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A mixed variational framework for the design of energy-momentum

integration schemes based on convex multi-variable

electro-elastodynamics

M. Franke1, R. Ortigosa2, A. Janz, A. J. Gil3, P. Betsch

Abstract

In [34], the authors presented a new family of time integrators for large deformation elec-
tromechanics. In that paper, definition of appropriate algorithmic expressions for the discrete
derivatives of the internal energy and consideration of multi-variable convexity of the internal en-
ergy was made. These two ingredients were essential for the definition of a new energy-momentum
(EM) time integrator in the context of large deformation electromechanics relying on materially
stable (ellipticity compliant) constitutive models. In [8], the authors introduced a family of EM
time integrators making use of mixed variational principles for large strain mechanics. In addi-
tion to the displacement field, the right Cauchy-Green deformation tensor, its co-factor and its
Jacobian were introduced as unknown fields in the formulation. An elegant cascade system of
kinematic constraints was introduced in this paper, crucial for the satisfaction of the required con-
servation properties of the new family of EM time integrators. The objective of the present paper
is the introduction of new mixed variational principles for EM time integrators in electromechan-
ics, hence bridging the gap between the previous work presented by the authors in References
[34] and [8], opening up the possibility to a variety of new Finite Element implementations. The
following characteristics of the proposed EM time integrator make it very appealing: (i) the new
family of time integrators can be shown to be thermodynamically consistent and second order
accurate; (ii) piecewise discontinuous interpolation of the unknown fields (except displacements
and electric potential) has been carried out, in order to yield a computational cost comparable
to that of standard displacement-potential formulations. Finally, a series of numerical examples
are included in order to demonstrate the robustness and conservation properties of the proposed
scheme, specifically in the case of long-term simulations.

Keywords: Mixed variational framework, electroactive polymer, electro-elastodynamics,
multi-variable convexity, energy-momentum scheme.

1. Introduction

Dielectric elastomers, [27, 39–41] represent an important family of Electro Active Polymers
(EAPs) which are well-known for their outstanding actuation capabilities and low stiffness prop-
erties, which makes them ideal for their use as soft robots [28, 33]. Other important applications
for dielectric elastomers include braille displays, deformable lenses, haptic devices and energy
generators, to name but a few [12].

The finite element simulation of these materials [15, 26, 50–53] relies on the definition of
a suitable constitutive model. It is customary to propose an invariant-based representation of
the Helmholtz energy functional (depending upon the deformation and the electric field). Other

1Corresponding author: marlon.franke@kit.edu
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3Corresponding author: a.j.gil@swansea.ac.uk
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authors prefer to propose a constitutive model based on the invariant representation of the internal
energy (depending upon the deformation and the electric displacement field). Motivated by the
possible loss of ellipticity [5, 30, 46, 47] of the Helmholtz functional, Gil and Ortigosa [19, 35, 36]
advocated for the use of the internal energy functional for the definition of constitutive models in
nonlinear electro-mechanics. In essence, the authors postulated a definition of the internal energy
convex with respect to an extended set of arguments, namely the deformation gradient tensor F ,
its co-factor H , its Jacobian J , the Lagrangian electric displacement field D0 and d, defined as
d = FD0 and proved that this definition satisfies the ellipticity condition unconditionally. In the
absence of electric effects, where the two last arguments vanish, the proposed definition coincides
with the well established concept of polyconvexity [2, 3].

Very recently, the authors in [34] proposed a new energy-momentum (EM in the sequel) pre-
serving time integrator [6, 20, 48] for reversible electro-elastodynamics building upon the works
[18, 22, 24, 25]. As shown in [34], the new EM time integrator proved to be very robust and accu-
rate for the long-term simulation of EAPs. The consistent implicit EM time integration scheme
developed inherits the conservation laws of total energy, linear momentum, angular momentum
and electric charge.

In the purely mechanical case [22, 24], the thermodynamical consistency of these methods is
ensured by virtue of replacing the (exact) derivative of the strain energy with respect to the right
Cauchy-Green deformation tensor (i.e. the consistent second Piola-Kirchhoff stress tensor) with
its algorithmic counterpart. The latter, denoted as discrete derivative [7, 18, 20, 43] must be
defined in compliance with the so-called directionality property. Specially relevant for the work
carried out in this manuscript is the recent work by Betsch et al. [8], where a new consistent EM
time integration scheme has been developed in the context of polyconvex elasticity. Essentially,
these authors proposed the consideration of three discrete derivatives of the strain energy. Each
discrete derivative represents the algorithmic counterpart of the work conjugates of the right
Cauchy-Green deformation tensor, its co-factor and its determinant. In comparison to previously
proposed discrete derivative expressions (see e.g. [20, 23]), the new stress formula in [8, 18] assumes
a remarkably simple form. A key factor for that simplification is the use of a tensor cross product
pioneered by the Boer [13] and employed for the first time by Bonet et al. [9, 10] in the case of
nonlinear electromechanics [19, 35–37].

Building upon the work presented in References [34] and [8], the objective of this paper is
to develop a new EM time integrator in the context of electro-elastodynamics based on a mixed
variational formulation where the right Cauchy-Green deformation tensor, its co-factor and its
determinant are parts of the unknown fields. The resulting new formulation opens up several
possibilities in terms of its spatial discretisation and subsequent computational finite element
implementation.

The outline of this paper is as follows: in Section 2, some basic principles of kinematics are
presented. The governing equations in nonlinear electro-elastodynamics are also presented in this
section. The concept of multi-variable convexity and its importance from the material stability
point of view is presented in Section 3. Section 4 starts with the three-field mixed formulation
presented in [19] in the context of static electromechanics. Its extension to electro-elastodynamics
is then carried out by defining the appropriate action integral. After derivation of the stationary
conditions of the action integral, Section 5 introduces a new one-step implicit EM time integration
scheme for electro-elastodynamics. Section 6 briefly describes the finite element implementation
of the new time integration scheme and Section 7 presents eight numerical examples in order to
validate the conservation properties and robustness of the new scheme. Finally, Section 8 provides
some concluding remarks. For completeness, Appendix A outlines the definitions of the discrete
derivatives featuring in the proposed time integrator in Section 5.
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2. Nonlinear continuum electromechanics

A brief introduction into nonlinear continuum electromechanics and the relevant governing
equations will be presented in this section.

2.1. Kinematics: motion and deformation

Let us consider the motion of an EAP with reference configuration B0 ∈ R3 and its boundary
∂B0 with unit outward normal N (refer to Fig. 1). During its motion, the EAP occupies a
deformed configuration B ∈ R

3 with boundary ∂B and unit outward normal n. The motion of
the EAP is defined by the mapping φ (X, t), which links a material particle from the reference
configuration X ∈ B0 to the deformed configuration x ∈ B according to x = φ (X, t). Associated
with φ (X, t) it is possible to define the deformation gradient tensor F φ [4, 11, 14, 21] as

F φ = ∇0φ (X, t) ; FφiI =
∂φi

∂XI
. (1)

The deformation gradient tensor F φ
4 relates a fibre of differential length from the material

configuration dX to the deformed configuration dx = F φdX. In addition, differential area vector
and volume elements in the reference configuration, dA (colinear with N) and dV respectively,
are mapped to the deformed configuration da (colinear with n) and dv, respectively, by means
of the co-factor or adjoint tensor Hφ as da = HφdA and the Jacobian Jφ as dv = JφdV ,
respectively. Both Hφ and Jφ can be related to F φ as

Hφ = (detF φ)F
−T
φ ; Jφ = detF φ. (2)

x1, X1

x2, X2

x3, X3

B0

∂B0

dV

NdA

dX

X

Jφ

H
φ

F
φ

F
φ

φ(X)

∂B
B

dv

nda

dx

x

Figure 1: Deformation mapping φ (X, t) and kinematic variables {Fφ,Hφ, Jφ}.

4Subscript φ is included throughout the paper in order to emphasise the geometrically exact deformation term.
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Equivalent expressions to those in (2) can be obtained by making use of the tensor cross
product operation introduced by de Boer [13] and defined as

Hφ =
1

2
F φ F φ; HφiI =

1

2
EijkEIJKFφjJFφkK ; (3a)

Jφ =
1

3
Hφ : F φ; Jφ =

1

3
HφiIFφiI , (3b)

where Eijk (or EIJK) symbolises the third order alternating tensor components5 and the use of
repeated indices implies summation, unless otherwise stated.

2.2. Governing equations in nonlinear electromechanics: conservation of linear momentum and
angular momentum

The local form of the balance of linear momentum [21] can be written as

ρ0v̇ − DIV (F φS)− f 0 = 0; in B0;

(F φS)N = t0; on ∂tB0;

φ = φ̄; on ∂φB0;

φ(t = 0) = φ0; in B0;

v(t = 0) = v0; in B0,

(4)

where ρ0 : B0 → R+ represents the mass density of the EAP in the reference configuration, v
the velocity field and (•̇) denotes differentiation with respect to time. f 0 represents a body force
per unit undeformed volume B0 and t0, the traction force per unit undeformed area applied on
∂tB0 ⊂ ∂B0, where ∂tB0 ∪ ∂φB0 = ∂B0 and ∂tB0 ∩ ∂φB0 = ∅. Furthermore, φ0 and v0 denote the
initial configuration and velocity, respectively. Finally, S represents the second Piola-Kirchhoff
stress tensor and the local balance of angular momentum leads to the well-known tensor condition
S = ST . Note that S depends on the displacement and the electrical field and is comprised of
unsymmetrical mechanical and an electrical contributions.

2.3. Governing equations in non-linear electromechanics: Gauss’s and Faraday’s laws

In the absence of magnetic and time dependent effects, Maxwell equations reduce to Gauss’s
and Faraday’s laws. The local form of the Gauss law [31, 32, 49] can be written in a Lagrangian
setting as

DIVD0 − ρe0 = 0; in B0;

D0 ·N = −ωe
0; on ∂ωB0,

(5)

where D0 is the Lagrangian electric displacement vector, ρe0 represents an electric volume charge
per unit of undeformed volume B0 and ωe

0, an electric surface charge per unit of undeformed area
∂ωB0 ⊂ ∂B0. Alternatively, the spatial electric displacement vector D can be obtained through
the area push forward relationship D0 = HT

φD, [15, 16]. The local form of the static Faraday’s
law can be written in a Lagrangian setting as

E0 = −∇0ϕ; in B0;

ϕ = ϕ̄; on ∂ϕB0,
(6)

where E0 is the Lagrangian electric field vector and ϕ, the scalar electric potential. In (6), ∂ϕB0

represents the part of the boundary ∂B0 where essential electric potential boundary conditions
are applied, where ∂ωB0 ∪ ∂ϕB0 = ∂B0 and ∂ωB0 ∩ ∂ϕB0 = ∅. The spatial electric field vector E
can be obtained through the standard fibre transformation E0 = F T

φE [15, 16].

5Lower case indices {i, j, k} will be used to represent the spatial configuration whereas capital case indices
{I, J,K} will be used to represent the material description.
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3. Constitutive equations in nonlinear electro-elasticity

The governing equations presented in Section 2 are coupled by means of a suitable constitutive
law. The objective of the following section is to introduce some notions on constitutive laws in
nonlinear electro-elasticity.

3.1. Multi-variable convexity

In the case of reversible electro-elasticity, the internal energy density e per unit of undeformed
volume can be defined in terms of the deformation and the electric displacement field, namely
e = e(∇0φ,D0) [32]. Motivated solely by considerations of material stability, Gil and Ortigosa
[19, 35, 36, 38] extended the concept of polyconvexity [1–3] to the context of electromechanics
and defined new convexity restrictions on the internal energy, postulating a convex multi-variable
definition as

e (∇0φ,D0) = W (F φ,Hφ, Jφ,D0,d) ; d = F φD0, (7)

where W must be a convex function with respect to the extended set V = {F φ,Hφ, Jφ,D0,d}.
Crucially, the above convex multi-variable representation in (7) satisfies the concept of elliptic-
ity for the entire range of deformations and electric displacement fields. In addition, for the
requirement of objectivity, the convex multi-variable energy W (7) can be re-expressed as

e (∇0φ,D0) = ẽ (Cφ,D0) = W̃obj (Cφ,Gφ, Cφ,D0,CφD0) = W̃ (Cφ,Gφ, Cφ,D0) , (8)

where ẽ represents the internal energy in terms of the right Cauchy-Green strain tensor Cφ and

D0. Moreover, W̃ denotes the internal energy expressed in terms of the extended symmetric
mechanical kinematic set {Cφ,Gφ, Cφ}, defined as

Cφ = F T
φF φ; Gφ =

1

2
Cφ Cφ = HT

φHφ; Cφ =
1

3
Gφ : Cφ = J2

φ, (9)

and D0.

3.2. The Helmholtz energy function

The convex multi-variable nature of the internal energy e (∇0φ,D0) ensures convexity of

e (∇0φ,D0), ẽ (Cφ,D0) and W̃ (Cφ,Gφ, Cφ,D0) with respect to D0. Consequently, a one-to-
one and invertible relationship between variablesD0 andE0 can always be established. Therefore,
it is possible to make use of a partial Legendre transform of the internal energy which leads to
the definition of the Helmholtz energy functional W̃Φ(Cφ,Gφ, Cφ,E0) (refer to [19]) as

W̃Φ(Cφ,Gφ, Cφ,E0) = − sup
D0

{
E0 ·D0 − W̃ (Cφ,Gφ, Cφ,D0)

}
. (10)

4. Electro-Elastodynamics

The objective of this section is to present the variational formulation that will be used in order
to develop an EM time integration scheme in Section 5.

4.1. Extension to electro-elastodynamics

A point of departure is the following action integral [34]

LW̃ (v,φ, ϕ,D0) =

∫ t

t0

(∫

B0

(
φ̇−

1

2
v

)
· ρ0v dV −

∫

B0

W̃ (Cφ,Gφ, Cφ,D0) dV

−

∫

B0

D0 ·∇0ϕdV +Πm
ext (φ) + Πe

ext (ϕ)

)
dt,

(11)
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where t0 and t represent any two instances of time with t > t0. Furthermore, in (11) the external
contributions Πm

ext and Πe
ext are defined as

Πm
ext (φ) =

∫

B0

f0 · φ dV +

∫

∂tB0

t0 · φ dA; Πe
ext (ϕ) = −

∫

B0

ρe0ϕdV −

∫

∂ωB0

ωe
0ϕdA. (12)

The objective of this section is to extend the above action integral LW̃ in (11), with the
purpose of deriving a new mixed formulation where strain measures and stress fields are also part
of the unknown fields of the problems. Starting with the four field action integral LW̃ in (11),

originally introduced in [34], the following ten field action integral L̂W̃ is proposed,

L̂W̃ (v,φ, ϕ,D0,D,Λ) =

∫ t

t0

(∫

B0

(
φ̇−

1

2
v

)
· ρ0v dV − ΠW̃ (φ, ϕ,D0,D,Λ)

)
dt;

ΠW̃ (φ, ϕ,D0,D,Λ) =

∫

B0

W̃ (C,G, C,D0) dV +

∫

B0

D0 ·∇0ϕdV

+

∫

B0

ΛC : (Cφ −C) dV +

∫

B0

ΛG :

(
1

2
C C −G

)
dV

+

∫

B0

ΛC

(
1

3
C : G− C

)
dV − Πm

ext (φ)−Πe
ext (ϕ) ,

(13)

and with the sets D = {C,G, C} and Λ = {ΛC ,ΛG,ΛC}. It is worth emphasising that whilst
the action integral LW̃ (11) depends on the geometrically exact measures {Cφ,Gφ, Cφ}, the new

action integral L̂W̃ in (13) depends on the set of independent unknown fields {C,G, C} which
are not in general geometrically compatible, i.e. C 6= Cφ, G 6= Gφ and C 6= Cφ in a point-wise
manner. Furthermore, in (13) {v,φ, ϕ,D0,D,Λ} ∈ Vφ × Vφ × Vϕ × VD0 × VD × VD, with
V

D = V
C × V

G × V
C , where

V
φ =

{
φ : B0 → R

3; φ ∈ H1 (B0) | Jφ > 0, φ = φ̄ on ∂φB0

}
;

V
ϕ =

{
ϕ : B0 → R; ϕ ∈ H1 (B0) | ϕ = ϕ̄ on ∂ϕB0

}
;

V
D0 =

{
D0 : B0 → R

3; (D0)I ∈ L2 (B0)
}
; V

C = {C : B0 → S; CIJ ∈ L2 (B0)} ;

V
G = {G : B0 → S; GIJ ∈ L2 (B0)} ; V

C = {C : B0 → R; C ∈ L2 (B0)} ,
(14)

where H1 denotes the Sobolev functional space of square integrable functions and derivatives, L2,
the space of square integrable functions and S, the space of symmetric second order tensors. By
means of Hamilton’s principle, the stationary conditions of L̂W̃ in (13) with respect to variations
{δv, δφ, δϕ, δD0} are

Wv =

∫

B0

(
v − φ̇

)
· ρ0δv dV = 0;

Wφ =

∫

B0

ρ0v̇ · δφ dV +

∫

B0

ΛC : DCφ[δφ] dV −

∫

B0

f0 · δφ dV −

∫

∂tB0

t0 · δφ dA = 0;

Wϕ =

∫

B0

D0 ·∇0δϕ dV +

∫

B0

ρe0δϕ dV +

∫

∂ωB0

ωe
0δϕ dA = 0;

WD0
=

∫

B0

δD0 ·
(
∂D0

W̃ +∇0ϕ
)
dV = 0,

(15)

with the admissible variations defined as {δv, δφ, δϕ, δD0} ∈ V
φ
0 × V

ϕ
0 × VD0, being

V
φ
0 =

{
φ : B0 → R

3; φ ∈ H1 (B0) | φ = 0 on ∂φB0

}
;

V
ϕ
0 =

{
ϕ : B0 → R

3; ϕ ∈ H1 (B0) | ϕ = 0 on ∂ϕB0

}
.

(16)
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Note that integration by parts with respect to time has been used on the inertia term of (15)b.
Equation (15)a represents the weak form for the relationship between the velocity field v and
the time derivative of the mapping φ and equation (15)b, the balance of linear momentum (4).
Notice that in (15)b, the Lagrange multiplier ΛC coincides in a weak sense with half of the second
Piola-Kirchhoff stress tensor S. Eventually, equations (15)c and (15)d represent the weak forms
of the Gauss (5) and Faraday (6) laws, respectively. The stationary conditions of L̂W̃ (13) with
respect to variations δD yield,

WC =

∫

B0

δC :

(
∂CW̃ −ΛC +ΛG C +

1

3
ΛCG

)
dV = 0;

WG =

∫

B0

δG :

(
∂GW̃ −ΛG +

1

3
ΛCC

)
dV = 0;

WC =

∫

B0

δC
(
∂CW̃ − ΛC

)
dV = 0,

(17)

with {δC, δG, δC} ∈ VC ×VG ∈ VC . Notice that equation (17) represents the weak form of the
constitutive equations. Finally, the stationary conditions of L̂W̃ (13) with respect to δΛ are

WΛC
=

∫

B0

δΛC : (Cφ −C) dV = 0;

WΛG
=

∫

B0

δΛG :

(
1

2
C C −G

)
dV = 0;

WΛC
=

∫

B0

δΛC

(
1

3
C : G− C

)
dV = 0,

(18)

with {δΛC , δΛG, δΛC} ∈ VC × VG ∈ VC . It is worth emphasising that equation (18) rep-
resents the weak form of the kinematic constraints. This particular choice of kinematic con-
straints, taken from the EM time integrator presented by Betsch et. al. [8] in the context
of elastodynamics, is crucial for the design of the EM time integration scheme in Section 5.

Remark 1. As shown in [8], differentiation with respect to time of the kinematic constraints in
(18) yields the consistency conditions in the continuous setting

ẆΛC
=

d

dt

(∫

B0

δΛC : (Cφ −C) dV

)
=

∫

B0

δΛC :
(
Ċφ − Ċ

)
dV = 0;

ẆΛG
=

d

dt

(∫

B0

δΛG :

(
1

2
C C −G

)
dV

)
=

∫

B0

δΛG :
(
C Ċ − Ġ

)
dV = 0;

ẆΛC
=

d

dt

(∫

B0

δΛC

(
1

3
C : G− C

)
dV

)
=

∫

B0

δΛC

(
1

3
Ċ : G+

1

3
C : Ġ− Ċ

)
dV = 0.

(19)

4.2. Balance laws and integrals in electro-elastodynamics
Starting with the stationary conditions (15) the following sections derive the global conserva-

tion laws that govern the motion of the EAP.

4.2.1. Global form for conservation of linear momentum

For a displacement field δφ = ξ, with R3 ∋ ξ = const., the stationary condition in (15)b leads
to the global form of the conservation of linear momentum, namely

L̇− F ext = 0; L =

∫

B0

ρ0v dV ; F ext =

∫

∂tB0

t0 dA+

∫

B0

f 0 dV, (20)

where L represents the total linear momentum and F ext, the total external force. From (20) it is
possible to conclude that L is a constant of motion for the case of vanishing external forces F ext.

7



4.2.2. Global form for conservation of angular momentum

For a rotational field δφ = ξ × φ, with R3 ∋ ξ = const., the stationary condition in (15)b
leads to the global form of the conservation of angular momentum, namely

J̇ −M ext = 0; J =

∫

B0

φ× ρ0v dV ; M ext =

∫

∂tB0

φ× t0 dA+

∫

B0

φ× f0 dV, (21)

where J represents the total angular momentum and M ext, the total external torque. From (21),
it is clear that J is a constant of motion for vanishing external torques M ext.

4.2.3. Global form for Gauss’s law

Taking δϕ = ξ, with R ∋ ξ = const., the stationary condition Wϕ in (15)c leads to the global
form of the Gauss’ law ∫

B0

ρe0 dV +

∫

∂ωB0

ωe
0 dA = 0. (22)

Then, for time independent volumetric and surface electrical charges ρe0 and ωe
0, equation (22)

dictates that the total electric charge of the system is conserved and equal to zero.

4.2.4. Global form for conservation of energy

Let us replace the test functions {δv, δφ, δϕ, δD0} in (15) with {v̇, φ̇, ϕ̇, Ḋ0} ∈ V
φ
0 × V

φ
0 ×

V
ϕ
0 × VD0 . This yields

∫

B0

(
v − φ̇

)
· ρ0v̇ dV = 0;

∫

B0

ρ0v̇ · φ̇ dV +

∫

B0

ΛC : Ċφ dV −

∫

B0

f 0 · φ̇ dV −

∫

∂tB0

t0 · φ̇ dA = 0;

∫

B0

D0 ·∇0ϕ̇ dV +

∫

B0

ρe0ϕ̇ dV +

∫

∂ωB0

ωe
0ϕ̇ dA = 0;

∫

B0

Ḋ0 ·
(
∂D0

W̃ +∇0ϕ
)
dV = 0.

(23)

Let us now replace {δC, δG, δC} in (17) with {Ċ, Ġ, Ċ} ∈ VC × VG × VC , namely

∫

B0

Ċ :

(
∂CW̃ −ΛC +ΛG C +

1

3
ΛCG

)
dV = 0;

∫

B0

Ġ :

(
∂GW̃ −ΛG +

1

3
ΛCC

)
dV = 0;

∫

B0

Ċ
(
∂CW̃ − ΛC

)
dV = 0.

(24)

Similarly, let us replace {δΛC , δΛG, δΛC} in (19) with {ΛC ,ΛG,ΛC} ∈ VC×VG×VC , namely

∫

B0

ΛC :
(
Ċφ − Ċ

)
dV = 0;

∫

B0

ΛG :
(
C Ċ − Ġ

)
dV = 0;

∫

B0

ΛC

(
1

3
Ċ : G+

1

3
C : Ġ− Ċ

)
dV = 0.

(25)
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Addition of equations (23), (24) and subtraction of (25) leads, in the case of time independent
forces f 0 and t0 and charges ρe0 and ωe

0 to

K̇ +

∫

B0

(
∂CW̃ : Ċ + ∂GW̃ : Ġ+ ∂CW̃ Ċ + ∂D0

W̃ · Ḋ0

)
dV

+

∫

B0

(
D0 ·∇0ϕ̇+ Ḋ0 ·∇0ϕ

)
dV − Π̇m

ext (φ)− Π̇e
ext (ϕ) = 0,

(26)

where K =
∫
B0

1
2
ρ0v · v dV in (26) represents the total kinetic energy of the system. Finally,

equation (26) can be re-written as

K̇ +

∫

B0

˙̃
W (C,G, C,D0) dV +

∫

B0

d

dt
(D0 ·∇0ϕ) dV − Π̇m

ext (φ)− Π̇e
ext (ϕ) = 0. (27)

It is therefore clear that in the case of time independent forces and electric charges, the
following condition holds

ḢW̃ = 0; HW̃ = K +

∫

B0

W̃ (C,G, C,D0) dV +

∫

B0

D0 ·∇0ϕdV −Πm
ext (φ)−Πe

ext (ϕ) , (28)

and obviously the scalar field HW̃ is preserved throughout the motion of the EAP. Note that HW̃

can be regarded as the total Hamiltonian, defined through the following Legendre transformation

HW̃ (p,φ, ϕ,D0) = sup
v

{∫

B0

p · v dV − L̂W̃ (v,φ, ϕ,D0)

}
, (29)

where p = ρ0v denotes the linear momentum per unit undeformed volume B0.

5. Energy-Momentum integration scheme for electro-elastodynamics

The objective of this section is to propose an EM preserving time discretisation scheme for
the set of weak forms given in (15), (17) and (18).

5.1. Design of the EM scheme

Let us consider a sequence of time steps {t1, t2, ..., tn, tn+1}, where tn+1 denotes the endpoint
of the current time step. From the stationary conditions in (15), the following implicit one-step
time integrator is proposed

(Wv)algo =

∫

B0

(
vn+1/2 −

∆φ

∆t

)
· ρ0δv dV = 0;

(Wφ)algo =

∫

B0

ρ0
∆v

∆t
· δφ dV +

∫

B0

ΛC : (DCφ[δφ])algo dV −

∫

B0

f0n+1/2
· δφ dV

−

∫

∂tB0

t0n+1/2
· δφ dA = 0;

(Wϕ)algo =

∫

B0

D0n+1/2
·∇0δϕ dV +

∫

B0

ρe0n+1/2
δϕ dV +

∫

∂ωB0

ωe
0n+1/2

δϕ dA = 0;

(WD0
)algo =

∫

B0

δD0 ·
(
DD0

W̃ +∇0ϕn+1/2

)
dV = 0.

(30)

Note that (Wv)algo, (Wφ)algo, (Wϕ)algo and (WD0
)algo in (30) represent the algorithmic or

time discrete versions of the stationary conditions in (15) and (•)n+1/2 = 1
2

(
(•)n+1 + (•)n

)
and

∆ (•) = (•)n+1 − (•)n. Furthermore the Lagrange multipliers Λ(•) are constant throughout the

9



timestep, such that Λ(•) := Λ(•)n,n+1
. In equation (30)b, where the algorithmic or time discrete

directional derivative (DCφ[δφ])
algo is defined as

(DCφ[δφ])algo =
(
(∇0δφ)

T
F φn+1/2

+ F T
φn+1/2

∇0δφ
)
. (31)

In addition, following [8], the algorithmic counterparts of the stationary conditions WC , WG

and WC in (17) are

(WC)algo =

∫

B0

δC :

(
DCW̃ −ΛC +ΛG Cn+1/2 +

1

3
ΛCGn+1/2

)
dV = 0;

(WG)algo =

∫

B0

δG :

(
DGW̃ −ΛG +

1

3
ΛCCn+1/2

)
dV = 0;

(WC)algo =

∫

B0

δC
(
DCW̃ − ΛC

)
dV = 0.

(32)

Finally, following [8], the algorithmic counterpart of the stationary conditions WΛC
, WΛG

and
WΛC

(18) are

(WΛC
)algo =

∫

B0

δΛC :
(
Cφn+1

−Cn+1

)
dV = 0;

(WΛG
)algo =

∫

B0

δΛG :

(
1

2
Cn+1 Cn+1 −Gn+1

)
dV = 0;

(WΛC
)algo =

∫

B0

δΛC

(
1

3
Cn+1 : Gn+1 − Cn+1

)
dV = 0.

(33)

In (30) and (32), {DCW̃ ,DGW̃ ,DCW̃ ,DD0
W̃} represent the discrete derivatives (see next

section) of the internal energy W̃ with respect to {C,G, C,D0}, respectively. In particular

{DCW̃ ,DGW̃ ,DCW̃ ,DD0
W̃} are the algorithmic or time discrete counterparts of {∂CW̃ , ∂GW̃ , ∂CW̃ , ∂D0

W̃
respectively.

5.1.1. Discretive derivatives of the internal energy

In this work, we make use of the same definition of the discrete derivative expressions DCW̃ ,
DGW̃ , DCW̃ and DD0

W̃ of the internal energy proposed in [34]. These discrete derivatives were
derived for the EM time integrator proposed in [34], which stemmed from the four field action
integral LW̃ in (11). However, as it will be shown in Section 5.2, the expressions for the discrete

derivatives DCW̃ , DGW̃ , DCW̃ and DD0
W̃ in [34] comply also with the required conservation

properties of the new time integrator in equations (30), (32) and (33).
For completeness, the expressions for the discrete derivatives have been included in Appendix A.

It was proven in [34] that the proposed expressions for the discrete derivatives satisfy the following
two crucial properties for the design of EM time integrators, namely:

- They fulfil the so called directionality property [18, 20],

DCW̃ : ∆C +DGW̃ : ∆G+DCW̃∆C +DD0
W̃ ·∆D0 = ∆W̃ . (34)

This property is critical for the algorithm in (30) to preserve energy under zero or time
invariant external forces and electric charges.

- They are well defined in the limit as ||∆C|| → 0, ||∆G|| → 0, ||∆C|| → 0 and ||∆D0|| → 0.
Furthermore, the proposed EM time integrator is second order accurate, such that

D
Ṽ
W̃ = D

Ṽ
W̃

(
Ṽn+1/2

)
+O

(
∆t2

)
; Ṽ = {C,G, C,D0}. (35)
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Remark 2. Although not pursued in this work (from the computational standpoint), it is possible
to derive a Helmholtz-based EM time integrator very similar to the internal energy-based EM time
integrator proposed in (30), (32) and (33). For the Helmholtz-based time integrator, depending

upon the Helmholtz’s energy functional W̃Φ in (10), similar to equation (30) one may introduce

(Wv)algo =

∫

B0

(
vn+1/2 −

∆φ

∆t

)
· ρ0δv dV = 0;

(Wφ)algo =

∫

B0

ρ0
∆v

∆t
· δφ dV +

∫

B0

ΛC : (DCφ[δφ])algo dV −

∫

B0

f 0n+1/2
· δφ dV

−

∫

∂tB0

t0n+1/2
· δφ dA = 0;

(Wϕ)algo = −

∫

B0

DE0
W̃Φ ·∇0δϕ dV +

∫

B0

ρe0n+1/2
δϕ dV +

∫

∂ωB0

ωe
0n+1/2

δϕ dA = 0.

(36)

with (DC[δφ])algo defined as in (31) and with DE0
W̃Φ representing the discretive derivative of

W̃Φ with respect to E0. The algorithmic stationary conditions {(WC)algo , (WG)algo , (WC)algo}
for the Helmholtz-based time integrator are

(WC)algo =

∫

B0

δC :

(
DCW̃Φ −ΛC +ΛG Cn+1/2 +

1

3
ΛCGn+1/2

)
dV = 0;

(WG)algo =

∫

B0

δG :

(
DGW̃Φ −ΛG +

1

3
ΛCCn+1/2

)
dV = 0;

(WC)algo =

∫

B0

δC
(
DCW̃Φ − ΛC

)
dV = 0,

(37)

where {DCW̃Φ, DGW̃Φ, DCW̃Φ} represent the discrete derivatives of W̃Φ with respect to {C,G, C}.
Finally, the algorithmic stationary conditions {(WΛC

)algo , (WΛG
)algo , (WΛC

)algo} are identical to
those for the internal energy-based time integrator in (33), namely

(WΛC
)algo =

∫

B0

δΛC :
(
Cφn+1

−Cn+1

)
dV = 0;

(WΛG
)algo =

∫

B0

δΛG :

(
1

2
Cn+1 Cn+1 −Gn+1

)
dV = 0;

(WΛC
)algo =

∫

B0

δΛC

(
1

3
Cn+1 : Gn+1 − Cn+1

)
dV = 0.

(38)

It can be proven that identical expressions for the discrete derivatives {DCW̃Φ, DGW̃Φ, DCW̃Φ, DE0
W̃Φ}

as those for {DCW̃ ,DGW̃ ,DCW̃ ,DD0
W̃} in (30) (refer to Appendix A) guarantee the direction-

ality property of the Helmholtz-based EM time in (36)-(38) and hence, its required conservation
properties.

5.2. Discrete form of the balance laws and integrals in electro-dynamics

We next show that the proposed scheme is capable to satisfy important balance laws in analogy
to the continous formulation treated in Section 4.2.
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5.2.1. Discrete form of the global form for conservation of linear momentum

Following a similar procedure to that in Section 4.2.1, taking δφ = ξ, with R3 ∋ ξ = const.
in Wφ in (30)b yields

∆L

∆t
− F ext

n+1/2 = 0; F ext
n+1/2 =

∫

∂tB0

t0n+1/2
dA+

∫

B0

f 0n+1/2
dV, (39)

From equation (39) and for vanishing external forces F ext
n+1/2, it can be seen that the total

linear momentum L remains constant.

5.2.2. Discrete form of the global form for conservation of angular momentum

Taking δφ = ξ × φn+1/2, with R3 ∋ ξ = const. in Wφ in (30)b yields

∆J

∆t
−M ext

n+1/2 = 0; M ext
n+1/2 =

∫

∂tB0

φn+1/2 × t0n+1/2
dA+

∫

B0

φn+1/2 × f 0n+1/2
dV. (40)

From equation (40) and for vanishing external torques M ext
n+1/2, it can be seen that the total

angular momentum J remains constant.

5.2.3. Discrete form of the global form for the Gauss law

Taking δϕ = ξ, with R ∋ ξ = const., the weak form Wϕ in (30) leads to

∫

B0

ρe0n+1/2
dV +

∫

∂ωB0

ωe
0n+1/2

dA = 0. (41)

For time independent volumetric and surface electrical charges ρe0 and ωe
0, (41) shows that the

total electrical charge is zero.

5.2.4. Discrete form of the global form for conservation of energy

In this section, a similar analysis to that in Section 4.2.4 will be presented for the semi-discrete
weak forms in (30), (32) and (33). For this purpose, we replace the test functions {δv, δφ, δϕ, δD0}
in (30) with {∆v,∆φ,∆ϕ,∆D0} ∈ V

φ
0 × V

φ
0 × V

ϕ
0 × VD0. This yields

∫

B0

(
vn+1/2 −

∆φ

∆t

)
· ρ0∆v dV = 0;

∫

B0

ρ0
∆v

∆t
·∆φ dV +

∫

B0

ΛC : (DCφ[∆φ])algo dV −

∫

B0

f 0 ·∆φ dV −

∫

∂tB0

t0 ·∆φ dA = 0;

∫

B0

D0n+1/2
·∇0∆ϕdV +

∫

B0

ρe0n+1/2
∆ϕdV +

∫

∂ωB0

ωe
0n+1/2

∆ϕdA = 0;

∫

B0

∆D0 ·
(
DD0

W̃ +∇0ϕn+1/2

)
dV = 0.

(42)
Furthermore, replace {δC, δG, δC} in (32) with {∆C,∆G,∆C} ∈ VC × VG × VC , namely

∫

B0

∆C :

(
DCW̃ −ΛC +ΛG Cn+1/2 +

1

3
ΛCGn+1/2

)
dV = 0;

∫

B0

∆G :

(
DGW̃ −ΛG +

1

3
ΛCCn+1/2

)
dV = 0;

∫

B0

∆C
(
DCW̃ − ΛC

)
dV = 0.

(43)
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Let us now replace {δΛC , δΛG, δΛC} in (32) with {ΛC ,ΛG,ΛC} ∈ VC × VG × VC . Noticing
that equation (32) is satisfied both at times tn+1 and tn, the following expression can be obtained

∫

B0

ΛC : ∆ (Cφ −C) dV = 0;

∫

B0

ΛG : ∆

(
1

2
C C −G

)
dV = 0;

∫

B0

ΛC∆

(
1

3
C : G− C

)
dV = 0.

(44)

Equations (44)b and (44)c can be conveniently written as

∫

B0

ΛG : ∆

(
1

2
C C −G

)
dV =

∫

B0

ΛG :
(
∆C Cn+1/2 −∆G

)
dV = 0;

∫

B0

ΛC∆

(
1

3
C : G− C

)
dV =

∫

B0

ΛC

(
1

3
∆C : Gn+1/2 +

1

3
Cn+1/2 : ∆G−∆C

)
dV = 0.

(45)

where use of the two following two identities has been made

∆

(
1

2
C C

)
= ∆C Cn+1/2

∆

(
1

3
C : G

)
=

1

3
∆C : Gn+1/2 +

1

3
Cn+1/2 : ∆G.

(46)

Addition of equation (42), (43) and substraction of (44)a and (45), yields

∆K +

∫

B0

(
DCW̃ : ∆C +DGW̃ : ∆G+DCW̃∆C +DD0

W̃ ·∆D0

)
dV

+

∫

B0

∆(D0 ·∇0ϕ) dV −∆Πm
ext (φ)−∆Πe

ext (ϕ) = 0.

(47)

in the case of time independent forces f0, t0 and charges ρe0, ω
e
0.

Comparison of (47) and the definition of the total Hamiltonian HW̃ in (28) enables to conclude
that conservation of energy for the implicit one-step time integrator in equation (30) requires the
directionality property in equation (34) to be satisfied. Four points have been crucial to arrive
at this conclusion: i) the consideration of the algorithmic derivative (DCφ[δφ])algo in (31); (ii)
the consideration of D0n+1/2

(30)c and of ∇0ϕn+1/2 in (30)d; (iii) the consideration of Cn+1/2 and
Gn+1/2 in (32)a and (32)b; (iv) the particular choice of kinematic constraints in (33) and their
evaluation at time n+1. These four points led to the important implication that conservation of
energy is guaranteed if the discrete derivatives DCW̃ , DGW̃ , DCW̃ and DD0

W̃ comply with the
directionality property in (34).

6. Finite Element implementation

As standard in finite elements, the domain B0 described in Section 2.1 and representing the
EAP is sub-divided into a finite set of non-overlapping elements e ∈ E such that

B0 ≈ Bh
0 =

⋃

e∈E

Be
0. (48)

The unknown fields {v,φ, ϕ,D0,D,ΛD} in the semi-discrete weak forms {Wv,Wφ,Wϕ,WD0
}

in (30), WD in (32) and WΛD
in (33) are discretised employing the following functional spaces
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Vφh
× Vφh

× Vϕh
× VDh

0 × VDh
× VDh

, with VDh
= {VCh

,VGh
,VCh

} defined as

V
φh

= {φ ∈ V
φ; φh

∣∣
Be
0

=

nφ

node∑

a=1

Nφ
a φa | φa = φ̄

h
on ∂φB

h
0};

V
ϕh

= {ϕ ∈ V
ϕ; ϕh

∣∣
Be
0

=

nϕ
node∑

a=1

Nϕ
a ϕa | ϕa = ϕ̄h on ∂ϕB

h
0};

V
Dh

0 = {D0 ∈ V
D0 ; Dh

0

∣∣
Be
0

=

n
D0
node∑

a=1

ND0

a D0a};

V
Dh

= {D ∈ V
D; D

h
0

∣∣
Be
0

=

nD

node∑

a=1

ND
a Da},

(49)

where for any field Y ∈ {φ, ϕ,D0,D,ΛD}, n
Y
node denotes the number of nodes per element of

the discretisation associated with the field Y and NY
a : Be

0 → R, the ath shape function used for
the interpolation of Y . In addition, Ya represents the value of the field Y at the ath node of a
given finite element. Similarly, following a Bubnov-Galerkin approach, the functional spaces for

the virtual variations {δv, δφ, δϕ, δD0, δV, δΛD} ∈ V
φh

0 × V
φh

0 × V
ϕh

0 × V
Dh

0 × V
Dh

× V
Dh

are
defined as

V
φh

0 =
{
∀φ ∈ V

φh

; φ = 0 on ∂φB0

}
;

V
ϕh

0 =
{
∀ϕ ∈ V

ϕh

; ϕ = 0 on ∂ϕB0

}
.

(50)

Even though the relation between the time derivative of φ and the velocity field v is considered
in a weak manner (refer to the weak form Wv in (30)a), the consideration of equal functional

spaces for both fields, namely φ ∈ Vφh
and v ∈ Vφh

enables to conclude that equation (30)a
holds strongly at the discrete level, namely6

∆φ

∆t
= vn+1/2. (51)

Consideration of the functional spaces for {v,φ, ϕ,D0,D,ΛD} and {δv, δφ, δϕ, δD0, δD, δΛD}
in (49) and (50) enables the weak forms Wφ, Wϕ and WD0

in (30), WD in (32) and WΛD
in (33)

to be written in terms of their associated elemental residual contributions, namely

Wφ =

N∑

e=1

δφa ·R
φ
a,e; Wϕ =

N∑

e=1

δϕaR
ϕ
a,e; WD0

=

N∑

e=1

δD0a ·R
D0

a,e ;

WC =

N∑

e=1

δCa : R
C
a,e; WG =

N∑

e=1

δGa : R
G
a,e; WC =

N∑

e=1

δCaR
C
a,e;

WΛC
=

N∑

e=1

δΛCa : R
ΛC
a,e ; WΛG

=
N∑

e=1

δΛGa : R
ΛG
a,e ; WΛC

=
N∑

e=1

δΛCaR
ΛC
a,e ,

(52)

6Notice that in the discrete setting, (30)a transforms into a mass matrix multiplied by the discrete vector
version of ∆φ

∆t − vn+1/2 equaling zero. For this to hold, given the positive definite nature of the mass matrix, the

discrete vector version of ∆φ
∆t − vn+1/2 must be zero. Thus, equation (51) holds at the nodes of the discretisation

and thus, at the quadrature points.
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where N denotes the number of elements for the underlying discretisation. Each of the residual
contributions {Rφ

a,e, R
ϕ
a,e,R

D0

a,e } in (52) can be expressed as7

Rφ
a,e =

∫

Be
0

ρ0N
φ
a

(
2
∆φ

∆t2
− 2

vn

∆t

)
dV +

∫

Be
0

(
F φn+1/2

ΛC

)
∇0N

φ
a dV +

∫

Be
0

Nφ
a f 0n+1/2

dV ;

Rϕ
a,e =

∫

Be
0

D0n+1/2
·∇0N

ϕ
a dV +

∫

Be
0

Nϕ
a ρ

e
0n+1/2

dV ;

RD0

a,e =

∫

Be
0

ND0

a

(
DD0

W̃ +∇0ϕn+1/2

)
dV,

(53)

where use of equation (51) has been made of in the inertial term of the residual Rφ
a,e in (53)a.

The residual contributions {RC
a,e,R

G
a,e, R

C
a,e} in (52) can be expressed as

RC
a,e =

∫

B0

NC
a

(
DCW̃ −ΛC +ΛG Cn+1/2 +

1

3
ΛCGn+1/2

)
dV ;

RG
a,e =

∫

B0

NG
a

(
DGW̃ −ΛG +

1

3
ΛCCn+1/2

)
dV ;

RC
a,e =

∫

B0

NC
a

(
DCW̃ − ΛC

)
dV.

(54)

Finally, the residual contributions {RΛC
a,e ,R

ΛG
a,e , R

ΛC
a,e } in (52) can be expressed as

RΛC
a,e =

∫

B0

NC
a

(
Cφn+1

−Cn+1

)
dV ;

RΛG
a,e =

∫

B0

NG
a

(
1

2
Cn+1 Cn+1 −Gn+1

)
dV ;

RΛC
a,e =

∫

B0

NC
a

(
1

3
Cn+1 : Gn+1 − Cn+1

)
dV.

(55)

A consistent linearisation of the nonlinear residual contributions (53), (54) and (55) has been
used in this work. Finally, in order to reduce the computational cost of the proposed formulation,
a piecewise discontinuous interpolation of the fields {D0,C,G, C,ΛC,ΛG,ΛC} is followed. A
standard static condensation procedure [9, 36] is used to condense out the degrees of freedom of
the fields {D0,C,G, C,ΛC ,ΛG,ΛC}. Note that appropriate choices of functional spaces for the
different unknown fields are restricted by appropriate stability (or inf-sup) conditions (see [8]).

7. Numerical examples

In order to examine the proposed mixed formulation in the field of electro-elastodynamics,
a series of numerical examples are investigated. In particular, four quasi-static examples (see
Sec. 7.1-7.3) are presented in order to demonstrate the spatial convergence of the formulation
for two different finite elements. Subsequently, four dynamic examples (see Sec. 7.4-7.7) are
presented in order to investigate the performance of the proposed EM time integration scheme
when compared to the classical midpoint rule. In all the examples the internal energy is split into
a purely mechanical and a coupled electromechanical part:

W̃ (C,G, C,D0) = W̃m (C,G, C) + W̃em (C, C,D0) . (56)

7For simplicity, the external contributions on the boundary of the continuum and associated with t0 and ωe
0

have not been included in (53).
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Herein we focus on ideal dielectric elastomers modelled by

W̃em (C, C,D0) =
1

2εrε0C1/2
D0 ·CD0, (57)

where ε0 represents the permittivity of vacuum ε0 = 8.8541 × 10−12NC−2m−2 and ǫr is the
relative permittivity (see [17] for more informations). An isotropic behaviour is considered for

the mechanical component W̃m in the examples in Sec. 7.1-7.5 and 7.7. Specificially, a Mooney-
Rivlin strain energy functional is used, defined as

W̃MR
m (C,G, C) =

µ1

2
(trC − 3) +

µ2

2
(trG− 3)− (µ1 + 2µ2) lnC

1/2 +
λ

2

(
C1/2 − 1

)2
, (58)

where µ1, µ2 and λ are material parameters with units of stress related to the Lamé parameters
{µ0, λ0} in the origin as µ0 = µ1 + µ2 and λ0 = λ + 2µ2. For the examples in Sec. 7.3 and 7.6,
anisotropic effects are taken into account. In particular, a transversely isotropic mechanical model
is employed for which the mechanical contribution of the internal energy is additively decomposed
into isotropic and anisotropic parts as

W̃m (C,G, C) = W̃ iso
m (C,G, C) + W̃ aniso

m (C,G, C) . (59)

The isotropic contribution W̃ iso
m (C,G, C) is given in (58), whereas the anisotropic contribution

is chosen as in [45] as

W̃ aniso
m (C,G, C) =

µ3

gC + 1
(tr(CM))gC+1 +

µ3

gG + 1
(tr(GM))gG+1 +

µ3

gC
C−gC , (60)

where
M = N 0 ⊗N 0, (61)

and N 0 denotes the fibre direction in the reference configuration. In addition, µ3 > 0, gC > 0,
gG > 0 and gC ≥ 1 are suitable anisotropic material parameters (see [45] for more details).

(a) e1e1

e2e2

e3e3

(b) e1 e1

e2 e2

e3 e3

Figure 2: (a) Ten node quadratic/four node linear tetrahedron (tet 10/4 ) elements; (b) Twenty node serendip-
ity/eight node tri-linear hexahedron (hex 20/8 ) elements. Quadratic continuous interpolation spaces P2C/Q2C

and linear discontinuuous interpolation spaces P1D/Q1D are employed such that {φ, Φ} ∈ P2C/Q2C (elements
with red nodes) and {D0, D, Λ} ∈ P1D/Q1D (elements with green nodes).

For all examples, either ten node quadratic/four node linear tetrahedron elements, in the
following referred to as tet 10/4, or twenty node serendipity/eight node tri-linear hexahedron
elements, in the following referred to as hex 20/8, are employed (see Fig. 2 for more details). A
standard static condensation procedure has been carried out in all examples in order to condense
out the discontinuous fields {D0, D, Λ}.
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7.1. Patch test

The objective of this example is:

O1.I To test the consistency of the proposed element formulation by means of the well-known
three-dimensional patch test (see [29]), verifying that the element formulation is able to
recover homogeneous states of stress and electrical potential.

An initial domain Ω0 in the form of a cube is considered with dimensions (0, 1)[m]× (0, 1)[m]×
(0, 1)[m] (see Fig. 3). The cube is restricted to move such that only an expansion into the e1-
e2-plane is permitted. Accordingly, Dirichlet boundary conditions are employed on the faces at
xi = 0 where i = 1, 2, 3 and are fixed in the respective ei-directions. Further Dirichlet boundary
conditions are applied on the top face as depicted in Fig. 3 (left), i.e. the upper boundary (face
at x3 = 1) is displaced in the negative e3-direction reducing the initial height by a factor of
two. Neither electrical Dirichlet nor Neumann boundary conditions are imposed. The material
and simulation parameters are provided by Tab. 1. A regular mesh comprised of 64 hex 20/8
elements and 1700 displacement and electrical potential unknowns and an initially distorted mesh
comprised of 7 hex 20/8 elements and 192 (condensed) unknowns (see Fig. 3) are employed. The
final von Mises stress distribution8 and the electrical potential distribution are shown in Fig. 4
for the regular mesh and for the initially distorted mesh, respectively. As can be observed, for
both meshes homogeneous states of stress and electrical potential are reproduced.

Mechanical parameters µ1 1/2× 105 Pa Geometry of the body
µ2 1× 105 Pa
λ 1× 106 Pa

[m]

1

1
Electrical parameters ǫ0 8.854× 10−12 A2 s4 kg−1m−3

ǫr 4 −
Ref. potential ϕ0 0 V
Newton tolerance ǫ 1 · 10−6 -

Table 1: Patch test: Material and simulation parameters.

e1

e2

e3

Figure 3: Patch test: Boundary conditions (left), initial regular mesh (middle) and initial distorted mesh (right).

8The vonMises stress is computed by σvM =
√
σ2
11 + σ2

22 + σ2
33 − σ11 σ22 − σ11 σ33 − σ22 σ33 + 3 (σ2

12 + σ2
13 + σ2

23),
where σij , i, j = 1, 2, 3 denotes the components of the Cauchy stress tensor.
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−1 −0.5 0 0.5 1

·10−13

Figure 4: Patch test: Von Mises stress distribution (left) and electrical potential distribution (right) for patch
tests with regular and initially distorted meshes.

7.2. Static convergence analysis

Mechanical parameters µ1 1/2 Pa Geometry of the body
µ2 1 Pa
λ 1 Pa

[m]

1

1
Electrical parameters ǫ0 8.854× 10−12 A2 s4 kg−1m−3

ǫr 4 −
Ref. potential ϕ0 0 V
Newton tolerance ǫ 1 · 10−7 -

Table 2: Static convergence analysis: Material and simulation parameters.

 ei

φexact

ϕexact

Figure 5: Static convergence analysis: For all outer faces (patterned surfaces) Dirichlet boundary conditions are
imposed for φexact and ϕexact given in (62) (left). Typical tet 10/4 (centred) and hex 20/8 (right) meshes are
shown.

The objectives of this example are:

O2.I To demonstrate the p-order of accuracy of the mixed formulation when using elements tet
10/4 and hex 20/8 (see [42] for more details).

A cube Ω0 (0, 1)[m] × (0, 1)[m] × (0, 1)[m] is considered (see Fig. 5) where geometry, boundary
conditions and material parameters are provided in Tab. 2 and Fig. 5. The analysis of an ad
hoc manufactured problem is carried out following a similar procedure as that described in [42].
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The following exact fields associated with the deformed configuration φexact and the electrical
potential ϕexact are chosen,

φexact = X + γ1 sin(X) e1 + γ2 cos(Y ) e2 + γ3 (sin(Z) + cos(Z)) e3; ϕexact = ϕ0 sin(X), (62)

where γi =
i
2
e-1, i = 1, 2, 3 and ϕ0 = 1 e4 (cf. [42]). It is now possible to derive:

• the deformation gradient

F (φexact) = (1+γ1 cos(X)) e1⊗E1+(1−γ2 sin(Y )) e2⊗E2+(1+γ3 (cos(Z)−sin(Z))) e3⊗E3,

• the Cauchy-Green tensor, its cofactor and its determinant

Cexact = F T(φexact)F (φexact); Gexact =
1

2
Cexact Cexact; Cexact =

1

3
Gexact : Cexact,

• the electric displacement field is computed via (6)1 and (15)4

Eexact
0 = −∇0ϕ

exact = −ϕ0 cos(X)E1; Eexact
0 = ∂D0

W̃ exact =
1

εrε0(Cexact)1/2
CexactDexact

0

⇔ Dexact
0 = εrε0(C

exact)1/2(Cexact)−1Eexact
0 = −εrε0ϕ0 cos(X)(Cexact)1/2(Cexact)−1E1,

• the work-conjugates computed from (17)

ΛC
exact = ∂CW̃

exact (C,G, C,D0) ;

ΛG
exact = ∂GW̃

exact (C,G, C,D0) +
1

3
ΛC

exact Cexact;

ΛC
exact = ∂CW̃

exact (C,G, C,D0) +ΛG
exact Cexact +

1

3
ΛC

exact Gexact,

where

∂CW̃
exact = λ (1−

1

(Cexact)1/2
)−

µ1 + 2µ2

2Cexact
−

1

4 ǫr ǫ0
(Cexact)−3/2Dexact

0 · (Cexact Dexact
0 );

∂CW̃
exact =

µ1

2
I +

1

2 ǫr ǫ0 (Cexact)1/2
(Dexact

0 ⊗Dexact
0 );

∂GW̃
exact =

µ2

2
I,

• the second Piola-Kirchhoff stress tensor computed as

Sexact = 2ΛC
exact,

• volume load and charge densities

Bexact = −Div(F exact Sexact); ρexact0 = Div(Dexact
0 ).

Exact solutions provided by (62) are compared against the numerical solutions obtained by im-
posing the analytically computed volume load and charge density. The exact solution in (62) is
imposed as a Dirichlet boundary at all six surfaces of the cube (see Fig. 5). The h-convergence
rate for the different variables is studied where the L2 norm of the error is employed, i.e.

‖e•‖L2 =
‖(•)− (•)exact‖L2

‖(•)exact‖L2

, (63)
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where (•) denotes the numerically computed variable and (•exact) its analytical counterpart. Fig. 7
shows the convergence results for the displacement and electrical potential. A typical numerical
solution with von Mises stress and electrical potential distribution is depicted in Fig. 6 for the tet
10/4 and the hex 20/8 elements.

0 0.2 0.4 0.6 0 2,000 4,000 6,000 8,000

Figure 6: Static convergence analysis: Von Mises stress (left) and electrical potential distribution (right) for tet
10/4 and hex 20/8 meshes, respectively.

As expected p + 1 convergence is observed in all variables for the tetrahedral elements, since
the convergence is optimal for this element (see Fig. 7). For the primary fields φ and ϕ the
convergence observed for the hex 20/8 elements is even slightly better.
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Figure 7: Spatial convergence analysis for tet 10/4 (left) and hex 20/8 (right) meshes.

7.3. Static Cook’s membrane test

The objectives of the following two examples are:

O3.I To show the convergence behaviour for a nearly incompressible material model in different
loading scenarios (cf. [8]).

O3.II To compare the numerical robustness of the 9-field formulation proposed against the 3-field
formulation presented in [34] which is based on the three fields {φ, ϕ,D0}.
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The well-known Cook’s membrane problem is considered in what follows under two different
settings. First, an isotropic model with mechanical loading is presented followed by a mechanical
anisotropic model with electrical loading.

7.3.1. Cooks membrane test 1: Isotropic model with mechanical loading

The geometry of the Cook’s membrane, material and simulation parameters are provided in
Tab. 3. The material parameters {µ1, µ2, λ} for the Mooney-Rivlin model in equation (58) can
be related to the Young’s modulus E and the Poisson’s ratio ν in the origin as

E = 3µ1
18µ1 + 6 λ

7µ1 + 2 λ
; ν =

4µ1 + 2 λ

14µ1 + 4 λ
, (64)

where for convenience µ2 = 2µ1. In this specific example E = 8.9888× 105 Pa and ν = 0.4981.
The membrane is fixed in space at face x1 = 0 (see Fig. 8). A pressure load p e3 with magnitude
p = 20.000Pa is applied at face x1 = 48 (see Fig. 8). Homogeneous electrical Neumann boundary
conditions are considered for all the boundaries. For this example, a series of progressively refined
tet 10/4 meshes is considered (see Fig. 9). A representation of the deformed configuration is shown
in Fig. 8. For the convergence study the displacement of node X = (48, 60, 0) into e3-direction is
investigated with respect to the number of degrees of freedom (DOFs). The results are depicted
in Fig. 9, where the proposed 9-field formulation is compared against the 3-field formulation
presented in [34]. As can be observed, the 9-field formulation performs better than the 3-field
formulation especially in coarse mesh scenarios. In addition, fewer Newton iterations are required
by the 9-field formulation, allowing the use of larger loading steps. Overall, the 9-field formulation
exhibits superior numerical performance when compared to the 3-field formulation.

Mechanical parameters µ1 1× 105 Pa Geometry of the body
µ2 2× 105 Pa

48

44

16

[m]

λ 4× 107 Pa
Electrical parameters ǫ0 8.854× 10−12 A2 s4 kg−1m−3

ǫr 4 N/V2

Ref. potential ϕ0 0 V
Newton tolerance ǫ 10−4 J

Table 3: Cook’s membrane test 1: Material parameters, simulation parameters and geometry.

21



e1

e3

e2

U = 0
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Figure 8: Cook’s membrane test 1: Geometry and boundary conditions (left) and typical mesh in current config-
uration (right).
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Figure 9: Cook’s membrane test 1 using the proposed 9-field formulation and the 3-field formulation in [34]:
Convergence plot for a selection of coarse meshes (left), a complete set of progressively refined meshes (centre)
and typical Newton iteration convergence (right).

7.3.2. Cook’s membrane test 2: Transversally isotropic model with electrical loading

In this example we consider the transversely isotropic energy functional in equation (59). Now
electrical loading is applied. The geometry of the Cook’s membrane, material and simulation
parameters are displayed in Tab. 4. A fibre reinforcement with direction N 0 = [1 0 0]T is
employed. The boundary conditions and a typical mesh in the current configuration are shown
in Fig. 10. The electrical Dirichlet boundary conditions are given by

Φ(X1 = 0, X2, X3) = 0V; Φ(X1 = 2, X2, X3) = 7× 107V. (65)
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By employing the above potentials the membrane starts to bend into the positive e3-direction but
its performance is also influenced by the fibre direction. For this example a series of progressively
refined tet 10/4 meshes are considered (see Fig. 11). For the spatial convergence study the
displacement of node X = (48, 60, 2) into e1-direction is investigated with respect to the number
of DOFs. The results are depicted in Fig. 11. Overall, the 9-field formulation exhibits superior
numerical performance when compared to the 3-field formulation.

Mechanical parameters µ1 5× 104 Pa Geometry of the body
µ2 1× 105 Pa
λ 4× 107 Pa

Anisotropic parameters g0 3× 103 Pa
gC 4

48

44

16

[m]

gG 8
gC 1

Electrical parameters ǫ0 8.854× 10−12 A2 s4 kg−1m−3

ǫr 4 N/V2

Ref. potential ϕ0 0 V
Newton tolerance ǫ 10−4 -

Table 4: Cook’s membrane test 2: Material parameters, simulation parameters and geometry.

e1

e2

e3

N 0

U = 0

∆ϕ

Figure 10: Cook’s membrane test 2: Geometry and boundary conditions (left) and typical mesh in current
configuration (right).
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Figure 11: Cook’s membrane test 2 using the proposed 9-field formulation and the 3-field formulation in [34]:
Convergence plot for a selection of coarse meshes (left), a complete set of progressively refined meshes (centre)
and typical Newton iteration convergence (right).

7.4. Dynamic analysis of a shell-like actuator

The objectives of this example are:

O4.I To assess the conservation properties of the time integration scheme presented in (30), (32)
and (33) for the tet 10/4 finite element. In particular, the conservation properties of the
proposed EM time integration scheme will be analysed.

O4.II To compare the stability and robustness of the proposed EM time integration scheme against
the midpoint-rule integrator.

Mechanical parameters µ1 5× 104 Pa Geometry of the actuator
µ2 1× 105 Pa
λ 1× 105 Pa

Electrical parameters ǫ0 8.854× 10−12 A2 s4 kg−1m−3

 

 

 

 

 
 

 

 

 

 

 

ei

0.0333

π
6

π
6

π
6

1

[m]

ǫr 4 N/V2

Ref. potential ϕ0 0 V
Max. surface charge ω0 7.5× 10−4 Q/m2

Density ρ0 1000 kgm−3

Timestep size ∆t 0.1 s
Simulation time T 20 s
Newton tolerance ǫ 10−6 -

Table 5: Shell-like actuator: Material parameters, simulation parameters and geometry. Length in e3 direction of
the actuator is 2.5m, the four holes are placed at 0.8333m and 1.6666m in e3 direction.
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Figure 12: Shell-like actuator: Electrical boundary conditions are shown (left) and the mechanical Dirichlet
boundary conditions are as follows: U1(X1, X2 = 0, X3) = 0, U2(X1 = 0, X2, X3) = 0 and U(X1 = 1, X2 =
0, X3) = 0. Applied surface electric charge ωe

0 corresponding to (66) is shown (right).

A shell like actuator perforated with four holes is investigated next. The geometry, boundary
conditions, material and simulation parameters are provided in Tab. 5 and Fig. 12 and are chosen
similar to those of the example given in [42, Sect. 4.6.1.]. A constant value for the electric potential
of ϕ = 0 V is applied on the blue electrode, whereas a surface electric charge ωe

0, with

ωe
0 =

(
7.5× 10−4

)
×

{
sin(0.5π

1 s
t) for t ≤ 1 s

1 for t > 1 s
[Q/m2]. (66)

is applied on the purple electrode (see Fig. 12). A mesh comprised of 6090 tet 10/4 elements
with a total of 50384 displacement and electrical potential unknowns (see Fig. 12) is employed.
Fig. 13 shows typical snapshots of the deformation of the actuator together with the electric
potential distribution, Fig. 14 shows the von Mises stress distribution and Fig. 15 shows the first
component of the electrical displacement D0. Fig. 16 shows that the midpoint-rule time integrator
exhibits an energy blow-up and becomes unstable approximately in the interval 6.2 < t < 6.4.
In contrast, the newly proposed EM time integrator conserves the total energy after the loading
phase and remains stable for the whole simulation for the same fixed time step size of ∆t = 0.1 s.
Accordingly, the proposed scheme is more robust and stable than the midpoint-rule.

7.5. Dynamic analysis of H-shaped actuator

The objectives of this example are:

O5.I To verify the conservation of angular momentum by the time integrator proposed.

O5.II To compare the conservation properties and robustness of the proposed time integrator to
those of the midpoint-rule time integrator.

25
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Figure 13: Shell-like actuator: Snapshots of electric potential ϕ for different configurations corresponding to (left
to right-top to bottom): (a) t = 0 s; (b) t = 0.8 s; (c) t = 1.6 s; (d) t = 2.4 s; (e) t = 3.2 s; (f) t = 4.0 s; (g)
t = 4.8 s; (h) t = 5.6 s; (i) t = 6.4 s; (j) t = 7.2 s; (k) t = 8 s; (l) t = 8.8 s.
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Figure 14: Shell-like actuator: Snapshots of von Mises stress for different configurations corresponding to (left to
right-top to bottom): (a) t = 0 s; (b) t = 0.8 s; (c) t = 1.6 s; (d) t = 2.4 s; (e) t = 3.2 s; (f) t = 4.0 s; (g) t = 4.8 s;
(h) t = 5.6 s; (i) t = 6.4 s; (j) t = 7.2 s; (k) t = 8 s; (l) t = 8.8 s.
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Figure 15: Shell-like actuator: Snapshots of first component of D0 for different configurations corresponding to
(left to right-top to bottom): (a) t = 0 s; (b) t = 0.8 s; (c) t = 1.6 s; (d) t = 2.4 s; (e) t = 3.2 s; (f) t = 4.0 s; (g)
t = 4.8 s; (h) t = 5.6 s; (i) t = 6.4 s; (j) t = 7.2 s; (k) t = 8 s; (l) t = 8.8 s.
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Figure 16: Shell-like actuator: Energy evolution for the proposed EM scheme. Left: Time evolution of H
W̃

for
proposed scheme. Right: Time evolution of ∆H

W̃
in the time interval [1, 10].

Mechanical parameters µ1 5× 104 Pa Geometry of the H-shaped actuator
µ2 1× 105 Pa
λ 5× 105 Pa

Electrical parameters ǫ0 8.854× 10−12 A2 s4 kg−1m−3

 

0.2

0.2

0.8

1.6

t = 0.08

[m]
ǫr 4 N/V2

Ref. potential ϕ0 0 V
Max. surface charge ω0 5× 10−3 Q/m2

Density ρ0 1000 kgm−3

Timestep size ∆t 0.05 s
Simulation time T 10 s
Newton tolerance ǫ 10−5 -

Table 6: H-shaped actuator: Material parameters, simulation parameters and geometry.
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Figure 17: H-shaped actuator: Boundary conditions (left) and applied surface electric charge ωe
0 (right) corre-

sponding to (68).

The geometry, boundary conditions, material and simulation parameters of an H-shaped actu-
ator are depicted in Tab. 6 and Fig. 17. Note that this example is inspired by numerical example
3 in [34]. A mesh comprised of 15013 tet 10/4 elements with a total of 95776 displacement and
electrical potential unknowns (see Fig. 17) is employed. From a mechanically point of view the
actuator is free in space, i.e. no mechanical Dirichlet conditions are imposed. An initial velocity
v0 is prescribed and given by

v0 = ω ×X; ω = [0, 0, 0.05]T s−1; X = [X1, X2, X3]
T , (67)

with {X1, X2, X3} aligned with the orthonormal basis {e1, e2, e3}, respectively (see Figure 17).
A constant value for the electric potential of ϕ = 0 V is applied on the blue electrode. A surface
electric charge ωe

0, with

ωe
0 =

(
1× 10−3

)
×





sin(0.5π
0.4 s

t) for t ≤ 0.4 s

1 for 0.4 s < t ≤ 3.0 s

cos( 0.5π
3.4 s−3.0 s

(t− 3 s)) for 3.0 s < t ≤ 3.4 s

0 for t > 3.4 s

[Q/m2]. (68)

is applied (see Fig. 17) on the purple electrode (see detailed view in Fig. 17). Fig. 18, 19 and 20
show typical snapshots of the H-shaped actuator displaying the electric potential ϕ, von Mises
stress σvM and third component of electrical displacement D0, respectively, where extremely
large deformations can be observed. Results are smooth and do not show any spurious pressure
or electric field. Fig. 21 shows the energy evolution and Fig. 22 the evolution of the norm of
the total angular momentum J of the actuator for the proposed EM time integrator and the
midpoint-rule. In addition, Fig. 21 shows that the midpoint-rule time integrator exhibits an
energy blow-up and becomes unstable approximately in the interval 0.4 s < t < 1.8 s. In contrast,
the newly proposed EM time integrator perfectly conserves the energy after the loading phase.
Also the discrete balance of angular momentum is perfectly preserved. The EM time integrator
remains stable for the entire simulation time for the same fixed time step size of ∆t = 0.05 s.
Accordingly, the proposed scheme is more robust and stable than the midpoint-rule.
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Figure 18: H-shaped actuator: Snapshots of electric potential ϕ for different configurations corresponding to (left
to right-top to bottom): (a) t = 0 s; (b) t = 0.4 s; (c) t = 0.8 s; (d) t = 1.2 s; (e) t = 1.6 s; (f) t = 2 s; (g) t = 2.4 s;
(h) t = 2.8 s; (i) t = 3.2 s; (j) t = 3.6 s; (k) t = 4 s; (l) t = 4.4 s.
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Figure 19: H-shaped actuator: Snapshots of the von Mises stress σvM for different configurations corresponding
to (left to right-top to bottom): (a) t = 0 s; (b) t = 0.4 s; (c) t = 0.8 s; (d) t = 1.2 s; (e) t = 1.6 s; (f) t = 2 s; (g)
t = 2.4 s; (h) t = 2.8 s; (i) t = 3.2 s; (j) t = 3.6 s; (k) t = 4 s; (l) t = 4.4 s.

32



a) b) c)

d) e) f)

g) h) i)

j) k) l)

−2 −1 0 1 2

·10−3

Figure 20: H-shaped actuator: Snapshots of third component of D0 for different configurations corresponding to
(left to right-top to bottom): (a) t = 0 s; (b) t = 0.4 s; (c) t = 0.8 s; (d) t = 1.2 s; (e) t = 1.6 s; (f) t = 2 s; (g)
t = 2.4 s; (h) t = 2.8 s; (i) t = 3.2 s; (j) t = 3.6 s; (k) t = 4 s; (l) t = 4.4 s.
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Figure 21: H-shaped actuator: Energy evolution for the proposed EM scheme. Left: Time evolution of H
W̃

with
the proposed scheme. Right: Time evolution of ∆H

W̃
in the time interval [0.4, 3]

⋃
[3.4, 10].
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Figure 22: H-shaped actuator: Time evolution of the magnitude of the angular momentum ||J || (left) with
proposed EM scheme and midpoint-rule. Time evolution of ∆||J || (right).
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7.6. Dynamic contractions of an artificial muscle model

The objective of this example is:

O6.I The consideration of more sophisticated constitutive models allowing for the inclusion of
anisotropic effects. A comparison of the stability and robustness between the proposed EM
time integrator and the midpoint-rule integrator will also be carried out in this example.

Mechanical parameters µ1 5× 104 Pa Geometry of the body
µ2 1× 105 Pa
λ 1× 106 Pa

Anisotropic parameters g0 3 · 103 Pa
gC 4
gG 8
gC 1

Electrical parameters ǫ0 8.854× 10−12 A2 s4 kg−1m−3

t = 0.3

r = 0.025

e2

e3 [m]
ǫr 4 N/V2

Ref. potential ϕ0 0 V
Density ρ0 1 kgm−3

Timestep size ∆t 0.1 s
Simulation time T 7 s
Newton tolerance ǫ 10−3 -

Table 7: Artificial muscle model: Material parameters, simulation parameters and geometry of an .

e1e2

e3

ϕ1

ϕ1

ϕ1

ϕ1 N 0

ϕ2

ϕ2

ϕ2

0 1 2 3 4 5
0

0.5

1

1.5

2
·106

t [s]

φ
1
[V

]

Figure 23: Artificial muscle model: Boundary conditions (left) and electric potential ϕ1 (right) corresponding to
(69).

A technical realization of EAPs are artificial muscles which will be modelled in the following.
The geometry of the muscle model is depicted in Fig. 23 and is similar to an example given in [44].
The material parameters are given in Tab. 7. Boundary conditions are depicted in Fig. 23. A mesh
comprised of 5790 tet 10/4 elements with a total of 35076 displacement and electrical potential
unknowns (see Fig. 24) is employed. The example contains multiple electrodes perpendicular to
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the muscle’s longitudinal axis with alternating signs. These electrodes dictate a particular electric
potential, e.g. via electric voltages for

ϕ1 = ϕ̄+ ϕ̃ ·





sin(0.5 π (t/t1k)) ∀ t ∈ [t0k, t
1
k)

1 ∀ t ∈ [t1k, t
2
k)

cos(0.5 π (t− t2k)/0.2s) ∀ t ∈ [t2k, t
3
k)

0 ∀ t ∈ [t3k, t
0
k+1)

[MV ], (69)

where

ϕ̄ =

{
0 ∀ t ∈ [t01, t

1
1)

1 ∀ t ∈ [t11, t
0
nzyk+1]

[MV ] (70)

and

ϕ̃ =

{
2 ∀ t ∈ [t01, t

1
1)

1 ∀ t ∈ [t11, t
0
nzyk+1]

[MV ]. (71)

Here, t0k = (k− 1) · 1s, t1k = t0k + 0.2s, t2k = t0k + 0.6s, t3k = t0k + 0.8s and k ∈ Z>0 = {1, 2, ..., nzyk},
where nzyk denotes the maximum number of periods. Potential ϕ1 is prescribed for electrodes
positioned at Xe1 ∈ {0, 0.1m, 0.2m, 0.3m}. The temporal evolution of the potential ϕ1 is
depicted in Fig. 23 (nzyk = 5). Potentials ϕ2 = 0 are applied for electrodes positioned at Xe2 ∈
{0.05m, 0.15m, 0.25m}. The fibre reinforcement is chosen along the longitudinal axis of the
model in the reference configuration as N 0 = [0 0 1]T. Mechanical Dirichlet boundary conditions
are applied as follows

u1(X1 = 0) = 0,

u2(X2 = 0) = 0,

u3(X3 = 0.15) = 0.

As can be seen in Fig. 23 the potential oscillates periodically between the prescribed values at
the electrodes. Typical snapshots of the motion together with the electrical potential distribution
are shown in Fig. 24. The von Mises stress and the third component of D0 are shown for some
time steps in Figs. 25 and 26, respectively. The energy evolution is given in Fig. 27. Again the
midpoint rule becomes unstable until it finally fails at 2.8s. In contrast to that the EM scheme
consistently approximates the energy and is stable for the entire simulation time.

7.7. Dynamic wrinkling in a dielectric plate

The objectives of this example are:

O7.I Comparison of the robustness between the proposed EM time integrator and the midpoint
rule time integrator in scenarios with more sophisticated electrically induced configurations
which can represent a challenge from the robustness standpoint of the algorithm.
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Figure 24: Artificial muscle model: Snapshots of electric potential ϕ for different configurations corresponding to
(left to right-top to bottom): (a) t = 0 s; (b) t = 0.2 s; (c) t = 0.4 s; (d) t = 0.6 s; (e) t = 0.8 s; (f) t = 1.0 s; (g)
t = 1.2 s; (h) t = 1.4 s; (i) t = 1.6 s; (j) t = 1.8 s; (k) t = 2.0 s; (l) t = 2.2 s.
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Figure 25: Artificial muscle model: Snapshots of von Mises stress σvM for different configurations corresponding
to (left to right-top to bottom): (a) t = 0 s; (b) t = 0.2 s; (c) t = 0.4 s; (d) t = 0.6 s; (e) t = 0.8 s; (f) t = 1.0 s; (g)
t = 1.2 s; (h) t = 1.4 s; (i) t = 1.6 s; (j) t = 1.8 s; (k) t = 2.0 s; (l) t = 2.2 s.
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Figure 26: Artificial muscle model: Snapshots of third component of D0 for different configurations corresponding
to (left to right-top to bottom): (a) t = 0 s; (b) t = 0.2 s; (c) t = 0.4 s; (d) t = 0.6 s; (e) t = 0.8 s; (f) t = 1.0 s; (g)
t = 1.2 s; (h) t = 1.4 s; (i) t = 1.6 s; (j) t = 1.8 s; (k) t = 2.0 s; (l) t = 2.2 s.
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Figure 27: Artificial muscle model: Energy evolution for the proposed EM scheme. Left: Time evolution of H
W̃

with the proposed scheme. Right: Time evolution of ∆H
W̃

in the time interval [0.4, 3]
⋃
[3.4, 10].

Mechanical parameters µ1 2× 105 Pa Geometry of the body
µ2 2× 105 Pa
λ 2.5× 105 Pa

Electrical parameters ǫ0 8.854× 10−12 A2 s4 kg−1m−3

[m]

100

100

t = 1

ǫr 4 N/V2

Ref. potential ϕ0 0 V
Density ρ0 1 kgm−3

Timestep size ∆t 0.1 s
Simulation time T 3 s
Newton tolerance ǫ 10−4 -

Table 8: Dielectric plate: Material parameters, simulation parameters and geometry.
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Figure 28: Dielectric plate: Mechanical boundary conditions (left) where u(X1 = 0, X2, X3 = 0) = u(X1 =
100, X2, X3 = 0) = u(X1, X2 = 0, X3 = 0) = u(X1, X2 = 100, X3 = 0) = 0 and applied electric potentials ϕ1 and
ϕ2 (right) corresponding to (72).

The geometry, boundary conditions, material and simulation parameters of the dielectric plate
are depicted in Tab. 8 and Fig. 28. Note that this example is inspired by the numerical example
in [42, Sect. 4.6.4.]. A mesh comprised of 200 tet 10/4 elements with a total of 5060 displacement
and electrical potential unknowns (see Fig. 30) is employed. A constant value for the electric
potential ϕ1 is applied, whereas a time-varying value for ϕ2 is applied according to (see Fig. 28)

ϕ1 = 0 [V ]; ϕ2 =
(
5× 107

)
×

{
sin(0.5π

1 s
t) for t ≤ 1 s

1 for t > 1 s
[V ]. (72)

Typical snapshots of the motion together with the electrical potential distribution are provided
in Fig. 30. The von Mises stress and the third component of D0 are shown for some time steps
in Figs. 31 and 32, respectively. Fig. 29 shows that the midpoint-rule time integrator exhibits an
energy blow-up and becomes unstable approximately in the interval 1.1 < t < 1.3. In contrast,
the newly proposed EM time integrator conserves the total energy after the loading phase and
remains stable for the whole simulation for the same fixed time step size of ∆t = 0.1 s.

8. Conclusions

This paper introduces a family of new mixed variational principles for EM time integrators
in electro-elastodynamics. Building upon previous work in References [34] and [8], the following
ingredients are shown to be key for the successful design of these EM schemes: (i) appropriate def-
inition of the discrete derivatives of the strain energy, which coincide with those presented in [34];
(ii) use of the cascade system of kinematic constraints presented in [8] for the right Cauchy-Green
deformation tensor, its co-factor and its Jacobian; (iii) consideration of piecewise interpolation of
all the unknown fields except displacements and electric potential, making possible to carry out
a standard static condensation procedure of the discontinuous fields; (iv) consideration of convex
multi-variable constitutive models, hence guaranteeing material stability (or ellipticity) for the
entire range of deformations and electric displacement fields.
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Figure 29: Dielectric plate: Energy evolution for the proposed EM scheme. Left: Time evolution of H
W̃

for
proposed scheme. Right: Time evolution of ∆H

W̃
in the time interval [1, 3].
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Figure 30: Dielectric plate: Snapshots of electric potential ϕ for different configurations corresponding to (left to
right-top to bottom): (a) t = 0.1 s; (b) t = 0.3 s; (c) t = 0.5 s; (d) t = 0.7 s; (e) t = 0.9 s; (f) t = 1.1 s; (g) t = 1.3 s;
(h) t = 1.5 s; (i) t = 1.7 s; (j) t = 1.9 s; (k) t = 2.1 s; (l) t = 2.3 s; (m) t = 2.5 s; (n) t = 2.7 s; (o) t = 2.9 s.
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Figure 31: Dielectric plate: Snapshots of von Mises stress σvM for different configurations corresponding to (left
to right-top to bottom): (a) t = 0.1 s; (b) t = 0.3 s; (c) t = 0.5 s; (d) t = 0.7 s; (e) t = 0.9 s; (f) t = 1.1 s; (g)
t = 1.3 s; (h) t = 1.5 s; (i) t = 1.7 s; (j) t = 1.9 s; (k) t = 2.1 s; (l) t = 2.3 s; (m) t = 2.5 s; (n) t = 2.7 s; (o)
t = 2.9 s.
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Figure 32: Dielectric plate: Snapshots of third component of D0 for different configurations corresponding to (left
to right-top to bottom): (a) t = 0.1 s; (b) t = 0.3 s; (c) t = 0.5 s; (d) t = 0.7 s; (e) t = 0.9 s; (f) t = 1.1 s; (g)
t = 1.3 s; (h) t = 1.5 s; (i) t = 1.7 s; (j) t = 1.9 s; (k) t = 2.1 s; (l) t = 2.3 s; (m) t = 2.5 s; (n) t = 2.7 s; (o)
t = 2.9 s.
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Appendix A. Discrete derivatives of the internal energy

Appendix A.1. Definition of the discrete derivatives

The expressions for discrete derivatives DCW̃ , DGW̃ , DGW̃ , DGW̃ in (32) and DD0
W̃ in

(30)d will be presented in this section. Although these expressions have been proposed in [34],
we present them in this appendix for completeness. Let us introduce the following notation,
{V1,V2,V3,V4} = {C,G, C,D0}. This will facilitate the definition of the discrete derivatives

D
Ṽ1
W̃ = DCW̃ , D

Ṽ2
W̃ = DGW̃ and D

Ṽ3
W̃ = DCW̃ and D

Ṽ4
W̃ = DD0

W̃ .

D
Ṽi
W̃ =

1

2

(
D

Ṽin+1,n
W̃ +D

Ṽin,n+1

W̃
)
; i ∈ Y = {1, 2, 3, 4} ;

D
Ṽin+1,n

W̃ = D
Ṽi
W̃

(
Ṽin+1

, Ṽin

)∣∣∣
Ṽjn+1

,Ṽkn

; ∀j ∈ Y : j < i; ∀k ∈ Y : k > i;

D
Ṽin,n+1

W̃ = D
Ṽi
W̃

(
Ṽin , Ṽin+1

)∣∣∣
Ṽjn ,Ṽkn+1

; ∀j ∈ Y : j < i; ∀k ∈ Y : k > i,

(A.1)

where the discrete operators D
Ṽi
W̃

∣∣∣
Ṽjn+1

,Ṽkn

and D
Ṽi
W̃

∣∣∣
Ṽjn ,Ṽkn+1

are defined as

D
Ṽi
W̃

∣∣∣
Ṽjn+1

,Ṽkn

= ∂
Ṽi
W̃

(
Ṽn+1/2

)∣∣∣
Ṽjn+1

,Ṽkn

+

W̃
(
Ṽn+1

)∣∣∣
Ṽjn+1

,Ṽkn

− W̃
(
Ṽn

)∣∣∣
Ṽjn+1

,Ṽkn

− ∂
Ṽi
W̃

(
Ṽn+1/2

)∣∣∣
Ṽjn+1

,Ṽkn

: ∆Ṽi

||∆Ṽi||2
∆Ṽi;

D
Ṽi
W̃

∣∣∣
Ṽjn ,Ṽkn+1

= ∂
Ṽi
W̃

(
Ṽn+1/2

)∣∣∣
Ṽjn ,Ṽkn+1

+

W̃
(
Ṽn+1

)∣∣∣
Ṽjn ,Ṽkn+1

− W̃
(
Ṽn

)∣∣∣
Ṽjn ,Ṽkn+1

− ∂
Ṽi
W̃

(
Ṽn+1/2

)∣∣∣
Ṽjn ,Ṽkn+1

: ∆Ṽi

||∆Ṽi||2
∆Ṽi.

(A.2)

From above equations (A.1) and (A.2) , the directional derivative DCW̃ can be computed as

DCW̃ =
1

2

(
∂CW̃

(
Cn+1/2,Gn+1, Cn+1,D0n+1

)
+ ∂CW̃

(
Cn+1/2,Gn, Cn,D0n

))

+
1

2

W̃
(
Cn+1,Gn+1, Cn+1,D0n+1

)
− W̃

(
Cn,Gn+1, Cn+1,D0n+1

)

||∆C||2
∆C

+
1

2

W̃ (Cn+1,Gn, Cn,D0n)− W̃ (Cn,Gn, Cn,D0n)

||∆C||2
∆C

−
1

2

∂CW̃
(
Cn+1/2,Gn+1, Cn+1,D0n+1

)
: ∆C

||∆C||2
∆C

−
1

2

∂CW̃
(
Cn+1/2,Gn, Cn,D0n

)
: ∆C

||∆C||2
∆C.

(A.3)
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Similarly, the directional derivative DGW̃ can be computed as

DGW̃ =
1

2

(
∂GW̃

(
Cn,Gn+1/2, Cn+1,D0n+1

)
+ ∂GW̃

(
Cn+1,Gn+1/2, Cn,D0n

))

+
1

2

W̃
(
Cn,Gn+1, Cn+1,D0n+1

)
− W̃

(
Cn,Gn, Cn+1,D0n+1

)

||∆G||2
∆G

+
1

2

W̃ (Cn+1,Gn+1, Cn,D0n)− W̃ (Cn+1,Gn, Cn,D0n)

||∆G||2
∆G

−
1

2

∂GW̃
(
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)
: ∆G

||∆G||2
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−
1

2

∂GW̃
(
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)
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||∆G||2
∆G.

(A.4)

Furthermore, the directional derivative DCW̃ can be computed as

DCW̃ =
1

2

W̃
(
Cn,Gn, Cn+1,D0n+1

)
− W̃

(
Cn,Gn, Cn,D0n+1

)

||∆C||

+
1

2

W̃ (Cn+1,Gn+1, Cn+1,D0n)− W̃ (Cn+1,Gn+1, Cn,D0n)

||∆C||
.

(A.5)

Finally, the directional derivative DD0
W̃ can be computed as

DD0
W̃ =

1

2

(
∂D0

W̃
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)
+ ∂D0
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(
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− W̃ (Cn,Gn, Cn,D0n)
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−
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(A.6)
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