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Abstract 32 

Orthopedic device-related infection (ODRI), including both fracture-related infection (FRI) and 33 

periprosthetic joint infection (PJI), remain amongst the most challenging complications in 34 

orthopedic and musculoskeletal trauma surgery. ODRI has been convincingly shown to delay 35 

healing, worsen functional outcome and incur significant socio-economic costs. To address this 36 

clinical problem, ever more sophisticated technologies targeting the prevention and/or treatment 37 

of ODRI are being developed and tested in vitro and in vivo. Amongst the most commonly described 38 

innovations are antimicrobial-coated orthopedic devices, antimicrobial-loaded bone cements and 39 

void fillers, and dual osteo-inductive/antimicrobial biomaterials. Unfortunately, translation of 40 

these technologies to the clinic has been limited, at least partially due to the challenging and still 41 

evolving regulatory environment for antimicrobial drug-device combination products, and a lack 42 

of clarity in the burden of proof required in preclinical studies.  43 

Preclinical in vivo testing (i.e. animal studies) represents a critical phase of the multidisciplinary 44 

effort to design, produce and reliably test both safety and efficacy of any new antimicrobial device. 45 

Nonetheless, current in vivo testing protocols, procedures, models and assessments are highly 46 

disparate, irregularly conducted and reported, and without standardization and validation. The 47 

purpose of the present opinion piece is to discuss best practices in preclinical in vivo testing of 48 

antimicrobial interventions targeting ODRI. By sharing these experience-driven views, we aim to 49 

aid others in conducting such studies both for fundamental biomedical research, but also for 50 

regulatory and clinical evaluation.  51 

Keywords: preclinical study; in vivo; biofilm; orthopedic device-related infection; antimicrobial 52 
device.  53 
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1. Introduction and background 54 

The placement of an orthopedic device into patients creates a predisposition and increased 55 

susceptibility to fracture-related infection (FRI) and periprosthetic joint infection (PJI), which we 56 

collectively term orthopedic device-related infection (ODRI). The two main underlying reasons for 57 

this are reported to be: 1) the ability of bacteria to adhere to, and form biofilm on or around the 58 

device, and 2) a deficit in host immunological defenses adjacent to the device. Both factors exist 59 

for all implanted devices, and so the risk of infection is considered universal for all implanted 60 

orthopedic devices. Differences in the device size, anatomical location, incision or wound size, 61 

underlying co-morbidities and perhaps predisposing genetic factors largely account for the 62 

variability in infection rates for specific device classes. 63 

Bacterial biofilm/microcolony formation is causally central to ODRI (Figure 1) as it provides 64 

contaminating bacteria protection from host phagocytes and promotes tolerance to antibiotics. 65 

The reduced metabolic activity of bacteria deep in the biofilm, coupled to potential limited 66 

penetration of some antibiotics through the biofilm matrix, severely hinders the inhibitory or 67 

bactericidal activity of many antibiotics (reviewed in refs. 1; 2). Additionally, metabolically 68 

senescent bacterial populations in biofilms, often called persister cells, are naturally more tolerant 69 

to antibiotics 3, and are considered critical in the high recurrence rate of ODRI. The combined 70 

presence of a foreign body and bacteria prompts dysregulation of the local immune response 4, 71 

over and above the reduced phagocytic activity of host endogenous neutrophils in the presence of 72 

foreign materials. These concepts were first characterized by Zimmerli and Gristina in the 1980s 73 

5-7. Indicative of this phenomenon, tissue beds adjacent to experimentally-implanted devices have 74 

been shown to harbor viable microcolonies of pathogenic bacteria for prolonged periods 8, 75 

including inside macrophages after phagocytosis 9 More recently, bacteria have been shown to also 76 

reside within bone canaliculi, which may be a crucial factor in the failure of treatment without 77 

extensive debridement 10.  78 

Considering the risks and mechanisms of infection development around implanted orthopedic 79 

devices, coupled to an increasing number of surgically placed orthopedic devices expected globally 80 

over the coming decades 11, there is a clear need for improved technologies to prevent, diagnose 81 

and treat ODRI 2; 12. The established pathway to clinical implementation for any anti-infective 82 
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technology proceeds from preclinical (in vitro and in vivo) testing followed by clinical evaluation. 83 

As increasing numbers of publications emerge evaluating antimicrobial devices, and as the 84 

regulatory requirements for preclinical evaluation of antimicrobial technologies evolve, a notable 85 

variety of approaches are taken to demonstrate preclinical efficacy of these technologies13; 14. With 86 

recent reviews describing best practices in testing antimicrobial technologies focusing upon in 87 

vitro approaches 15, the need exists for analogous guidance in standardizing preclinical in vivo 88 

models of ODRI. The recommendations herein are assembled by experienced researchers in the 89 

field of in vivo evaluation of ODRI-targeting technologies, sharing their expert opinion on best 90 

practice in areas such as model selection, study design, data interpretation and targets for efficacy. 91 

Where possible, minimum criteria are indicated that we consider mandatory for all testing, in 92 

addition to other features that may be desirable or appropriate for only certain subsets of studies.  93 

2. Prerequisites to in vivo studies 94 

Since inducing an ODRI has potential for imposing a significant burden on the experimental animal, 95 

in vivo studies should only be performed when certain prerequisites are established, a thorough 96 

and comprehensive literature search has been conducted, and supportive in vitro studies are either 97 

completed or shown to be inadequate to address the research question at hand. A comprehensive 98 

review of in vitro testing methodologies has recently been published 15, to serve as a useful 99 

roadmap for testing of antimicrobial technologies prior to considering an in vivo study. A shortlist 100 

of in vitro testing recommended prior to a preclinical in vivo study is shown in Table 1. 101 

A legal requirement prior to commencing preclinical in vivo testing is, of course, ethical approval, 102 

details of which must be reported upon publication. Any institutional review board (IRB) or 103 

institutional animal care and use committee (IACUC) will demand a clearly described hypothesis, 104 

with a justification for the study and the chosen animal species/model, accompanied by an 105 

appropriate power analysis for sample size. The details for animal husbandry, the surgical 106 

procedures, anesthesia, analgesia, perioperative monitoring protocols by qualified personnel and 107 

clearly defined humane endpoints are equally important for a robust animal welfare protocol. For 108 

many studies in the field, appropriate control groups are mandated, including positive and 109 

negative controls or an already commercially available product. Russell and Burch’s 3 R’s (Reduce, 110 

Refine and Replace) remain imperative for improving laboratory animal treatment and utilization 111 
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while ensuring scientific quality and rigor in research using animals 16. A relatively recent 112 

initiative, the PREPARE guidelines 17, are a useful resource to ensure adequate practices and 113 

planning. Their application to the study design should help gain ethical approval. Importantly, the 114 

gain of knowledge should justify the expected burden of the involved animals and consider the 115 

3R's principles 16. 116 

3. Rationale supporting animal experimentation  117 

Despite abundant reports of in vitro evidence for antimicrobial efficacy, comparatively few in vitro 118 

results have been shown to translate reliably to in vivo antimicrobial efficacy 18. Numerous 119 

examples exist of how in vitro data can be misleading when it comes to in vivo testing, which have 120 

been reviewed elsewhere 14; 18. Some prominent examples include biofilm formation, whereby in 121 

vitro grown biofilms in various culture media alter microbial growth kinetics and lack the host 122 

derived proteins which may account for much of the biomass of a biofilm in vivo. The addition of 123 

host proteins to in vitro systems addresses this issue to a certain degree, however, the complexity 124 

of the in vivo situation is not entirely replicated. In fact, biofilm forming ability in vitro has never 125 

been confirmed to match biofilm formation in vivo. 126 

In vivo trials have the benefit of allowing the evaluation of novel candidate antimicrobial 127 

technologies in controlled in vivo conditions that isolate the effect of the investigated technology 128 

from any number of potential confounding factors expected to be present in any actual human 129 

patient population. Admittedly, not all in vivo experimental conditions are comparable, and 130 

intrinsic differences between anatomy, physiology and immune systems in humans and laboratory 131 

animals are a recognized limitation that should not be underestimated in translation. The natural 132 

resistance of laboratory animals to clinically relevant human pathogens remains incompletely 133 

understood and represents a weak point in the interpretation of interventional studies targeting 134 

ODRI. For example, it can be difficult to establish an infection in rodents since they are far less 135 

susceptible to clinically relevant human pathogens like S. aureus. However, this is strain-136 

dependent and requires further study to understand if and why this is a true phenomenon.  137 

 Preclinical in vivo testing is nevertheless demanded by regulatory bodies for safety and efficacy 138 

evaluation of antimicrobial devices prior to any possible applications for trial use in humans (e.g. 139 
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General Considerations for Animal Studies for Medical Devices, USFDA). ISO guidelines also exist 140 

for certain aspects of these studies (ISO 10993-2: Biological evaluation of medical devices Part 2: 141 

Animal welfare requirements). The benefits and limitations of preclinical in vivo models of 142 

infection are summarized in Table 2. 143 

4. Key aspects in model selection, animal welfare reporting and study design 144 

A clear vision for the intended clinical application of the new anti-infective technology is critical in 145 

determining the appropriate test pathway. One of the most basic design questions, which should 146 

be confirmed at the outset, is whether the device is intended to support the prevention of infection 147 

(prophylaxis), or alternatively, the treatment of infection (therapy). In many respects, the 148 

prevention of infection and the treatment of established infection are significantly different, (Table 149 

3), and this will largely dictate many aspects of the ideal preclinical evaluation and data sought 150 

from such studies. Against a background of relatively low infection rates for elective procedures, 151 

many interventions target the prevention of infection in all patients to make a compelling business 152 

case for development. Establishing prophylactic efficacy, however, in a clinical trial may be a 153 

prohibitively expensive proposition for the traditional hardware manufacturers active in the 154 

orthopedic space. This is because of the high numbers of enrolled patients required to show a 155 

reduction in infection from a low baseline of approximately 1% infection rate. This dilemma 156 

remains unresolved at the present time and has contributed to the failure to translate many of the 157 

large number of scientific advances regularly seen in the scientific literature14. 158 

There is a life-long risk for late-developing infections, as may occur via a hematogenous route. To 159 

prevent such infections, an anti-infective technology would need to retain activity over the entire 160 

life-time of the implant. To our knowledge, no animal ODRI model has recapitulated this scenario, 161 

although it would represent a valuable model to determine the role of, for example, antibiotic 162 

prophylaxis prior to dental procedures.  163 

In the treatment of an established infection, it is also challenging to identify the appropriate time 164 

to allow an infection to develop prior to treatment. The clinical view may be that the ideal 165 

experimental infection model should produce clinical symptoms of infection similar to the targeted 166 

clinical situation. These symptoms can range from pain, weight loss and radiographic loosening of 167 
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the implant, to redness, swelling or drainage of the incisional site. The decision on how long to let 168 

an infection develop prior to intervention will likely be a balance between animal welfare and 169 

clinical symptoms, and should be judged on a case-by-case basis knowing that the more chronic 170 

the infection, the more convincing (but also the more challenging) will be the intervention that 171 

successfully resolves that infection. A standard approach towards treatment will in most cases 172 

compare current gold standard with and without the novel intervention. In many cases in ODRI, 173 

this may involve parenteral antibiotics, unless the intervention explicitly aims to replace 174 

parenteral antibiotic therapy. It is important to note that euthanasia of animals still receiving 175 

systemic or local antimicrobials should be done with caution as false negatives or temporarily 176 

reduced bacterial burden may result due to post-mortem activity of residual antimicrobials (i.e. 177 

antibiotic carry-over effects). An antibiotic-free washout period prior to euthanasia will reduce 178 

these concerns, although the potential rebound in bacterial growth may also mask a sub-lethal 179 

effect of the material. Nevertheless, the risk of false negative results should outweigh the concern 180 

for a rebound effect in most cases.  181 

Model complexity 182 

Recent reviews describe the number of variables involved in selecting appropriate orthopedic 183 

bone repair preclinical models, including species, bone macro- and micro-structure, bone 184 

composition and remodeling, and practical cost, husbandry, species and handling issues 19; 20. 185 

Adding infection variables into this experimental preclinical matrix produces substantial 186 

complexity. A wide range of in vivo ODRI models are also available (reviewed in 21; 22), ranging from 187 

the comparatively simple models amenable to most institutions and facilities 23; 24, to the more 188 

complex models requiring more advanced expertise and facilities 25-27 and finally the most complex 189 

models where the clinical condition is recapitulated to the closest extent possible 28-30. Figure 2 190 

outlines the types of animal models available, arranged according to complexity and 191 

appropriateness to different stages of product development.  192 

For clinical translation, models that more closely match the specific clinical condition are clearly 193 

preferred and increasingly requested by regulatory bodies. However, the need for such complex 194 

models is less clear at the proof of concept stage and may be unnecessary for many basic science 195 

studies. In all cases, there remains a necessity to properly justify an in vivo experiment, and the 196 
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chosen model for its relevance in addressing specific translational questions: animal models 197 

should never be used when they cannot effectively address a significant hypothesis. Certain 198 

situations, however, may demand a complex model to fully assess the device even in a basic science 199 

study, particularly when the function of that device can influence the biology of the surrounding 200 

tissues. For example, a technology to prevent infection in patients receiving a fracture fixation 201 

device may need to be tested in a model that includes a fracture or soft tissue damage, since 202 

biomechanical forces and soft tissue damage influence the healing response of bone, which can 203 

also influence host antibacterial defenses 31; 32. Similarly, fracture models will also allow estimation 204 

of the impact of the technology on fracture healing in addition to the antibacterial efficacy, which 205 

is also a key outcome for both basic science and regulatory approval.  206 

In certain cases, the clinical situation may not be reliably or easily replicated in any existing model 207 

due to practical or animal welfare reasons such as duplicating certain co-morbidities specific to 208 

humans, osteoporotic conditions, chronic infected burn wounds or diabetic foot osteomyelitis. Of 209 

note, certain clinical conditions may also occur naturally in veterinary clinical practice (e.g. PJI, or 210 

infected non-union/pin tract infection in pets) and could offer an avenue for efficacy assessment 211 

in future 33; 34. 212 

In general, animal model selection during product development is driven by the overarching 213 

objective in the preclinical space of de-risking emerging technologies. During the discovery phase, 214 

animal models often help explore and answer hypothesis-driven aims addressing mechanistic 215 

concepts. When an early stage technology aligns with an unmet clinical need in the target patient, 216 

de-risking becomes a priority. De-risking is driven by a plethora of factors and spans the gamut 217 

from economic viability, intellectual property, manufacturing and preclinical safety and efficacy. 218 

The stage of product development usually drives the choice of preclinical model. For example, 219 

generic safety profiles of candidate test articles can be established cost-effectively in standard 220 

murine models. As the path of preclinical development advances, the value proposition of the 221 

technology increases, and the clinical relevance of the animal model is of increasing importance. 222 

For regulatory purposes in the validation of any new technology, the chosen model should ideally 223 

consider the targeted human patient population and reflect the value-proposition for target 224 

patients, although this can of course be difficult to achieve or even measure. For orthopedic devices 225 
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in general (not specifically anti-infective devices), the selection of a model may also be influenced 226 

by key safety and performance aspects such as implant failure modes, duration of the evaluation 227 

period, device size, the intended use, and the intended regulatory strategy35. This can include 228 

consideration of implant dimensions and the surgical approach in the animal compared to 229 

standard human use. For regulatory submissions, the implantation of the actual device as intended 230 

for human clinical use may in fact be required. Sheep or swine models are therefore appropriate 231 

orthopedic animal model choices in this regard, based on implant size alone. Most safety testing 232 

for mechanical devices (e.g. joint and valve replacements) required for FDA IDE/PMA regulatory 233 

purposes is therefore conducted in relatively large animals, such as rabbits, dogs, pigs, goats, 234 

sheep, cattle and large non-human primates 20; 36.  235 

Some human devices are simply too large for application in certain species, and so the ability to 236 

produce and use a smaller, analogous “copy” at reasonable cost, and still recapitulate the human 237 

situation is important. With functional fracture fixation implant systems available for mid-size 238 

animals such as rabbits37 and even smaller animals such as rats38 and mice31; 39, definitive studies 239 

may focus on the model with most clinical relevance, rather than on size alone. It should be noted, 240 

however, that many types of medical devices, including total joint prostheses, are extremely 241 

difficult or impractical to miniaturize or apply in animals within reasonable burden limitations. In 242 

addition, the miniaturized device may exhibit significantly altered behavior (e.g. tissue physiology, 243 

failure modes) than the human-sized device.  Testing of the functional implant may therefore not 244 

be suited to small animals for many devices.   245 

Recently, the scientific community and select industry ventures started to embrace naturally 246 

occurring disease models in both dogs and horses with the rationale that their use demonstrates 247 

robust superiority over experimentally induced models 40. The latest efforts of refinement and 248 

optimization of large animal models including genetically modified models is a positive 249 

development towards improving reproducibility and scientific rigor. While there is still paucity of 250 

available model data pertaining specifically to ODRI, the authors encourage investigators to stay 251 

current in the field as more refined models are being developed and validated  41. 252 

Reporting animal care and use 253 
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In vivo ODRI studies exert increased burden upon test animals over and above non-inoculated 254 

equivalents. Animal welfare practices are, therefore, important to fully address and disclose when 255 

publishing. A relatively recent initiative, the ARRIVE guidelines 42, provides a useful resource to 256 

ensure adequate reporting. Minimum requirements: all baseline information such as animal 257 

species/strain, gender, age, weight, immune status, microbiological status (e.g. specific pathogen-258 

free (SPF), or specific and opportunistic pathogen-free (SOPF)), overall husbandry, detailed 259 

description of the surgical intervention and veterinary care, including full anesthesia and analgesia 260 

protocols often known to affect animal health status and recovery should be reported, or made 261 

available through the primary description of the chosen model. The observation parameters used, 262 

including contingency plans for addressing possible complications, and the results thereof, should 263 

also be reported.  264 

A score sheet is a useful means to objectively report the observation of animals based on clinical 265 

parameters, but also to define when an animal should be excluded from the study (i.e. humane 266 

endpoints) and may be adapted to each specific study 43 (Table 4). Frequency of scoring should be 267 

defined according to the study phase and must increase if the clinical condition warrants it. The 268 

full and accurate reporting of animal welfare issues is useful with increasing welfare demands on 269 

the animals for a given model, but also helps predict or anticipate losses for others utilizing the 270 

model. The clinical parameters and observations that may be considered as minimum 271 

requirements include: vitals, weight loss, wound healing issues, behavioral changes, and any 272 

animals excluded from the study, including the reason for exclusion (e.g. severe symptoms, found 273 

dead, sepsis). Adequate pain management is also critical to disclose, including any pain medication 274 

administered in addition to pre-planned pain control.  275 

Pilot studies, validation of ODRI models and historical controls 276 

The reliability and scientific rigor of the experimental outcomes in preclinical in vivo studies will 277 

be improved by using established animal models with known responses or behaviors under 278 

standardized and controlled conditions. Whenever using an animal model for the first time, 279 

developing a new model, or adapting an existing model (e.g. applying a different pathogen, 280 

inoculation dose, time to treatment, or use of a systemic antibiotic), pilot studies are mandated to 281 

establish baseline infection rates as a minimum requirement. Pilot studies allow the investigator 282 
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to refine some of the procedures within the study and approximate the effect size to determine the 283 

sample size for a pivotal study. This can result in less discomfort for the animals and may aid in 284 

the reduction of the overall number of animals required.  285 

Certain additional prior information on the behavior or performance of a model would be 286 

desirable, though perhaps less critical to provide a complete understanding of the model. For 287 

example, it would be valuable to know whether the original infection persists in the model of 288 

choice or whether it is self-resolving. This is important because a number of infection models have 289 

been described to be self-resolving, mainly for infections with low virulence organisms or with 290 

high tolerance (rodent) hosts 44 and given a certain duration. In such cases, the time point chosen 291 

as an endpoint becomes crucial to properly evaluate results. Similarly, it is valuable to know 292 

whether an infection develops or persists under conditions of conventional clinical prophylaxis or 293 

treatment. If conventional prophylaxis is adequate in a certain model, the novel technology may 294 

require an additional proven benefit, such as reduced systemic toxicity or ease of application, to 295 

produce a clear benefit to the patient.  296 

Disease state and comorbidities  297 

Clinically, the risk of developing ODRI and the severity of such an infection are impacted by the 298 

patient’s co-morbidities and it may be a rational strategy to attempt to include these co-299 

morbidities in an animal model for certain studies. Among the most recognized of these co-300 

morbidities are obesity, diabetes, immunosuppression, and coagulopathy 45. Considering the 301 

frequency of these co-morbidities in orthopedic surgeries, understanding the contribution of these 302 

factors to infection initiation and progression is critical to ameliorating ORDI risk during and after 303 

surgery. 304 

Rodent models have been most frequently employed to study the impact of obesity and diabetes 305 

on infection. High fat diets (HFD) containing 40% or greater fat content are fed to rodents for 2-4 306 

months to promote increases in adiposity and glucose intolerance. Male C57BL/6 mice have 307 

traditionally been used since they consistently become obese (i.e. greater than 30% increase in 308 

body mass compared to low fat diet controls) and develop metabolic syndrome (i.e. insulin 309 

resistance and glucose intolerance) on these diets. Female C57BL/6 mice have less consistent 310 

response to the HFD and are used less often. However, most but not all commonly available strains 311 



12 
 

also show weight gain and metabolic syndrome on a HFD 46. Choice of mouse strain to employ may 312 

be dictated by consistency with prior investigations, in which case C57BL/6 is the likely choice, or 313 

by consideration of other genetic characteristics of the strain (see below). Morbid obesity is a 314 

dominant co-morbidity. Leptin deficient (ob/ob) and leptin receptor deficient (db/db) mice are 315 

classic models for this clinical state. Unfortunately, the disruption of leptin function has clearly 316 

documented effects on immune function, including risk of infection 47; 48. Thus, these genetic 317 

models are inappropriate for studying the mechanisms of obesity-mediated ODRI. Other studies 318 

have used obese Zucker rats in bone healing and orthopedic trauma models 49; 50. The obese Zucker 319 

rat, homozygous for the fa allele, spontaneously becomes obese and is an accepted model of 320 

metabolic syndrome, sharing many similarities with humans who have this condition, including 321 

obesity, dyslipidemia, some insulin resistance, and hypertriglyceridemia. No implant infection 322 

studies are yet reported with this model.  323 

While a suppressed immune system is an obvious co-morbidity leading to increased risk for ODRI, 324 

more subtle differences in the immune state are an important consideration when selecting a 325 

rodent model to study infection. Recent evidence suggests that the pro-inflammatory Th1/Th17 326 

response to infection may be more effective in the early planktonic growth phase of an infection 327 

and comparatively less so in the chronic biofilm stage 51. In the chronic biofilm stage, the anti-328 

inflammatory Th2/Treg immune response seem to be more effective. For example, C57BL/6 mice 329 

show a Th1/Th17-biased response to infection while BALB/c mice show a Th2 and Treg bias. 330 

Consistent with this logic, BALB/c mice have been shown to clear ODRI biofilm infection caused by 331 

Staphylococcus aureus more effectively than C57BL/6 mice 51. While these assertions must be 332 

confirmed in future studies, the Th1/Th2 balance clearly has relevance in selecting certain animal 333 

species and strains for ODRI.  334 

Infection and its associated inflammation lead to activation of the coagulation pathways including 335 

down-regulation of anticoagulation mechanisms and inhibition of fibrinolysis 52. Many aspects of 336 

the coagulation pathways can be interrogated for their contribution to risk or progression of 337 

infection through genetic mouse models. For example, in a mouse model of S. aureus ODRI, 338 

transgenic overexpression of plasminogen activator inhibitor-1 (PAI-1) led to markedly more 339 

abscess communities (SACs) and more intense fibrin encapsulation of these abscesses 53. Co-340 
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morbidity studies emulating this example provide evidence that the coagulopathy of infection can 341 

play a direct role in the infection process. Additional infection studies using genetic disruption of 342 

the coagulation cascades with implant infections are warranted. 343 

Outcome measures  344 

In most studies, the primary outcome is the reduction of infection rate and/or bacteria, but may 345 

also be changes in immune responses, or parameters addressing functional restoration i.e. 346 

improvements in fracture healing, bone regeneration or osseointegration. Clinical signs of 347 

infection such as white cell count, C-reactive protein, swelling, weight loss or lameness are other 348 

measures useful to evaluate outcome. However, since the intervention may reduce these 349 

symptoms in culture-positive animals, clinical signs should only be used as a secondary outcome 350 

measure supporting the more definitive outcome measure provided by quantitative bacterial 351 

culture. 352 

From a translational standpoint and a value-based health care system, it is important to 353 

understand how preclinical results de-risk and support the value-proposition for the target 354 

patient. From a clinical perspective, complete eradication of infection from the implant and 355 

surrounding tissues and restoration of function is the ideal target for most anti-infective 356 

technologies, the easiest result to interpret, and likely greatest impact in terms of asserting 357 

efficacy. In contrast, the clinical significance of, for example, a 90% reduction in bacteria is a 358 

challenge to interpret, regardless of any statistical differences proven. In vitro studies of 359 

antibacterial activity often target a 1'000-fold reduction in bacterial as a significant, yet arbitrary 360 

threshold. Also, a 1'000-fold reduction from a reference point of 107 CFU may have different 361 

significance in terms of outcome compared with a 1'00-fold reduction from 104 CFU. At the present 362 

time, no generally accepted target has been established for a CFU reduction in in vivo studies. 363 

Clearly, complete eradication of infection in all test-treated animals represents an ideal target for 364 

many antimicrobial-containing devices, and so should be aimed for from the outset of any study. 365 

Any remnant bacteria in a technology "merely" reducing the bacterial load may have an impact, 366 

but it remains likely that remaining bacteria may proceed to re-establish a biofilm-related 367 

infection and so is not considered a complete cure. 368 
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Histological evaluation of outcome is an important assessment, and when performed thoroughly 369 

serves as a useful adjunct to culture results, because it may pick up inflammation indicative of 370 

infection when culture results remain negative. Identifying an animal as infected or not based 371 

solely on histological sections is to be undertaken with caution due to the limited sample areas in 372 

traditional histology. A technique combining histology with molecular detection of pathogens is 373 

fluorescence in situ hybridization (FISH), which is also a marker for bacterial activity 54 (Figure 3). 374 

Conventional histopathology also has a valuable role in monitoring ODRI in in vivo studies. Some 375 

features of S. aureus infection, such as SACs, as well as peri-implant osteolysis and inflammatory 376 

cell infiltration are best revealed with conventional histopathology55-57.   377 

Study design and outcome assessment  378 

In performing an in vivo study, inherent bias, either intentional or unintentional, should be avoided 379 

58. As a minimum, randomization should always be performed, as well as blinding or masking the 380 

study personnel to groups/cohorts and treatments when possible. Surgical procedures and certain 381 

therapies (e.g. coated implants) are difficult to blind compared to drug therapy, for which a placebo 382 

is also provided as control. In such circumstances, an empty coating or delivery vehicle may serve 383 

as a suitable control. Under circumstances where blinding of the operator (e.g. surgeon) is 384 

impossible, de-blinding should be done at the latest timepoint possible (e.g. just before treatment 385 

application) and study design should be masked to the person performing outcome measurements 386 

(e.g. biopsy culturing, histology). 387 

Efficacy must also be compared to appropriate positive and negative controls. In many cases, there 388 

may not be an apparent positive clinical control or defined standard of care to compare the 389 

experimental therapy. This is especially true for more innovative therapeutic strategies. In such 390 

cases, conventional interventions such as debridement and systemic antibiotic may be the best 391 

option for a positive control. A negative control for ODRI may involve debridement alone or 392 

implant removal. In an established animal model of infection, historical controls may have some 393 

value, however, it is highly recommended to include a limited number of additional control animals 394 

in each experiment to ensure reproducibility of the model.  395 

With regards to statistical evaluation, categorical data (e.g. infected vs. not infected) assessed 396 

using, for example, Fisher’s Exact Test or Chi Square need robust differences between groups or 397 
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large sample sizes. Additionally, more subtle differences may exist in the levels of infection. 398 

Because of high biological variability in CFU counts, these values often are not normally 399 

distributed, and non-parametrical statistics are indicated. The need for such clear differences 400 

between infected and non-infected animals, is, in part, why many investigators compare 401 

mean/median viable counts to determine differences between groups. For a general review on 402 

data transformation and statistical comparison in in vivo studies, please see the following reviews 403 

59; 60. 404 

5. Bacteriological aspects of ODRI studies 405 

Pathogen selection 406 

The clinical manifestation of ODRI may vary depending upon the causative microorganism itself 407 

and not just the host immune response or device type in question. The infecting pathogen, its 408 

antibiotic susceptibility and resistance profiles, ability to form biofilm and repertoire of virulence 409 

factors possessed by that species/strain, are therefore a critical feature of an in vivo study. The 410 

most commonly reported pathogens reported in clinical studies of ODRI include S. aureus (MSSA 411 

and MRSA), Coagulase negative Staphylococci (including S. epidermidis, Enterococci, Pseudomonas 412 

aeruginosa, Enterobacteriaceae, anaerobes and aso include a significant portion of polymicrobial 413 

infections. It is important to note that more virulent species such as S. aureus, and aerobic Gram-414 

negative bacilli are the major causes of early onset infections, whilst delayed or late infections are 415 

commonly caused by less virulent species such as coagulase-negative staphylococci (CoNS, e.g. 416 

Staphylococcus epidermidis) 61; 62.  417 

With regards to specific strain selection, molecular epidemiological studies have begun to reveal 418 

the full extent of genetic diversity within S. aureus and S. epidermidis populations 63. In the past, in 419 

vitro and in vivo studies have used American Type Culture Collection (ATCC) or other well-420 

characterized lab strains such as S. aureus ATCC 33591, S. aureus ATCC 49230 (isolated from a 421 

patient with chronic osteomyelitis), S. aureus 8325-4, S. aureus ATCC 43300, S. aureus Newman, S. 422 

epidermidis ATCC 35984 (RP62A), and S. epidermidis ATCC 35983 (RP12); or unique or random 423 

clinical isolates such as S. aureus MN8 64; 65 and S. epidermidis 1457 66; 67. At the present time, there 424 

appears to be no consensus as to the best strain or rationale for strain selection. Culture collection 425 

strains have value in international access and traceability, and quite often a significant amount of 426 
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characterization including sequencing and performance in in vivo models. However, there is 427 

concern that even clinical isolates deposited in a culture collection may have lost certain virulence 428 

capabilities, or at least this is a challenge to quantify or certify. Freshly isolated clinical isolates 429 

therefore have an advantage of being closest to the active pathogen when in humans. However, 430 

these are lacking in accessibility and comparability to other models and may also lose virulence 431 

once passaged and distributed internationally. In the absence of clear guidance, it appears that the 432 

ideal situation would be to have a basic understanding of the clinical background to the strain, 433 

match it to the clinical question being modelled, and to know key genetically encoded virulence 434 

factors retained by the bacterium. In case more than one strain is analyzed, considering the use of 435 

particular “benchmark” strains (still to be selected) might provide better inter-study comparisons. 436 

A key virulence factor of S. aureus and in particular S. epidermidis is the ability to adhere and form 437 

biofilms directly on implant surfaces, which then protects them from antibiotics and the host’s 438 

immune system 68; 69. Both S. aureus and S. epidermidis are known to use cell-wall-anchored (CWA) 439 

proteins/adhesins such as fibrinogen (ClfA/Fbe/SdrG), fibronectin (FnBP/Ebh/Embp), collagen 440 

(Cna/SdrF), vitronectin (VnBP/AtlE,/Aae), bone sialoprotein (SdrE/Bhp) and elastin 441 

(FnbpA/EbpS) to initially adhere to the implant surface and to host extracellular matrix that covers 442 

the implant 70-74. They then accumulate to form a biofilm using various independent mechanisms, 443 

namely the polysaccharide intercellular adhesin (PNAG/PIA), synthesized by icaADBC-encoded 444 

proteins 66; 75; 76 or by proteinaceous factors independent of the icaADBC locus, which include S. 445 

aureus cell wall protein G (SasG) and S. epidermidis accumulation associated protein (Aap) 77; 78; 446 

extracellular matrix-binding protein (Ebh/Embp) 79-81; biofilm-associated protein (Bap) 82; and 447 

extracellular DNA (eDNA) 83; 84. Thus, the fact that closely related isolates can display different 448 

phenotypes and produce the above proteins differently and influence the ability of the S. aureus/S. 449 

epidermidis to adhere and form biofilms is an important factor to consider when choosing an 450 

isolate for certain in vivo studies. An in vivo ODRI study should therefore consider including a 451 

characterized benchmark strain of S. aureus and/or S. epidermidis known to form a biofilm by 452 

PNAG/PIA and SasG/Aap and Aap/SasG production, such as S. aureus MN8, S. aureus BAA-1707 453 

(MW2), S. epidermidis ATCC 35984 (RP62A), S. epidermidis 1457 and S. epidermidis 5179R1. A good 454 

summary of the characteristics of different types of S. aureus isolates, specifically methicillin-455 

resistant S. aureus (MRSA) strains, can be found in the supplementary data of Moneke et. al. 85. 456 
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Antibiotic resistance is another factor in identifying an appropriate pathogen for an in vivo ODRI 457 

study. Profiling the susceptibility of the selected pathogen to any antibiotic used in the study is 458 

essential. Resistance of biofilms formed by the isolate to the same antibiotic may also be beneficial 459 

for many studies, with care taken to report the protocols and methods used completely 86; 87.  460 

The last consideration for the strain/pathogen selection is whether to use fluorescently labelled 461 

isolates or bioluminescent isolates that with the proper optical imaging instrumentation can be 462 

visualized in situ 88; 89. Stable fluorescent-labelling requires genetic manipulation of the bacteria 463 

which is not always readily achievable and is particularly problematic when clinical isolates are 464 

being investigated. In any case, the resulting virulence of the modified pathogen must be compared 465 

to the unmodified wild-type isolate. Some research groups have now developed a variety of 466 

fluorescent reporter plasmids for labelling S. aureus by utilizing plasmids encoding either green 467 

fluorescent protein (GFP) or higher wavelength reporter variants for yellow (YFP) and red 468 

(mCherry) labelling 24; 88; 90-92. These reporters are placed under control of characterized 469 

promoters to enable constitutive or inducible expression using antibiotics such as 470 

chloramphenicol, erythromycin or tetracycline 90; 93. While fluorescent strains are very useful for 471 

in vitro studies, they have very limited value for in vivo studies because of the low intensity of the 472 

signal and quenching by the host tissue. In contrast, use of bioluminescent strains in animal models 473 

of ODRI can provide a longitudinal outcome measure of in vivo bacterial growth94. For therapy 474 

studies, bioluminescence can also be used to confirm the establishment of infection before 475 

randomizing the animals into treatment groups 56 However, in vitro, it has been shown that 476 

although bioluminescent signals correlate with planktonic growth, this correlation is lost during 477 

the transition from planktonic to the biofilm mode of growth 95. In line with this, any lack of 478 

luminescent signal in vivo, or reduction of signal over time, does not necessarily indicate reduction 479 

of viable numbers of bacteria 96. Apparently, viable bacteria with low metabolic state may persist 480 

and go unnoticed because of reduced luminescence. Thus, in vivo investigations of antimicrobial 481 

strategies results with bioluminescent strains should be interpreted with caution. Another point 482 

of attention is the localization of the infection; deep infections are less likely to be reliably 483 

monitored than superficial infections due to the different path length for the emitted light from the 484 

bacteria, and (non-physiologically) high numbers of bacteria may be needed to detect a signal.    485 
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Inoculum preparation 486 

While often overlooked or sparsely described, inoculum preparation protocols must be clearly 487 

defined, and should be fully disclosed in reporting or publishing animal studies of ODRI. This is 488 

important as the infection rate in any model will be related to the inoculum, and the ability to 489 

replicate any model across different laboratories must rely on this information. The essential 490 

minimum information to share includes the total number of colony forming units (CFU) 491 

administered to each animal, but also the exact conditions used for preparation of the inoculum 492 

e.g. using freshly prepared bacterial inocula or frozen aliquots, fresh bacteria suspended from 493 

colonies on agar plates of harvested from liquid culture, type of culture media, log phase or 494 

stationary phase bacteria, growth media, application of inocula in saline solution, pre-colonized on 495 

implants, or deposited with a collagen sponge, fibrin gel or other carrier material. Similarly, it is 496 

important to describe the storage conditions, including the time between preparation and 497 

administration of the bacterial inoculum, in addition to the means used to apply/deliver the 498 

bacteria into the target tissues, the volume and any method to limit the spread of bacteria in the 499 

implant or tissue site. 500 

Diagnosis/definition of implant related infection 501 

Preclinical in vivo studies by their nature, offer the possibility for thorough bacteriological and 502 

histological evaluations of the experimental animal. Basic knowledge of microbiological 503 

techniques regarding species identification and quantitative culturing methods is a prerequisite 504 

for reliable results. Since normal biological variation in animal experiments is a known, intrinsic 505 

challenge, attention should be directed to standardized sampling and homogenization or 506 

sonication of all samples to obtain reliable CFU counts. Similarly, all sampling locations should be 507 

accurately described, recognizing that small biopsies are at risk for missing bacteria; ideally each 508 

animal may be sampled in its entirety and include both bone and soft tissue as well as the implant 509 

(after sonication). For most models, sampling is only possible at a revision surgery or post mortem. 510 

However, the tissue cage model 23, does allow repeat sampling of the tissue cage fluid, which has 511 

significant advantages in terms of continuous monitoring of bacterial burden, immune cells or 512 

extracellular immune mediators. 513 
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Detection of infecting pathogens on the implant or in the tissues by conventional culture will 514 

usually have high sensitivity and specificity. However, clinical literature documents culture-515 

negative infections. This occurs when biopsies are culture negative, either due to sample error (not 516 

necessarily an issue in animal studies) or due to non-cultivable bacteria in some situations97; 98. 517 

Small colony variants (SCVs), subpopulations with a slow growth rate and atypical colony 518 

morphology, may develop and can only be detected in prolonged cultures 99. According to the 519 

current hypothesis, bacteria may also enter a viable but non-culturable (VBNC) state in particular 520 

within biofilms, but also as planktonic bacteria and under antibiotic treatment. This VNBC state 521 

may render bacteria unable to regrow when deposited on conventional microbiological media 98. 522 

This issue may be more prevalent for certain bacterial species, or for patients/animals undergoing 523 

antibiotic therapy. However, the exact conditions and mechanisms underlying the VNBC concept 524 

remain to be fully understood, but do represent a possible risk in ODRI studies. To maximize 525 

chances of accurate culture results, adopting clinical methods towards improved isolation and 526 

culture of biopsies should also be considered, i.e. sonication of biopsies and associated hardware 527 

components 100; 101 or the use of known biofilm-dispersing agents during sample processing102. 528 

Molecular technologies (e.g. PCR) that amplify bacterial DNA in samples have improved the 529 

culture- independent detection and identification of microorganisms in the past years 103. These 530 

techniques can be very sensitive and fast but must be thoroughly evaluated for the respective 531 

experimental setting. An efficient DNA-extraction protocol is crucial, and results are often only 532 

semi-quantitative, because the background of eukaryotic DNA in samples may hamper detection 533 

of the relatively minute amount bacterial DNA. In addition, these techniques detect bacterial DNA, 534 

but cannot indicate if the bacteria were living or dead at the time of sampling 104. 535 

Since culture as well as amplification-based methods require disintegration of the sample (and 536 

therefore disruption of biofilms), microscopic techniques are the only methods to date that can 537 

differentiate between the presence of single cells, microcolonies, and biofilms in tissues 105. In 538 

addition to Gram staining or immunohistochemical methods, FISH combines molecular detection 539 

of microorganisms with fluorescence microscopy and has been increasingly used for analysis of 540 

biofilm-associated infections 103; 106; 107. FISH can be applied to in vitro samples as well as to ex vivo 541 

samples from animal models or patients 108-111. Since FISH-probes hybridize ribosomal RNA, the 542 
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signal intensity correlates to the ribosome content and consequently activity of the cells. This 543 

allows both visualization and identification of the microorganisms, and also provides information 544 

about their spatial distribution and activity in situ 112 (Figure 4). FISH can localize and quantify 545 

planktonic cells, biofilms, or intracellular bacteria and can clarify potential problems such as 546 

contamination and mixed infections, or inoculation in an incorrect compartment (Figure 4). 547 

Consequently, FISH is increasingly used in infection models 109; 111; 113, although it is labor intensive 548 

and rather restricted to specialized laboratories. 549 

Finally, all bacteriological evaluations should involve a method to confirm that the infection 550 

observed in vivo is caused specifically by the inoculated strain and not another opportunistic host 551 

pathogen. In some cases, this may be performed on simple selective microbiological agars and 552 

subsequent phenotypical and/or biochemical characterization. More advanced PCR-based or 553 

sequencing techniques (e.g. Random Amplified Polymorphic DNA (RAPD)) will not only enable 554 

confirmation of the species identity of the infecting isolate, but also the strain and whether it 555 

matches the inoculated strain. Using fluorescently labeled bacterial strains might be a simpler way 556 

to confirm the identity of the inoculated strain, although co-infecting pathogens should also be 557 

ruled out (e.g. 24). 558 

6. Antibiotic/Antimicrobial administration 559 

In most preclinical in vivo studies, antimicrobial agents are often administered, either as part of 560 

the technology being tested, or as conventional administration as an adjunctive or comparison 561 

therapy. In general, minimal evaluation of the antimicrobial in use may require estimating the 562 

loading of the drug in the carrier, its release from the carrier or implant and its quantification in 563 

plasma or local tissues. Accurate, reliable estimates of these values require validated methods, 564 

with known limits of detection, limit of quantification, specificity and accuracy in physiological 565 

media. Antibiotic concentrations measured in tissue must be carefully considered, with awareness 566 

of the distinctive partitioning of different antibiotics into different tissue niches and protein 567 

binding 114. 568 

Systemically applied  569 
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Certain studies may require systemic antibiotic coverage either prophylactically or 570 

therapeutically. The goal of systemic antibiotic therapy may be to mimic human standard of care, 571 

or to prevent systemic infection. Systemic antibiotic therapy may be particularly appropriate in 572 

testing technologies that provide protection of the device, but do not release antimicrobials locally 573 

into the surrounding tissues (e.g. contact-killing or anti-adhesive coatings, bound agents). 574 

Administration of systemic antibiotics should be supported by a clear, clinically consistent 575 

rationale for antibiotic selection, timing, dosage, route and frequency. It is desirable to match the 576 

human clinical condition as closely as possible to ensure adequate regimens are used. Of course, 577 

safety and pharmacokinetics may need to be established in advance. Clearance of antibiotic from 578 

systemic circulation may be different in animals than in humans, and any study with a significant 579 

systemic antibiotic component, or the use of antibiotics not approved for animal use should 580 

consider a preliminary pharmacokinetic profile analysis. Simultaneously, potential (unreported) 581 

side effects can be investigated. Persistence of reliable ORDI in the model using systemic antibiotic 582 

regimens alone must first be asserted before efficacy of any other additional implant-focused 583 

antimicrobial strategies can be distinguished.  584 

While clinically relevant, no clear recommendations exist for testing an antimicrobial device in the 585 

absence versus presence of systemic antibiotic therapy. Decisions may be best dictated by the 586 

clinical problem in question, the experience with the animal model, and the expected protective or 587 

therapeutic bioactivity of the implant technology.  588 

Locally applied 589 

The majority of new antimicrobial technologies applied to medical devices involve antimicrobial 590 

agents released from the implant or carrier. As mentioned above, the total amount of antimicrobial 591 

dosed to each animal should be clearly described as a minimum, and an estimation of antimicrobial 592 

release (or retention) provided to assess the performance of the material/agent in vivo. It is also 593 

desirable to know the tissue/serum concentration of the released antimicrobial over time as well 594 

as a measurement of observed toxicities (both local and systemic) associated with local application 595 

of the material or antimicrobial. Local concentrations of antimicrobials in the surrounding tissue 596 

may be measured using ultrafiltration115 or micro-dialysis techniques116, post mortem or in 597 

biopsies using tissue extraction and known drug analysis methods116.  598 
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7. Common errors in in vivo ODRI studies 599 

The earliest reports of using animals to study ODRI date back many decades. In these earliest 600 

studies, certain protocols were used that are no longer considered best practice. There is a risk 601 

that these older practices persist when these older studies are used as a reference for new studies. 602 

Some of the more common errors in these studies are shown in Table 5.  603 

8. Outlook for Best Practices 604 

The goal of this opinion piece is to present a minimum set of requirements to be considered when 605 

planning an ODRI animal study. Broad application of these experimental design principles would 606 

aid the proper execution of preclinical animal ODRI studies so that improved results of these 607 

studies carry maximum weight and reliability, can be more easily transferred between 608 

laboratories, and can better support translation of these technologies into clinical practice. A list 609 

summarizing the key points recommended to be reported when publishing such studies is 610 

included as reference for the reader (Table 6). Although many outstanding questions for the field 611 

remain, guidance recommendations for best practices here should prompt further discussion in 612 

the ORDI research forum hopefully with the intent to standardize and validate these approaches. 613 

Importantly, many practices recommended here should also be listed in publications in the field 614 

to reinforce their value. Further methodological refinements or more absolute policy statements 615 

may be achieved via consensus between scientific and regulatory agencies and with careful 616 

reporting of future studies with provisions and details described here as a starting position. Such 617 

collaboration between researchers, regulatory frameworks, and medical device industry could 618 

also further clarify and maximize what can be reliably and accurately shown in animal studies and 619 

hopefully also minimize what must be shown in a clinical setting 13; 14. 620 

Given increasing reports of animal studies investigating ODRI from many geographic regions, steps 621 

towards global harmonization of methods, analytical and microbiological approaches, reporting 622 

requirements, reliability and reproducibility, validation and translational value must be 623 

considered seriously 2. Experimental facilities capable of performing in vivo preclinical studies are 624 

available across the globe. Hence, the conditions and resources of a research facility are not often 625 

a major barrier to conducting properly designed ODRI preclinical studies to safe, acceptable and 626 
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appropriate standards. Establishing minimum standards in designing and reporting these ODRI 627 

preclinical studies might stimulate wide-spread adoption and further, promote needed global 628 

harmonization and understanding of best practices. International guidelines are already available 629 

for governing animal welfare in medical research, and the antimicrobial implant study related 630 

parameters suggested in this document now provide a solid additional basis conducting 631 

antimicrobial preclinical studies in ODRI.   632 
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Figure legends 932 

Figure 1. Visualization of bacterial microcolonies with fluorescence in situ hybridization (FISH) in a 933 

patient with infected non-union after open bone fracture; an overview of bone material (green 934 

autofluorescence) with adjacent blood and tissue material. B and C magnifications of the inserts in A 935 

and B, respectively, showing bacteria close to the bone (DAPI channel in blue, shown in C in black and 936 

white). 937 

Figure 2. Schematic overview of the increasing complexity possible for testing antimicrobial 938 

strategies in preclinical in vivo models of ODRI. Increasing complexity of the model requires greater 939 

investment in expertise and instrumentation and may only be required as a technology reaches the 940 

late preclinical phase, or the intervention is particularly tied to a clinical situation in the target 941 

species. 942 

Figure 3. FISH of a tissue section from a subcutaneous implant infection mouse model colonized with 943 

coagulase-negative staphylococci. (A) Overview shows the histology of the tissue stained by nucleic 944 

acid stain DAPI (blue) and background auto-fluorescence (yellow/green). (B) Higher magnification 945 

reveals differential colonization of the tissue with parts with only few bacterial cells and parts with 946 

biofilms, as detected by the pan-bacterial probe EUB338 (green). Note the difference in FISH-signal 947 

intensity in individual bacterial cells (B) corresponding to the ribosome content and therefore 948 

activity of the bacteria. 949 

Figure 4. Abscess tissue from a mouse model infected with Enterococcus sp. (A) Overview shows 950 

infiltration by granulocytes (DAPI, blue) and bright auto-fluorescent material consistent with plant 951 

fibers (yellow/green). The insert (B) at higher magnification shows FISH of different bacterial 952 

populations colonizing the fibers. The identical microscopic field with separate microscopic channels 953 

reveals the strong autofluorescence of the fibers (B1, nonsense FISH probe NONEUB338, green), 954 

whereas bacteria of different morphologies are detected by the pan-bacterial FISH probe EUB338 (B2, 955 

magenta). Only one population is detected by the Enterococcus-specific FISH probe (B3, yellow). DAPI 956 

show some cell nuclei in addition to the bacteria (B4, blue). Although the mouse was only inoculated 957 

with Enterococcus, FISH revealed a multispecies infection possibly resulting from a gut perforation. 958 


