally  

[ε̇
m

]
ρ
= M tf⁄                                  (2c) 

Substituting Eq.(2c) into Eq. (1b) then yields 

σ σTS⁄ =exp {-k1j [tf exp (-Q
cj
**

RT⁄ )]
uj

}   ;    j = 1 to p                        (2d) 

with the restrictions uj = -vj/,  k1j = k2jM
vj/ and Qcj

** = Qcj
*.  

Dunand et. al. [18], when looking at dispersion strengthened and particulate reinforced 

Aluminium, noted that a better fit to the experimental data was obtained by introducing the 

strain at failure f into Eq. (2c) 

[ε̇
m

]
ρ∗

=C[εf/tf]                                           (2e) 

Substituting Eq. (2e) into Eq. (1b) then yields 

σ σTS⁄ =exp{-k4j[tf εf⁄ exp(-Qcj
** RT⁄ )]

uj
}   ;    j = 1 to p                          (2f) 

with uj = -vj/,  k4j = k2jC
vj/ and Qcj

** = Qcj
*. 

For estimation purposes, Eq. (2d) or Eq. (2f) can be rewritten as 

ln[tf] = b0j + b1jln[- ln( σ σTS⁄ )]+b2j[1 RT⁄ ]  ;         j =1 to p                                     (2g) 

with uj = 1/b1j, k1j = exp(-b0j/b1j) and Qcj
** = b2j or 

ln[tf] - ln[εf] = c0j + c1jln[- ln( σ σTS⁄ )]+c2j[1 RT⁄ ]  ;         j =1 to p                                    (2h) 

-with uj = 1/c1j, k4j = exp(-c0j/c1j) and Qcj
** = c2j 

In these formats, the parameters b0j to b2j and c0j to c2j can be estimated using the least 

squares technique through a regression of ln[tf] on ln[- ln( σ σTS⁄ )] and 1/RT or ln[tf]  - ln[f] 

on ln[- ln( σ σTS⁄ )] and 1/RT. A break can be allowed for in exactly the same way as in the 

previous sub section: 

ln[tf] = b0 + b1ln[- ln( σ σTS⁄ )]+b2 [1 RT]⁄ + b3Max(0, σ∗)+b4 [D RT]⁄                                   (2i) 

or  

ln[tf] - ln[εf] = c0 + c1ln[- ln( σ σTS⁄ )]+c2 [1 RT]⁄ + c3Max(0, σ∗)+c4 [D RT]⁄                        (2j) 

3.3.  The time to strain 

The final Wilshire equation is 



σ σTS⁄ =exp {-k3j [tεexp (-Q
cj
***

RT⁄ )]
wj

}  ;      j = 1 to p                           (3a) 

where t is the time taken to reach strain  and k3j and wj are model parameters that require 

estimation. Compared to the Wilshire failure time and minimum creep rate equations there is 

however one additional complication that occurs because at some of the strain values some 

specimens will have already failed and so there will be no corresponding t value for these test 

specimens. This leads to the unsatisfactory result that the number of specimens used for 

parameter estimation purposes will vary with . One solution is to normalise the strain by 

dividing it through by the failure strain f so that for every specimen *= /f varies between 0 

and 1 as t* varies between 0 and tf 

σ σTS⁄ =exp {-k3𝑗
∗ [tε*exp (-Q

cj
***

RT⁄ )]
w𝑗

∗

}  ;      j = 1 to p                                      (3b) 

Then for estimation purposes, Eq. (3b) can be rewritten as 

ln[tε*]=d0j + d1jln[- ln( σ σTS⁄ )]+d2j [1 RT]⁄   ;      j = 1 to p                                                (3c) 

with w*
j = 1/d1j, k

*
3j = exp(-d0j/d1j) and Qcj

*** = d2j. In this format, the parameters d0j to d2j can 

be estimated using the least squares technique through a regression of ln[t*] on ln[- ln( σ σTS⁄ )] 

and 1/RT. A break can be allowed for in exactly the same way as in the previous sub sections: 

ln[tε*] = d0 + d1ln[- ln( σ σTS⁄ )]+d2 [1 RT]⁄ + d3Max(0, σ∗)+d4 [D RT]⁄                                (3d) 

For Eq. (3b) and Eq. (2a) to be consistent, the parameters k*
3j and w*

j must vary with strain 

in such a way that as  → 1 (and so as   → f) then k*
3j → k1j and wj → uj. This implies that f1j 

and f2j in Eq. (3e) below are functions containing strain, the exact form of which was never 

specified in the original Wilshire methodology 

w*
j = f1j() and   k*

3j = f2j()                                                                                                 (3e) 

This allows the prediction of times to reach given normalised strains and so the prediction 

of whole (partially normalised) creep curves at any stated stress and temperature using 

tε∗ = - 
[ln(σ σTS)/f2j(ε∗)]⁄ 1/f1j(ε∗)

exp(−Qcj
∗∗∗ RT⁄ )

                                                                                     (3f) 

When it comes to predicting the creep curves at stresses and temperatures different from 

those in the experimental data set (interpolation or extrapolation), f will of course not be 

known. One approach would then be to use Eq. (2e), (whose parameters are estimated from the 

experimental test data), and substitute into this equation the predicted minimum creep rates and 

failure times obtained from the Wilshire equations for these variables [Eqs. (1c,2i)] and finally 

solving for f. As an alternative, use can be made of Eqs. (2i,2j), (whose parameters are 

estimated from the experimental test data), to predict ln[tf] and ln[tf] - ln[f] separately and from 

these two predictions a prediction of ln[f] can be obtained. 

Eqs. (1a,2a) have been applied to numerous high temperature materials partly because there 

are extensive creep data bases in the public domain that contain failure times and minimum 



creep rates. The National Institute for Materials Science (NIMS) in Japan [19] have published 

numerous creep date sheets (one for each material) showing times to failure and minimum 

creep rates at various temperatures and constant loads. Similar data sets exist in Europe as 

published by the European Creep Collaborative Committee (ECCC) [20] and in the UK as 

published by British Steelmakers Creep Committee (BSCC) [21]. However, Eq. (3a) has been 

applied in just a few instances because these public domain data bases do not contain whole 

creep curves (at best they have times taken to reach a few very low strains). The few exceptions 

include a study by Abdallah et. al. [13] who assumed the w3j were fixed with respect to strain 

when using this approach to predict creep curves for Titanium (but strangely did not specify a 

form for f2j()). Harrison et. al. [12], when studying Nickel based super alloys, again assumed 

w3j to be fixed but with 

k3j = k3j,0+k3j,1ε-k3j,2                                  (4) 

The problem with Eq. (4]) is that it does not ensure k3j → k1j as  → f. More recently, Gray 

and Whittaker [14] when studying Waspaloy proposed a model for predicted creep curves that 

appeared to bypass the Wilshire methodology altogether by working with 

tε = M(ε)
(1 - 

σ

σTS
)

P(ε)

exp(
- Qc

***

RT
⁄ )

                               (5a) 

where M and P are parameters whose value depends in some way of the strain  Whilst Eq. 

(5a) is similar to Eq. (3f) it does not have the Wilshire equations as its bases because although 

it uses the normalised stress it does not taking the double logarithmic transformation of this 

normalised stress. The authors also observed a complicated relationship between P and  and 

also between M and  which they modelled using 

M(ε) = A1exp (− (ε
A2

⁄ )
−A3

)                              (5b) 

P(ε) = A7+
A4

εA5√2π
exp (−ln (

A6ε

2A5
2)

2
)                         (5c) 

where A1 to A7 are model parameters that require estimation. The parameters in Eqs. (5b,c) are 

quite difficult to estimate as they require the use of non linear optimisation procedures. Further, 

they are not consistent with the Wilshire time to failure equation in that there is not guarantee 

that as  tends to the rupture strain, these equations will produce values for k3j and  wj that tend 

to k1j and uj. As result it is possible for these equation to predict creep curve shapes that double 

back on themselves at high strains. 

Therefore, in this paper a different approach is used that is i. much more flexible than 

Eqs. (5b,c) and so should enable better predictions to be made, ii.is such that k3j and wj tend to 

k1j and uj as strain approach the rupture strain (and so avoids the issue of doubling back) and 

iii. only requires simple linear optimisation procedures – such as linear least squares. The 

empirical approach adopted for this paper is an Artificial Neural Network (ANN) which is used 

to represent the functional forms in Eq. (3e), so that the Wilshire approach in Eq. (3f) can then 

be used to model the creep curve. Following Martin et. al. [22] this ANN is specified as 



wj
∗ = ϕ0j + ϕ1jε

∗ + ∑ βij [
1

1+exp(δ0ij+δ1ijε∗)
]m

i=1    j = 1 to  p                         (6a) 

k3j
∗ = ϕ2j + ϕ3jε

∗ + ∑ λij [
1

1+exp(δ2ij+δ3ijε∗)
]m

i=1  j  = 1 to  p                         (6b) 

 It is also possible that the Q***
cj also varies with the normalised strain. For example, 

Davies [23] first suggested that the activation energy is only constant during steady state creep 

where  a dynamic equilibrium rate occurs. Outside steady state creep he proposed that the 

activation energy would be dependent upon the average internal stress. Further, Estrin and 

Mecking [24] showed that the evolution of the internal stress can be derived from the evolution 

of the dislocation density as a function of the creep strain (via a first order partial differential 

equation)) so that the activation is also a function of strain. More precisely they showed that 

the activation energy is modified exponentially function of strain such that as strain increases 

the activation energy tends to that associated with steady state creep. To allow for this type of 

variation, Q***
cj can aso be given an ANN representation  

Qcj
∗∗∗ = ϕ4j + ϕ5jε

∗ + ∑ γij [
1

1+exp(δ4ij+δ5ijε∗)
]m

i=1  j = 1 to p                         (6c) 

To estimate the unknown parameters of Eqs. (6a,b), m is first fixed at one, and values 

for all the  parameters are guessed at enabling the expressions in parenthesis to be converted 

into variables. For Eq. (6a) a regression of w*j  on * and 
1

1+exp(δ0i+δ1iε∗)
  can then be carried 

out. This regression will have an associated coefficient of determination (R2). This regression 

is carried out for values of 01 and 11 within a defined  2x2 grid of values for 01 and 11 and 

the values 01 and 11 are taken to be those values which gives the largest R2 value . Once R2 is 

maximised, R2
max, the following Akaike Information Criteria [25] criteria is used to choose the 

value for m 

AIC = S[1-R2
max]exp[2(3m+2)/n]                              (6d) 

where n is the number of test specimens and S is the standard deviation in w*
j (or k*

3j when 

using Eq. (6b)). This is used to prevent over fitting the data (i.e. achieving higher and higher 

R2
max values) simply by choosing large values for m and so this criteria is useful for identifying 

more parsimonious models. 

4.  Evaluation 

Very few publications on the Wilshire methodology have offered  a rigorous assessment 

of how accurate the approach is, as they have tended to rely on visual plots of predictions 

alongside actual experimental results. The second aim of this paper is to remedy this, by 

suggesting the use of some powerful performance statistics that are in common use in the field 

of economic. The mean squared prediction error (MSPE) is often the starting point for the 

evaluation of any predictions made from a particular model. Letting ya
i be the experimental (or 

actual) value for a creep property (such as time to failure, time to strain or minimum creep rate) 

obtained at the ith test condition (such as at  = 700 MPa and T = 973K) and yp
i the prediction 

made for that creep property, then the MSPE is given by 



MSPE =
∑ (yi

a−yi
p

)
2n

i=1

n
                               (7a) 

where there are n creep specimens tested at n different test conditions. Whilst the 

squaring of the prediction error prevents under predictions being offset by over predictions in 

the averaging procedure, the MSPE provides not sense of scale for the prediction errors. One 

simple modification of Eq. (7a) that introduces a sense of scale is to replace ya and yp with the 

natural log of their values. This scaling comes about because when using the natural logs of 

the creep properties and their predictions, the MSPE associated with the logged data is 

approximately equal to the mean percentage square error (MPSE) associated with the raw 

(untransformed) data: 

∑ (ln[yi
a] −ln[yi

p
])

2n
i=1

n
≅ MPSE =  

∑ ([yi
a −yi

p
]/yi

p
)

2n
i=1

n
                            (7b) 

with this approximation being better the smaller are the percentage errors. This MPSE can be 

decomposed in one of two ways. Theil [26] has shown that 

MPSE = ( ln[ya]̅̅ ̅̅ ̅̅ ̅̅ − ln[yb]̅̅ ̅̅ ̅̅ ̅̅  )
2

+ Var(ln [yi
a ] − ln [yi

p
]) = ( ln[ya]̅̅ ̅̅ ̅̅ ̅̅  − ln[yb]̅̅ ̅̅ ̅̅ ̅̅  )

2
 

                           +(σa -  σb )
2
+ 2(1-r)σaσb                                                                                  (7c) 

where ln[ya]̅̅ ̅̅ ̅̅ ̅̅   is the mean of the variable ln[ya
i] (called the log mean), ln[yb]̅̅ ̅̅ ̅̅ ̅̅   is the mean of 

the variable ln[yb
i], σa is the standard deviation for the variable ln[ya

i], σp is the standard 

deviation for the variable ln[yp
i],  and r is the correlation coefficient between ln[ya

i] and ln[yb
i]. 

Var(ln [yi
a ] − ln [yi

p
]) reads the variance of the percentage prediction error (yi

a  − yi
p

)/yi
p
 . 

Dividing both sides by the MPSE defines what Theil called the proportions of inequality 

1 =
( ln[ya]̅̅ ̅̅ ̅̅ ̅ −ln[yb]̅̅ ̅̅ ̅̅ ̅ )

2

MPSE
+ 

(σa -  σb )
2

MPSE
+ 

2(1-r)σaσb

MPSE
= 𝑈𝑀 + 𝑈𝑆 + 𝑈𝐶                                     (7d) 

The bias proportion UM is an indication of systematic error since it measures the extent 

to which the average values of the predicted and actual logged series deviate from each other. 

It is a systematic error because the average creep property is determined by the average test 

conditions that generated the ya
i series. The variance proportion US indicates the ability of the 

creep model to replicate the extent to which actual and predicted log creep properties deviate 

from their log mean values as a result of changes in test conditions. Therefore, this is also 

systematic error. The covariance proportion UC measures random or unsystematic error and 

represents the remaining prediction error after deviations from average values have been 

accounted for. Experimental errors associated with measuring creep properties, means that it is 

unreasonable to expect the predictions made from any model to be perfectly correlated with 

actual values and so this component is less of a concern than the other two.  

 To make it easier to compare the accuracy of various creep models, the MPSE is often 

re-scaled to be within the range zero to one as follows 



U =
 √

∑ (ln[yi
a] −ln[yi

p
])

2n
i=1

n

√1

n
∑ (ln[yi

a])
2n

i=1 +√1

n
∑ (ln[yi

p
])

2n
i=1

                             (7e) 

The numerator of U is the square root of the MPSE and is often called the root mean 

percentage square error or RMPSE. The denominator scales U to fall between 0 and 1 (in much 

the same way as the scaling used to convert the covariance to a correlation coefficient). If U  = 

0, then ya
i  = yb

i for all i (i.e. over all the different test conditions) and the model is a perfect 

predictor of the creep properties under analysis. If U = 1, the predictive performance of the 

creep model is as bad as it could possibly be. Hence U measures the RMPSE in relative terms. 

Peel et. al. [27] proposed an alternative decomposition based around a plot of the actual 

(but in logs) creep property series against a series made up of the models predictions, namely 

ln[yi
a] = 𝛼0 + 𝛼1ln[yi

p
] + ei                              (8a) 

It follows from this equation that the percentage prediction error is (approximately) 

given by 

ln[yi
a] - ln[yi

p
] = 𝛼0 + (𝛼1-1)ln[yi

p
] + ei                                 (8b) 

and so 

Var(ln[yi
a] -ln[ yi

p
]) = (𝛼1 − 1)2(σb)2 + σe

2                            (8c) 

where 2
e is the variance of the residual term ei.  The least squares estimate of  is also given 

by ln[ya]̅̅ ̅̅ ̅̅ ̅̅   -  𝛼1 ln[yb]̅̅ ̅̅ ̅̅ ̅̅   and so (ln[ya]̅̅ ̅̅ ̅̅ ̅̅  − ln[yb]̅̅ ̅̅ ̅̅ ̅̅  )
2

= (α0 + (α1 − 1) ln[yb]̅̅ ̅̅ ̅̅ ̅̅  )2 allowing the 

MPSE to be decomposed as 

MPSE = (α0 + (α1 − 1) ln[yb]̅̅ ̅̅ ̅̅ ̅̅  )2 + (α1 − 1)2(σb)2 + σe
2                          (8d) 

Therefore, part of the MPSE is attributable to the intercept () of the best fit line on a 

plot of ln[ya
i] against ln[yb

i] being different from zero and another part of the MPSE is 

attributable to slope () of the best fit line on a plot of ln[ya
i] against ln[yb

i]  being different 

from 1. These parts of the MPSE are systematic in nature as they are caused by this best fit line 

being different from a 45 degree line on such a plot and so leads to either persistent under or 

over prediction of the ya series. The remaining part of the MPSE is a random prediction error 

whose size is given by the variance of e or the extent to which the data are scattered around the 

best fit line on a plot of ln[ya
i] against ln[yb

i]. Dividing both sides by the MPSE 

1 =
(𝛼+(𝛽−1) ln[yb]̅̅ ̅̅ ̅̅ ̅̅ ̅ )2

𝑀𝑆𝐸
 + 

(𝛽−1)2(𝜎𝑏)2

𝑀𝑆𝐸
+

𝜎𝑒
2

𝑀𝑆𝐸
= 𝑈𝑀 + 𝑈𝑅 + 𝑈𝐷                         (8e) 

By making some assumptions about the distribution for e in Eq. (8a), it is possible to 

further interpret e. If e is assumed to be normally distributed with a mean of zero and standard 

deviation of e, then 
∑ ([yi

a −yi
p

]/yi
p

)n
i=1

n
, or the mean percentage prediction error is equal to  



exp(0.5
e) -1                                                                                                                             (8f) 

and the median percentage prediction error is equal to zero. The extent to which the value given 

by Eq. (8f) differs from 
∑ ([yi

a −yi
p

]/yi
p

)n
i=1

n
 can be taken as a measure of how valid this normality 

assumption is. 

5.  Application to Waspaloy data 

5.1.  The minimum creep rate 

Using the method of estimation given in sub section 3A, Table 1a shows the parameter 

estimates of Eq. (1b) 

Table 1a 

Least Squares Estimates of the Parameters of Eq. (1b) with p  = 2. 

 

The p-value associated with a4 in Eq. (1c)is 0.046%, suggesting that the activation energies 

above and below a normalised stress of 0.726 are significantly different from each other at the 

1% significance level. Above a normalised stress of 0.726, the activation energy is 

approximately 223 kJ mol-1 and below this normalised stress it is 238 kJ mol-1. Whilst this is 

not a big difference, it is never the less statistically significant. The p-value associated with a3 

is 7.27E-06% suggesting that the values for v above and below a normalised stress of 0.726 are 

significantly different from each other at the 1% significance level. This model is capable of 

explaining 96.30% of the variation observed in the logarithm of the minimum creep rates (as 

given by the coefficient of determination, R2). Using the estimates in Table 1a and Eq (1d) 

above,  

Below 𝜎1
𝑐 = 0.726: v2= 1/a12= 1/-5.328 = -0.189, k22 = exp(-a02/a12) = exp(-9.508/-5.328) = 

5.958  and Q*
c2 = -a22 = 237,586 J mol-1: 

 σ σTS⁄ =exp{-5.958[ε̇mexp(237,586 RT⁄ )]-0.189}                                                                 (9a) 

Above 𝜎1
𝑐 = 0.726: v1= 1/a11= 1/-1.413 = -0.708, k21 = exp(-a01/a11) = exp(-13.958/-1.413) = 

19,495  and Q*
c1 = -a21 = 223,374 J mol-1: 

σ σTS⁄ =exp{-19,495[ε̇mexp(223,374 RT⁄ )]-0.708}                                                               (9b) 

These activation energies are similar in value to that used by Wilshire et. al. [16] in his 

paper on this material, namely 276 kJ mol-1. This activation energy pattern is the opposite to 

that observed by Whittaker et. al. [9] who observed higher activation energies at the higher 

stresses. Their interpretation was that the low activation energy was related to dislocation 

interaction with γ' precipitates below the yield stress. However, significantly increased 

dislocation densities at stresses above yield cause an increase in the activation energy values 

as forest hardening becomes the primary mechanism controlling dislocation movement. They 

proposed that this activation energy change is related to the stress increment provided by work 

hardening, as can be observed from Ti, Ni and steel results. The Waspaloy material used in this 

paper differed from that in the Whittaker et. al. [9] paper in both its chemical composition and 

heat treatment. The test conditions were also very different (the Whittaker et. al. [9] data had 

some higher temperatures and lower stresses). The process of deformation must therefore be 



different between these materials. The observed activation energy change shown here is recall 

quite small in magnitude and this is consistent with the single activation energy found by 

Wilshire et. al. [16] when studying the same experimental data used in this paper. 

This is all visualised in Fig. 1a where on the horizontal axis the minimum creep rates 

are temperature compensated using the estimated activation energies. The performance of the 

Wilshire equation is seen by the suitability of the best fit line that is kinked at the break point 

defined by a normalised stress of 0.726. Alternatively, in Fig.1b, ln[−ln(TS)] is plotted 

against the actual and the models predicted log minimum creep rate. The log of the minimum 

creep rate is shown so that the length of the error bars (shown as dashed bars in this figure) 

then corresponds to the percentage prediction error (divided by 100). 

Table 1b further reveals that when these percentage errors are squared and then 

averaged, the Wilshire model predicts with MSPE of 45.61%, or with a root mean squared 

percentage error of 67.5%. This is put into further context by noting that Theil’s U is 0.022, 

which is scaled to be within the range of 0 to 1, with zero corresponding to a model that 

produced perfect predictions. Based on Theil’s decomposition of this MSPE, it is clear that 

nearly all of this percentage prediction error is random in nature (100%) so that the Wilshire 

model exhibits very little systematic error. This is further confirmed by Peel’s decomposition 

where the p-values on  and  in Eq. (8a) reveal that  is not significantly different from 

zero and  is not significantly different from unity so that all the percentage prediction error 

is random in nature - whose magnitude is summarised in the standard deviation of e in Eq. (8a), 

e = 0.700. Using Eq. (8f), exp(0.5
e) -1 = 27.76% which is an estimate of the mean 

percentage prediction error assuming normality of e (this is close to the actual mean percentage 

prediction error of 23.78%). What is important to realise is that this average percentage error 

produced by the Wilshire model is nearly all random in nature suggesting the model is not mis 

specified in any way and that this mean percentage error reflects the natural variation present 

in measuring the minimum creep rates from experimental creep curves (and so it is unlikely 

that this magnitude or error can be further reduced through use of any other creep model).                                                                                                    

Fig. 1 - (a) Dependence of ln[𝜀̇mexp(Q*
c/RT)] on ln[−ln(TS)] at all temperatures; (b) 

Dependence of ln[𝜀̇m] on ln[−ln(TS)] with error bars equal to the % prediction error/100. 

Table 1b 

Summary of the predictive accuracy of Eq. (1b) using the parameter estimates shown in Table 

1a. 

 

5.2.  The time to failure 

Fig. 2a plots the minimum creep rate against the time to failure on a log scale, together 

with the best fit line. This best fit line explains nearly 97% of the variation in the log times to 

failure and provides a good fit at all the shown temperatures. So in Eq. (2c), M is estimated to 

be 1.557 and  to be -0.765. Further ,the p-value associated with the null hypothesis that  =  -

1 is 1.2E-07% and so it can be concluded that  differs from unity. Fig. 2b shows the version 

of the Monkman -Grant relation given by Eq. (2e) with C estimated at 4.386 and * at -0.854. 

Fig. 2-  (a) Dependence of ln[𝜀̇] on ln[tf] at all temperatures; (b) Dependence of ln[𝜀̇m] on 

ln[tf] – ln[f]. 



Using the method of estimation given in sub section 3.2, Table 2a shows the parameter 

estimates of Eq. (2g): 

Table 2a 

Least squares estimates of the parameters of Eq. (2g). 

 

 The p-value associated with b4 is 0.092% suggesting that Q**c (and thus the activation 

energies) above and below a normalised stress of 0.726 are significantly different from each 

other at the 1% significance level. Above a normalised stress of 0.726, the activation energy 

(Q*c) is approximately -b22/ = -209/ -0.765 = 273kJ mol-1 and below the normalised stress it 

is -b21/ = -218/ -0.765 = 285 kJ mol-1. These estimates are higher than those given in Table 1a 

based on using minimum creep rates rather than failure times, but are closer to the value of 276 

kJ mol-1 used by Wilshire [16]. The p-value associated with b3 is 1.56E-06% suggesting that 

the values for u above and below a normalised stress of 0.726 are significantly different from 

each other at the 1% significance level. This model is capable of explaining 97.20% of the 

variation observed in the logarithm of the times to failure (as given by the coefficient of 

determination, R2). Using the estimates in Table 2a and Eq. (2g) above,  

Below 𝜎1
𝑐 = 0.726: u2= 1/b12= 1/4.194 = 0.238, k12 = exp(-b02/b12) = exp(11.368/4.194) = 

15.037  and Q**
c2 = b22 = 217,857 J mol-1: 

σ σTS⁄ =exp{15.037[tfexp(217,857 RT⁄ )]0.238}                                                                  (10a) 

Above 𝜎1
𝑐 = 0.726: u1= 1/b11= 1/1.284= 0.779, k11 = exp(-b01/b11) = exp(14.676/1.284) = 

92,033  and Q**
c1 = b21 = 208,855 J mol-1: 

σ σTS⁄ =exp{92,033[tfexp(208,855 RT⁄ )]0.779}                                                                  (10b) 

The validity of deriving the Wilshire failure time equation from the Wilshire minimum 

creep rate equation by using the Monkman-Grant relation in Eq. (2c) can be found by 

comparing the direct estimates of uj and k1j shown in Eqs. (10a,b) above with those implied by 

the Monkman- Grant relation – namely uj = -vj/,  k1j = k2jM
vj/ and Qcj

** = Qcj
*. So above 

𝜎1
𝑐 = 0.726, u1 = -v1/ = −− = , k11 = (19495)1.5570.925  =   and Qc1

** 

= (223) = 171 kJ mol-1. Compared to the values in Eq. (10b), reasonable agreement exists 

only for u1. Then below 𝜎1
𝑐 = 0.726, u2 = -v2/ = −− = , k12 = (-

5.958)1.5570.247  =   and Qc2
** = −(238) = 182 kJ mol-1. Compared to the values in 

Eq. (10a), reasonable agreement exists only for k12 and very good agreement only with u2. The 

disparities suggest that the link between the Wilshire equations for failure times and minimum 

creep rates may be a different relation to the Monkman– Grant relation or modifications of it. 

This Wilshire equation is visualised in Fig. 3a where on the horizontal axis the failure 

times are temperature compensated using the estimated activation energies. The performance 

of the Wilshire equation is seen by the suitability of the best fit line that is kinked at the break 

point defined by a normalised stress of 0.726.  Alternatively, in Fig. 3b, ln[−ln(TS)] is plotted 

against the actual and the models predicted times to failure. The log of the time to failure is 

shown so that the length of the error bars (shown as dashed bars in this figure) then corresponds 

to the percentage prediction error (divided by 100). The predictions shown by the discontinuous 

solid lines give a good fit to the actual failure times. 



Fig. 3 -  (a) Dependence of ln[tfexp(-Q**
c/RT)] on ln[−ln(TS)] at all temperatures; (b) 

Dependence of ln[tf] on ln[−ln(TS)] with error bars equal to the % prediction error/100. 

The accuracy of these predictions is further revealed in Table 2b. When the percentage 

errors shown by the length of the error bars in Fig, 3b are squared and then averaged, the 

Wilshire model predicts with a 20.78% MSPE or with a root mean percentage squared error of 

45.59%. This is put into further context by noting that Theil’s U is 0.019, which is scaled to be 

within the range of 0 to 1, with zero corresponding to a model that produced perfect predictions. 

Therefore, it appears that the Wilshire model is much more successful at predicting failure 

times compared to minimum creep rates. Based on Theil’s decomposition of this MSPE, it is 

clear that nearly all of this error is random in nature (100%) so that the Wilshire model exhibits 

very little systematic error. This is further confirmed by Peel’s decomposition where the p-

values on  a4nd  in Eq. (8a) reveal that 0 is not significantly different from zero and  

is not significantly different from unity so that all the percentage prediction errors are random 

in nature- whose magnitude is summarised in the standard deviation of e in Eq. (8a), e = 0.472. 

Using Eq. (8f), exp(0.5
e)-1 = 11.78% which is an estimate of the mean percentage prediction 

error assuming normality of e (this is close to the actual mean percentage prediction error of 

10.22%). What is important to realise is that this average percentage error produced by the 

Wilshire model is all random in nature suggesting the model is not mis specified in any way 

and that this mean percentage error reflects the natural variation present in measuring the times 

to failure from experimental creep curves (and so it is unlikely that this magnitude or error can 

be further reduced through use of any other creep model). 

Table 2b 

Summary of the predictive accuracy of Eq. (2g) using the parameter estimates shown in Table 

2a. 

 

5.3.  The time to various strains 

Using the method of estimation given in sub section 3.3, Table 3a shows the parameter 

estimates of Eq. (3c) using as an example a normalised strain of * = 0.1. 

Table 3a 

Least Squares Estimates of the Parameters of Eq. (3c) when * = 0.1. 

 

The p-value associated with d4 in Eq. (3c) is 0.209%, suggesting that Q***c (and thus 

the activation energies) above and below a normalised stress of 0.726 are significantly different 

from each other at the 1% significance level. The p-value associated with d3 is 9.85E-07% 

suggesting that the values for w* above and below a normalised stress of 0.726 are significantly 

different from each other at the 1% significance level. This model is capable of explaining 

96.91% of the variation observed in the logarithm of the times to a normalised strain of 0.1 (as 

given by the coefficient of determination, R2). Using the estimates in Table 3a and Eq. (3c) 

above,  

Below 𝜎1
𝑐 = 0.726: w*

2 = 1/d12= 1/4.815 = 0.208, k*
32 = exp(-d02/d12) = exp(-6.118/4.815) = 

0.281  and Q***
c2 = d22 = 154,466 J mol-1: 

σ σTS⁄ =exp{0.281[𝑡𝜀∗exp(154,466 RT⁄ )]0.208}                                                                 (11a) 



Above 𝜎1
𝑐 = 0.726: w*

1= 1/d11= 1/1.382 = 0.724, k*
31 = exp(-d01/d11) = exp(-10.021/1.382) = 

0.001  and Q***
c1 = -d21 = 164,894 J mol-1: 

σ σTS⁄ =exp{0.001[𝑡𝜀∗exp(164,894 RT⁄ )]0.724}                                                                 (11b) 

This Wilshire model visualised in Fig. 4a where on the horizontal axis the times to a 

normalised strain of 0.1 are temperature compensated using the estimated activation energies. 

The performance of the Wilshire equation is seen by the suitability of the best fit line that is 

kinked at the break point defined by a normalised stress of 0.726. Alternatively, in Fig. 4b, 

ln[−ln(TS)] is plotted against the actual and the models predicted times to normalised strains 

of 0.1. The log of these times are shown so that the length of the error bars (shown as dashed 

bars in this figure) then corresponds to the percentage prediction error (divided by 100). The 

predictions shown by the discontinuous solid lines give a good fit to the actual times to 

normalised strains of 0.1. Equally good fits were obtained at other normalised strains. 

Fig. 4- (a) Dependence of ln[t*=0.1exp(-Q***
c/RT)] on ln[−ln(TS)] at all temperatures; 

(b) Dependence of ln[t*=0.1] on ln[−ln(TS)] with error bars equal to the % prediction 

error/100. 

The accuracy of these predictions is further revealed in Table 3b. When the percentage 

errors shown by the length of the error bars in Fig. 4b are squared and then averaged, the 

Wilshire model predicts with a 28.37% MSPE or with a root mean percentage squared error of 

53.27%. This is put into further context by noting that Theil’s U is 0.026, which is scaled to be 

within the range of 0 to 1, with zero corresponding to a model that produced perfect predictions. 

It therefore appears that the Wilshire model is much more successful at predicting times to a 

normalised strain of 0.1 compared to minimum creep rates, but not as successful as predicting 

times to failure. Based on Theil’s decomposition of this MSPE, it is clear that nearly all of this 
error is random in nature (100%) so that the Wilshire model exhibits very little systematic error. 

This is further confirmed by Peel’s decomposition where the p-values on  and  in Eq. (8a) 

reveal that  is not significantly different from zero and  is not significantly different from 

unity so that all the percentage prediction error is random in nature- whose magnitude is 

summarised in the standard deviation of e in Eq. (8a), e = 0.552. Using Eq. (8f), exp(0.5
e) 

-1 = 16.46% which is an estimate of the mean percentage prediction error assuming normality 

of e (this is close to the actual mean percentage prediction error of 13.51%). What is important 

to realise is that this average percentage error produced by the Wilshire model is all random in 

nature suggesting the model is not mis specified in any way and that this mean percentage error 

reflects the natural variation present in measuring the times to various strains from 

experimental creep curves (and so it is unlikely that this magnitude or error can be further 

reduced through use of any other creep model). 

Table 3b 

Summary of the predictive accuracy of Eq. (3c) using the parameter estimates shown in Table 

3a with * = 0.1. 

 

Fig. 5 summarise the results from estimating the parameters of Eq. ([3c) at all other 

normalised strains – from 0 to 1 in increments of 0.01. It can be seen that well defined 

relationships exists between the three Wilshire parameters and the normalised strain. In Fig. 5a 

it can be seen that k*
3j increases in a non linear fashion with the normalised strain but this 

functional relationship is different above and below the break point of *
c. Unsurprisingly this 



is then reflected in different parameter estimates of Eqs. (6a,b) as shown in Table 4. These 

parameter estimates produce the predicted curves (solid curves) shown in Fig. 5a and as can be 

seen, the ANN produces a very good fit. Also notice that the k*
3j obtained at each strain 

converge on the k1j of the failure time equation given by Eq. (2a) as the normalised strain tends 

to 1. As k*
3j is a combination of both d0j and d1j in Eq. (3c), with d1j just being the inverse of 

w*j, Fig. 5d shows the variation of just the d0j with the normalised strain. Whilst the relationship 

is again non linear, it appears much simpler in nature than that for the k*
3j. 

 In Fig. 5b, a more complicated relationship exists between the w*3j and the normalised 

strain. Below the break point of *
c the relationship looks exponential in nature, but above the 

break it is more U shaped. Again, this is then reflected in different parameter estimates of Eqs. 

(6a,b) as shown in Table 4. These parameter estimates produce the predicted curves (solid 

curves) shown in Figure 5b and as can be seen the ANN again produces a very good fit. Also 

notice that the w*
3j obtained at each strain converge on the uj of the failure time equation given 

by Eq. (2a) as the normalised strain tends to 1.  In Fig. 5c the values of Q***
c and therefore the 

activation energies appear to depend strongly on the normalised strain but in a fashion that is 

very similar above and below the break point of *
c. The difference in the Q***

c values each 

side of this break point diminishes with the normalised strain but again the Q***
c values obtained 

at each strain converge on the Q**
c values of the failure time equation given by Eq. (2a) as the 

normalised strain tends to 1. The shape of the curves in Fig.5c are consistent with the work of 

Estrin and Mecking [24] with Q**
c being viewed as the activation energy for steady state or 

minimum creep. 

Fig. 5- Variations of the Wilshire parameters with the normalised strain. 

 

Table 4 

Parameter estimates of Eq. (6a) and Eq. (6b). 

 

 5.4. Individual creep curves 

Table 3b only shows the performance of the Wilshire equation at a normalised strain of 

0.1, but to assess its full performance this analysis should be repeated for all normalised strains. 

That is, the ability of the Wilshire equation to predict full creep curves is required. Table 5 

summarises the results of such analysis. This involved the following steps: 1. Insert the 

parameters estimates shown in Table 4 into Eqs. (6) to predict the Wilshire parameters k*
3j, w

*
j 

and Qcj
*** at all normalised strains *. 2. Insert these predicted values for the parameters k*

3j, 

w*
j and Qcj

***
, together with all the stress and temperatures in the experimental data set    into 

Eq. (3f) to predict the time to all these strains at all these stresses and temperatures. 3. Compare 

the predicted times along the creep curves to the experimentally measured ones by converting 

the normalised strains back to actual strains and apply Eqs. (7c,d,e) and Eq. (8e) to assess how 

close the predicted and experimental creep curves are. This involves a comparison of 30 

experimental creep curves with their predicted counterparts using the Wilshire equation. 

Table 5 

Summary of the predictive accuracy of Eq. (3f) using the parameter estimates shown in table 

4 and all the experimental stress and temperature test conditions. 

 

The Wilshire model predicts the experimental creep curves with a 49.54% MSPE or 

with a root mean percentage error of 70.4%. This is put into further context by noting that 



Theil’s U is 0.03, which is scaled to be within the range of 0 to 1, with zero corresponding to 

a model that produced perfect predictions. Based on Theil’s decomposition of this MSPE, it is 

clear that nearly all of this error is random in nature (98.51%) so that the Wilshire model 

exhibits very little systematic error. This is further confirmed by Peel’s decomposition where 

the p-values on  and  in Eq.(8a) reveal that   is not significantly different from zero 

and  is not significantly different from unity so that all the percentage prediction error is 

random in nature- whose magnitude is summarised in the standard deviation of e in Eq. (8a), 

e = 0.70. Using Eq. (8f), exp(0.5
e) - 1 = 27.76% which is an estimate of the mean percentage 

difference between the predicted and experimental creep curves assuming normality of e.  

Whilst Table 5 provides a good summary of the overall predictive accuracy, it is useful 

to visualise this accuracy in a series of figures. This Fig. 6 plots the MSPE associated with each 

of the 30 creep curves making up the experimental data set. The average error over all test 

conditions is of course 49.54% but there are big disparities across all the experimental test 

conditions. The predicted creep curves at 923K are closest to the experimental creep curves 

where the MSPE is never more than 45% over the different stresses. The biggest discrepancies 

between actual and predicted creep curves occur at 873K and 200 MPa and again at 973K at 

700 and 950 MPa. But the Wilshire equation predicts creep curves with a MSPE below 50% 

over the vast majority of test conditions. 

Fig. 6 -  Creep curve predictive accuracy at differing test conditions as measured by the 

MSPE. 

Fig. 7 - Experimental and predicted creep curves at four different illustrative test 

conditions; a. 973K and 200 MPa; b. 923K and 870 MPa; c. 1023K and 500 MPa; d. 873K 

and 950 MPa; 

 Finally, Figures 7 show some test conditions corresponding to worst and best 

predictions made for the experimental creep curves. In Figs. 7a and 7c, which visualise the 

worst performing test conditions, the creep curves shape is well predicted but there is consistent 

over prediction of the time to failure. Where this occurs at other test conditions, the predictions 

are often under predictions and this explains the low value for UM and high value for UC in 

Table 5. In Figs. 7b and 7d, which visualise some of the best performing test conditions, the 

creep curves shape is well predicted in the primary/secondary stages of creep but not so much 

in the tertiary stages. However, over all stages there is no tendency to under or over predict. 

These two figures are typical of all the test conditions with a low MSPE (further figures are 

available from the author upon request). 

 6.  Conclusion 

 This paper introduced an artificial neural network (ANN) methodology for extending 

the Wilshire Equation related to times to specified strains so that complete creep curves can be 

predicted at any test conditions (including operating conditions) using just accelerated test data. 

The paper also presented various statistics for the evaluation of predictions made by the this 

modified Wilshire model. These statistics also provide a suitable way of comparing different 

creep prediction models as they are scaled values and so should prove useful in future research 

on creep prediction. When these techniques and predictions were applied to Waspaloy the 

following conclusions could be drawn: 



1. There is a small but statistically significant change in the activation energy for 

Waspaloy at a normalised stress of 0.72. The original Wilshire paper failed to identify the break 

occurring at this normalised stress. This change in activation energy is also smaller than that 

observed by Whittaker et. al. but could be due (as they state) to the amount of strain hardening 

in an alloy brought about by high dislocation densities generated at stresses above a normalised 

stress of 0.726. 

 

2. Using the Wilshire time to strain equation expressed in normalised strain space, it was 

possible to measure the activation energy and various different strains and the results support 

the work of Estrin and Mecking [24] who proposed that the activation energy would be 

dependant on strain in the way  seen in this paper. 

  

3.  The Wilshire equations for minimum creep rates and failure times produce very good 

predictions, with U values very close to zero and with mean squared percentage errors of 45% 

and 20% respectively. 

 

4. The Monkman-Gant relation does not provide a completely satisfactory link between 

the Wilshire minimum creep rate and time to failure equations. 

 

5. The parameters of the Wilshire time to strain equation have a well defined and 

systematic relationship with the normalised strain and these functional relationships are 

extremely well model by a simple artificial neural network (ANN). Because the parameters 

tend in value to those of the Wilshire time to failure equation as the normalised strain tends to 

1, the predicted creep curves are well behaved in that they do not “curve back on themselves” 

at high strains. 

 

6. When the ANN is combined with the Wilshire equation for times to strains, the creep 

curves as not as accurately predicted as the end points of the curve (failure times) or the 

minimum creep rate associated with the curve – the mean squared percentage errors is 49%. 

That said, the model works well at predicting creep curves with a U value of 0.03 and for most 

test conditions present in the experimental data set used for this paper, the predicted creep 

curves were in very close agreement with the experimental curves with mean squared 

percentage errors less than 20%. 

Important areas for future research include the application of the evaluation statistics 

given in this paper to other aero engine materials (e.g. RR1000) and perhaps more importantly 

to use these statistics to compare other creep curve prediction techniques (such that given by 

Eqs. [5]) with the Wilshire equation so as to rank the techniques in terms of their accuracy. 
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Table 1a 

 Least Squares Estimates of the Parameters of Eq. (1b) with p  = 2. 

 Above 𝜎1
𝑐 = 0.726 Below 𝜎1

𝑐 = 0.726 

Parameters a01 a11 a21 a02 a12 a22 

Estimate  13.958 -1.413 -223,374 9.508 -5.328 -237,586 

Standard error 2.744 0.332 20,841 2.811 0.630 3,565 

p-value 0.002 0.023 0.000 0.220 0.000 0.000 

The p–value gives the probability (in %) of the null hypothesis being true, where the null 

hypothesis is that the model parameter equals zero. An p–value below % therefore indicates 

a parameter (and thus test variable) that is statistically significant at the % significance 

level. 

 

Table 1b 

Summary of the predictive accuracy of Eq. (1b) using the parameter estimates shown in 

Table 1a. 

Theil’s Decomposition Peel’s Decomposition 

UM 0.00% UM 0.00%  0.000 [1] 

US 0.00% UR 0.94%  1.000[1] 

UC 100.00% UD 99.06% R2 96.30% 

U 0.022 - - e 0.700 

MSPE 45.61% - - - - 

p-values associated with the null hypothesis that  = 0 and  = 1 are shown in parenthesis 

and assume that the random error term e in Eq. (8a) is normally distributed. The U 

decompositions are defined by Eqs. (7c,d,e) and Eq. (8e).  and  are the least squares 

estimates of the parameters in Eq. (8a) and e is the estimated standard deviation for e. R2 is 

the percentage variation in ln[yi
a] explained by ln[yi

b] in Eq. (8a). 

 

Table 2a 

Least Squares Estimates of the Parameters of Eq. (2g). 

 Above 𝜎1
𝑐 = 0.726 Below 𝜎1

𝑐 = 0.726 

Parameters b01 b11 b21 b02 b12 b22 

Estimate  -14.676 1.284 208,855 -11.368 4.194 217,857 

Standard error 1.852 0.224 14,068 1.852 0.425 2,406 

p-value 0.000 0.0001 0.000 0.0002 0.000 0.000 

The p–value gives the probability (in %) of the null hypothesis being true, where the null 

hypothesis is that the model parameter equals zero. An p–value below % therefore indicates 

a parameter (and thus test variable) that is statistically significant at the % significance 

level. 

 

 

 

 

 

 



 

 

Table 2b 

Summary of the predictive accuracy of Eq. (2g) using the parameter estimates shown in Table 

2a. 

Theil’s Decomposition Peel’s Decomposition 

UM 0.00% UM 0.00%  0.000 [1] 

US 0.00% UR 0.71%  1.000[1] 

UC 100.00% UD 99.29% R2 97.20% 

|U 0.019 - - e 0.472 

MSPE 20.78% - - - - 

p-values associated with the null hypothesis that  = 0 and  = 1 are shown in parenthesis 

and assume that the random error term e in Eq. (8a) is normally distributed. The U 

decompositions are defined by Eqs. (7c,d,e) and Eq. (8e).  and  are the least squares 

estimates of the parameters in Eq. (8a) and e is the estimated standard deviation for e. R2 is 

the percentage variation in ln[yi
a] explained by ln[yi

b] in Eq. (8a). 

 

Table 3a 

 Least squares estimates of the parameters of Eq. (3c) when * = 0.1. 

 Above 𝜎1
𝑐 = 0.726 Below 𝜎1

𝑐 = 0.726 

Parameters d01 d11 d21 d02 d12 d22 

Estimate  -10.021 1.382 154,894 -6.118 4.815 164,466 

Standard error 2.164 0.262 16,437 2.164 0.497 2,812 
p-value 0.008 0.001 0.000 0.87 0 0 

The p–value gives the probability (in %) of the null hypothesis being true, where the null 

hypothesis is that the model parameter equals zero. An p–value below % therefore indicates 

a parameter (and thus test variable) that is statistically significant at the % significance 

level. 

 

Table 3b 

 Summary of the predictive accuracy of Eq. (3c) using the parameter estimates shown in Table 

3a with * = 0.1. 

Theil’s Decomposition Peel’s Decomposition 

UM 0.00% UM 0.00%  0.000 [1] 

US 0.00% UR 0.78%  1.000[1] 

UC 100.00% UD 99.22% R2 96.91% 

U 0.026 - - e 0.552 

MSPE 28.37% - - - - 

p-values associated with the null hypothesis that  = 0 and  = 1 are shown in parenthesis 

and assume that the random error term e in Eq. (8a) is normally distributed. The U 

decompositions are defined by Eqs. (7c,d,e) and Eq. (8e).  and  are the least squares 

estimates of the parameters in Eq. (8a) and e is the estimated standard deviation for e. R2 is 

the percentage variation in ln[yi
a] explained by ln[yi

b] in Eq. (8a). 

 

 



 

 

 

 

Table 4 

Parameter estimates of Eq. (6a) and Eq. (6b). 

 Above c
1 

 w*
1  k*

31  Q***
c1 

011 322.778 211 324.293 411 322.779 

111 7.868 311 -2.126 511 97.106 

021 31.532 221 31.52 421 31.532 

121 7.863 321 -2.126 521 13.636 

11 1.1E+142 11 5.2E+149 11 -5E+142 

21 -3.7E+15 21 -3.7E+22 21 -5.1E+15 

01 0.234 21 -87991.1 41 184.577 

11 0.005 31 -120281 51 35.538 

 Below c
1 

 w*
2  k*

32  Q***
c2 

012 322.779 212 324.293 412 322.779 

112 42.422 312 15.438 512 92.977 

022 31.532 222 31.52 422 31.532 

122 3.098 322 -5.044 522 12.911 

12 -4E+139 12 -3E+141 12 -4E+142 

22 -6.7E+12 22 -5.6E+11 22 -4.6E+15 

02 0.829 22 2.954 42 173.938 

12 -0.044 32 13.828 52 37.345 

 

Table 5 

Summary of the predictive accuracy of Eq. (3f) using the parameter estimates shown in table 

4 and all the experimental stress and temperature test conditions. 

Theil’s Decomposition Peel’s Decomposition 

UM 0.34% UM 0.34%  -0.015 [0.76] 

US& 1.15% UR 0.10%  0.998 [0.59] 

UC 98.51% UD 99.65% R2 94.66% 

U 0.030 - - e 0.700 

MSPE 49.54% - - - - 

p-values associated with the null hypothesis that  = 0 and  = 1 are shown in parenthesis 

and assume that the random error term e in Eq. (8a) is normally distributed. The U 

decompositions are defined by Eqs. (7c,d,e) and Eq. (8e).  and  are the least squares 

estimates of the parameters in Eq. (8a) and e is the estimated standard deviation for e. R2 is 

the percentage variation in ln[yi
a] explained by ln[yi

b] in Eq. (8a). 

 

 



 

Fig. 1 - (a) Dependence of ln[𝜀̇mexp(Q*
c/RT)] on ln[−ln(TS)] at all temperatures; (b) 

Dependence of ln[𝜀̇m] on ln[−ln(TS)] with error bars equal to the % prediction error/100. 

 

Fig. 2-  (a) Dependence of ln[𝜀̇] on ln[tf] at all temperatures; (b) Dependence of ln[𝜀̇m] on 

ln[tf] – ln[f]. 



 

Fig. 3 -  (a) Dependence of ln[tfexp(-Q**
c/RT)] on ln[−ln(TS)] at all temperatures; (b) 

Dependence of ln[tf] on ln[−ln(TS)] with error bars equal to the % prediction error/100. 

 

 

 



 

Fig. 4- (a) Dependence of ln[t*=0.1exp(-Q***
c/RT)] on ln[−ln(TS)] at all temperatures; 

(b) Dependence of ln[t*=0.1] on ln[−ln(TS)] with error bars equal to the % prediction 

error/100. 

 

Fig. 5- Variations of the Wilshire parameters with the normalised strain. 



 

Fig. 6 -  Creep curve predictive accuracy at differing test conditions as measured by the 

MSPE. 

 

 

 



Fig. 7 - Experimental and predicted creep curves at four different illustrative test 

conditions; a. 973K and 200 MPa; b. 923K and 870 MPa; c. 1023K and 500 MPa; d. 873K 

and 950 MPa; 

 


