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Abstract

In this paper we demonstrate the use of multivariate topological algorithms to

analyse and interpret Lattice Quantum Chromodynamics (QCD) data. Lattice

QCD is a long established field of theoretical physics research in the pursuit of

understanding the strong nuclear force. Complex computer simulations model

interactions between quarks and gluons to test theories regarding the behaviour

of matter in a range of extreme environments. Data sets are typically gener-

ated using Monte Carlo methods, providing an ensemble of configurations, from

which observable averages must be computed. This presents issues with regard

to visualisation and analysis of the data as a typical ensemble study can generate

hundreds or thousands of unique configurations.

We show how multivariate topological methods, such as the Joint Contour

Net, can assist physicists in the detection and tracking of important features

within their data in a temporal setting. This enables them to focus upon the

structure and distribution of the core observables by identifying them within

the surrounding data. These techniques also demonstrate how quantitative

approaches can help understand the lifetime of objects in a dynamic system.
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1. Introduction

Recent advances in multivariate topological visualisation have provided new

approaches for detecting interesting phenomena in scalar fields of more than one

variable. Much of this work builds upon existing techniques used to understand

the topology of scalar fields — where critical events, such as the creation and

merging of unique features, are captured using graph structures. The ability to

examine multiple fields in parallel also presents a method for tracking objects

in higher dimensional data sets.

In this paper we use the joint contour net (JCN) algorithm [1] to track

objects with a finite lifetime across multiple time steps. (Anti-)Instantons are

4D “pseudo-particles” studied by domain scientists that are localised to specific

locations in 4D Euclidean space-time. Existing statistical physics methods are

able to predict the existence of these objects; however, more complex properties

such as their structure and lifetime are more difficult to evaluate.

To demonstrate how multivariate topological visualisation techniques can

benefit lattice QCD scientists we focus upon analysing a single instanton pre-

identified by existing physics methods. Due to the Euclidean nature of lattice

QCD, where space and time are treated equivalently, the techniques used in this

paper can also be used to scan volumes with a temporal component (xyt, xzt,

yzt) along a spatial axis. Whilst not seen as a direct replacement for viewing

these fields in their native 4D embeddings, this technique presents an interesting

approach to pin-point critical events in the topology of a single evolving field.

By carrying out this case study we intend to answer the following questions:

• Can we use the JCN to track an instanton between multiple neighbouring

time slices?

• Can extra properties about instantons be determined through multivariate

persistence measures?

• Can the Reeb skeleton be used to simplify the field and summarise prop-

erties of observables?
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The remainder of this paper begins with an overview of the necessary back-

ground information in Section 2. Section 3 briefly introduces the application

used to carry out the work in this paper. We then give a description of the

observed data in Section 4, this forms the basis of a quantitative approach to

evaluating the topological structure of the data in Section 5. We then show

an experimental use of the JCN to locate and study the structure of an (an-

ti-)instanton within an entire 4D data set in Section 6. The paper is concluded

in Section 7 where we summarise our findings from the case study.

2. Background

In this section we introduce the relevant background information required to

read the rest of the paper. We begin by providing an overview of multivariate

topological visualisation algorithms, before introducing aspects of lattice QCD

that are relevant to this paper. Much of multivariate topology uses a generalisa-

tion of univariate topology concepts where structures such as the Reeb graph [2]

summarise the topology of a scalar field. For a more in depth overview of the

use of topology in visualisation we refer the reader to the survey paper by Heine

et al. [3].

2.1. Multivariate topological visualisation

The Reeb space is a generalisation of the Reeb graph enabling multivariate or

temporal data to analysed. The first discussion of using the Reeb space to com-

pute topological structure of multiple functions is presented by Edelsbrunner

et al. [4], where it is suggested that the Reeb space can be modelled mathe-

matically in the form f : M 7→ Rk, where M represents the domain and f the

output of k scalar functions. For the simple case, where k = 1, this is directly

comparable to the Reeb graph. The Reeb space extends this formulation to

situations where k ≥ 2.

3



2.1.1. The joint contour net

Carr et al. [1] presented the first discrete representation of the Reeb space using

the Joint Contour Net (JCN). For functions of n variables defined in an Rm

dimensional space the algorithm approximates the Reeb space as a number of

multivariate contours named joint contour slabs. These represent connected

regions of the domain with respect to the isovalue of multiple functions. In

situations where n ≥ m the JCN can still be computed; however, the output is

not an approximation of the Reeb space but instead a subdivision of the input

geometry over n variables. The JCN captures the Reeb space as an undirected

graph structure, where vertices represents slabs of n isovalue tuples, and edges

are used to show adjacency between regions. An example JCN of two scalar

functions is presented in Figures 1 and 2. The JCN has previously been used

to study multivariate data originating from nuclear scission simulations [5, 6, 7]

and hurricane measurements [8].

The Reeb skeleton is a simplified graph structure that takes into account the

size of connected components, allowing measures of persistence to be assigned

to its arcs to aid multivariate simplification [9]. Lip pruning techniques, similar

to the leaf pruning method of simplification found in univariate topological

structures [10] can then be applied to progressively remove noisy features in

the multi-field. Example persistence measures applied to the JCN include the

accumulated volume of joint contour slabs in a connected region. Alternatively,

the Reeb skeleton can be used to quantify regions of the multivariate topology

for analysis.

2.2. Lattice Quantum Chromodynamics

Kenneth Wilson was the first physicist to suggest that a discrete 4D lattice

could be used to model properties of quark-gluon fields [11]. The lattice is a

hyper-torus in Euclidean space-time, meaning that the three spatial dimensions

and the time dimension are treated as equal. Periodic boundary conditions,

where the minima and maxima on each axis are connected, are used so that it

is impossible to consider any position on the lattice to be on a boundary. The
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Figure 1: Two simple scalar functions defined on a simplicial grid (left) where the dotted lines

represent the quantisation intervals. The quantised contour tree for each function (right) is

shown mapped to scalar field in the centre.
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Figure 2: The JCN capturing the bivariate topology of the two simple functions shown in

Fig. 1. The bivariate field is decomposed by overlaying the quantisation intervals of the two

input fields (dotted line). A vertex is placed at the barycentre of each region, or joint contour

slab, and edges mark adjacency.
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scale at which lattice QCD acts is typically in the region of 2 to 4 femtometres

(10−15m), with state of the art simulations having a lattice spacing a of 0.02 to

0.04 femtometres.

Quarks are located on the lattice at positions with integer indices referred to

as sites. From each lattice site four link variables are used to model the gluon

potential in the x, y, z and t directions between two sites. Each link variable is

a member of the special unitary group of matrices, identified using the notation

SU(n). The value of n represents the number of charge colours used in the

gauge theory, with true QCD defined with n = 3. However, in this work we

use a simplified two colour model of the theory using SU(2) matrices. Colour is

used in this context to parametrise the concept of colour neutrality in a form

similar to that of positive and negative charge. One of the primary reasons for

using a simplified model is that it allows us the freedom to vary the chemical

potential of the system [12]. Chemical potential represents the energy change

as either a quark is added or an anti-quark is removed from a system. Varying

the parameter enables exotic forms of matter, such as neutron star cores, to be

simulated.

The discrete nature of the lattice means it is possible to calculate paths

around sites in space and time. Certain configurations of closed loops on the

lattice are used to generate the scalar field observables of lattice QCD. The most

basic unit closed loop in any directions is commonly referred to as a plaquette;

computing the average plaquette in all 4 dimensions produces the Wilson action

observable. In this work we mainly focus upon the topological charge density

field, computed as a loop in all four space-time dimensions from each site [13].

Regions of the lattice where the topological charge density reach a minima or

maxima indicate the presence of (anti-)instanton pseudo-particles — one of the

primary observables of lattice QCD. These have a finite extent in the time

dimension and are able to appear and disappear, unlike real particles.

In order to reveal the structure of (anti-)instanton observables, the effect of

quantum fluctuations must be minimised through a noise reduction technique

known as cooling. After applying cooling what should remain are long range
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physical interactions that characterise the existence of an (anti-)instanton; how-

ever, overly aggressive use of cooling can result in the destruction of the core

observables.

3. Implementation

In this work we use the JCN implementation supplied as part of the Multifield

Extension of Topological Analysis (META) project [14]. This provides a number

of filters for multivariate data that can be applied to the visualisation pipeline

as part of a VTK [15] workflow. Filters are included for creating an initial JCN

decomposition of the input fields that are able to be presented in graph form.

As part of the process of creating the JCN individual joint contour slabs, in the

form of polygon meshes, are created as the union of multiple smaller fragments.

Input fields are placed on to a common set of sampling points in three di-

mensions and each cubic cell is subdivided into 6 tetrahedra using a Freudenthal

subdivison. In order to handle periodicity an additional cell is constructed to

link the minimum and maximum samples on each axis.

3.1. Interactive user interface

This case study was performed using a modified version of the interactive tool

used by Geng et al. for the analysis of hurricane data [8]. Modifications of the

software were largely made to facilitate collection of quantitative measurements

for analysis. In addition, the transfer functions used to colour the glyphs have

been modified to enhance feedback for lattice QCD fields that are often centred

on zero [16, 17, 18]. Figures 3 and 4 give a visual overview of the user interface.

4. Visual analysis of lattice objects in four dimensions.

In the following section we give details of how an (anti-)instanton can be located

and tracked using the JCN. The entire workflow is given, beginning with the

steps a domain scientist would use to locate a potentially interesting observable

in a typical study. We also discuss important considerations such as the slab

size parameter which defines the resolution the scalar field is captured at.
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Figure 3: The user interface used to explore temporal lattice QCD data as captured by the

JCN. The JCN captures the topology as a graph structure (1) — displayed here in a spring

layout. Each JCN glyph (2) represents a slab (or quantised contour) using scale to provide

feedback on the overall size of the slab. Glyphs are coloured by isovalue (3), where the top

half of each glyph represents the first input field and the bottom the second input. Also visible

is the Reeb skeleton (4) which captures the JCN in a simplified form; red glyphs represent

major changes in topological connectivity and blue glyphs represent relatively stable regions

of topological structure. Slabs are only rendered (5) to reflect any selections made by the

user; in this view nothing has been selected.

Figure 4: The user interface allows the user to select nodes in the Reeb skeleton (1) or JCN

(2) using rubber band selection. Green glyphs in the Reeb skeleton correspond directly to the

blue glyphs in the JCN view. Selected vertices are displayed as quantised contours (3) using

a colour transfer function (4) determined by the bivariate input fields.
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Cools SMAX QMAX QMIN

27 (11, 4, 13, 5) (11, 4, 13, 5) (6, 2, 7, 2)

28 (9, 8, 10, 5) (9, 8, 10, 5) (6, 2, 7, 2)

29 (9, 8, 10, 5) (9, 8, 10, 5) (6, 2, 7, 2)

30 (9, 8, 10, 5) (9, 8, 10, 5) (6, 2, 7, 2)

31 (9, 8, 10, 5) (9, 8, 10, 5) (6, 2, 7, 2)

Cools SMAX QMAX QMIN

32 (9, 8, 10, 5) (9, 8, 10, 5) (6, 2, 7, 2)

33 (9, 8, 10, 5) (9, 8, 10, 5) (6, 2, 7, 2)

34 (9, 8, 10, 5) (9, 8, 10, 5) (6, 2, 7, 2)

35 (9, 8, 10, 5) (9, 8, 10, 5) (6, 2, 7, 2)

36 (9, 8, 10, 5) (9, 8, 10, 5) (6, 2, 7, 2)

Table 1: The location on the lattice of global minima and maxima in the conp0050 configu-

ration. Changes between cooling iterations are highlighted in bold.

4.1. Selecting a candidate configuration for visual analysis

Data used in this case study originates from a lattice with 16 spatial sites and

8 time sites, otherwise denoted as a 163 × 8 or “hot” lattice on account of the

short temporal extent. This particular lattice is chosen as it features relatively

few time slices in comparison to other ensembles where the temporal extent can

exceed 32 steps. The JCN is demonstrated capturing a single topological object

across the temporal axis including the periodic boundary between t = 8 and

t = 1. We also use the short temporal axis to push the limits of the JCN by

queuing multiple time slices on the multi-field to see if we are able to observe a

signature for the entire 4D hyper-volume (Sec. 6).

The configuration used in this study conp0050 originates from an ensemble

with a chemical potential µ = 0.7. The lattice is pre-cooled for 30 iterations

to a stable state, validated by inspection of the total topological charge density

and peak Wilson action graphs. At this point in the cooling process the total

topological charge QTOT remains flat for many cooling iterations (Fig. 5) and

the peak Wilson action SPEAK follows a smooth trajectory (Fig. 6).

The stability of the lattice is also reflected by monitoring the location of

minima and maxima in the topological charge density Q and Wilson action S

fields (Table 1). In this interval of the cooling process the predicted locations of

field minima and maxima are extremely stable, indicating that the same object

is persisting throughout. The location of maxima in the Wilson action SMAX

and topological charge density QMAX coincide predicting the presence of an

(anti-)instanton.
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Figure 6: Peak Wilson action SPEAK

4.2. Input fields

In order to use the 4D topological charge density with the JCN algorithm [14]

the dimensionality is reduced to 3D by slicing along the the t axis. Each JCN

in this case study is constructed from two neighbouring time-slices (tn, tn+1),

additionally as the time axis is also periodic in lattice QCD the JCN (tmax(n),

tmin(n)) is a valid input configuration. Hence, for the 16× 8 ensemble, as used

in this study, we preserve temporal periodicity by computing a JCN for (t8, t1).

10



4.2.1. Slab size parameter

Throughout this study the JCN slab size parameter is fixed dividing the topolog-

ical charge density, with approximate range [−45.0, 45.0], into 29 = 512 intervals

to give a slab size of 0.17578125. Figure 7 visualises the instanton as 3 consec-

utive temporal objects, generated as interval contours at the specified slab size.

The green shades of each object, used to show neutral isovalues, show the outer

layers of the instanton hide a dense core at the field maxima. The same object

is present in each time step; however, its structure constantly evolves with time.

Multivariate persistence measures can be used to capture this information at

the specified slab size as demonstrated in Sec. 5.

Topo-

logical

charge

den-

sity

t = 4
t = 5

(maxima)
t = 6

Figure 7: View of the main instanton observable as univariate slabs.

4.3. Global location of (anti-)instanton observables

Figure ?? presents the eight separate JCNs created by evaluating each pair

(tn, tn+1) of temporal fields. A fixed colour transfer function is used, based

upon on the peak magnitude in four-dimensions, in order to present a true

representation of potential (anti-)instantons in the data. This technique was

chosen as lattice QCD observables must be considered as global extrema in 4D,

rather than as localised between two time steps.
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Initially it is possible to locate an anti-instanton in the JCN for t = (1, 2)

by identifying the object as a global minima using the coloured glyphs (Fig. 8).

The object can also be detected in t = (2, 3) using the same approach; however,

the bottom half of the glyph turns green to indicate a neutral isovalue. The

structure of the anti-instanton continues to persist in the data beyond this time

slice despite the change in isovalue. Recovery of the anti-instanton slab structure

in later time slices requires some exploration of JCN branches using knowledge

of the objects location. The anti-instanton becomes a prominent feature in the

bivariate topology at t = (8, 1) where the coloured glyphs indicate the presence

of a global minima.

Topo-

logical

charge

density

Figure 8: An anti-instanton can be located in the t = (1, 2) JCN as the branch with blue

glyphs. This object continues to exist for several time steps.

Also present in the JCN overview (Fig. ??) is a global maxima which first

becomes prominent in the multivariate glyphs at t = (4, 5). This coincides with

12



the output of the FORTRAN code which predicts the presence of an instanton

at t = 5. The instanton quickly begins to fade into the surrounding lattice

structure at t = (5, 6) where the multivariate glyphs indicate a return to more

neutral isovalues (Fig. 9).

Topo-

logical

charge

density

Figure 9: An instanton can be located in the t = (5, 6) JCN as the branch with red & yellow

glyphs. The bottom half of the glyphs indicate that the topological charge density quickly

drops off from a global peak at t = 5.

Several other localised features exist in the data at various points in the

temporal JCNs. A second potential anti-instanton appears in the JCN at t =

(7, 8), continuing to exist in parallel to the main anti-instanton observable at

t = (8, 1). The JCN offers an interesting approach to examining the interactions

between multiple temporally localised lattice objects. Lattice observables in

neighbouring time slices could potentially have an influence over the geometric

structure of other objects.
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4.4. Visually tracking an instanton across the temporal axis

In the following section the bivariate topology, as captured by the JCN and Reeb

skeleton, is examined in greater detail. We begin by looking at the identified

global maxima in four dimensions, predicted by the cooling code as being at

(9, 8, 10, 5) and continue across the periodic boundary back to the origin.

Time steps t = 4 and t = 5. The instanton is located by examining the JCN

vertices using the coloured glyphs relating to isovalue. The JCN, when drawn in

domain layout, shows the approximate location of barycentre of the slabs making

up the instanton. Displaying the slab geometry makes it possible to validate

that the location of the object agrees with the predicted location (9, 8, 10, 5)

from the cooling code. The instanton structure is the most prominent region of

the bivariate topology captured in the Reeb skeleton.

Selecting Reeb skeleton vertices highlights common vertices in the JCN.

Vertices in the Reeb skeleton share a one-to-many relationship with the JCN

as the Reeb skeleton collapses regions of path connected slabs into a single

vertex. In both fields the instanton is surrounded by slabs with low isovalue,

represented by green glyphs — relating to the region of percolation on the lattice

where topological charge density centres on zero. The Reeb skeleton facilitates

the removal of the outer layers of the instanton by considering it as topological

noise due to low persistence.

Time steps t = 5 and t = 6. The Reeb skeleton highlights two significant

features for t = (5, 6). The most prominent feature is the instanton, but a

secondary feature also stands out in the Reeb skeleton and JCN. Examination

of the secondary object as slabs and using the JCN shows a relatively small

feature made up of a number of densely packed layers. Isovalues of the object

in both temporal fields reveal that the topological charge density at the inner

core is neutral, indicated by the green coloured glyphs. This allows it to be

concluded that although a significant feature in the lattice topology this object

is not a potential (anti-)instanton.

14



Time steps t = 6 and t = 7. The instanton is located using the JCN as signifi-

cant feature of the topology. At t = 6 the instanton appears as a maxima in the

topological charge density field; however, at t = 7 the isovalue of the instanton

is drastically reduced to neutral. The Reeb skeleton also identifies a potential

anti-instanton, existing as a local minima at t = 7. Also present is a secondary

maxima that replaces the instanton structure as the local maxima at time slice

t = 7.

Time steps t = 7 and t = 8. The instanton structure continues to remain visible

in the t = (7, 8) JCN. The object becomes a less significant feature of the JCN

with green glyphs revealing that the isovalue has reduced to near zero. How-

ever, enough topological structure remains to separate the instanton from the

surrounding region of percolation. Due to reduction of isovalue range represent-

ing the object the Reeb skeleton discards the instanton, instead determining it

to be topological noise.

Time steps t = 8 and t = 1. At standard resolution the JCN, with inputs set

to t = 8 and t = 1, failed to reveal any structure relating to the instanton

observable. However, when the slab size is decreased the instanton can be

isolated from the surrounding topology charge density. A halving of the slab

size to 0.087890625, giving 210 = 1024 intervals, is sufficient to allow the object

to be located. Examination of the geometric structure of the instanton, through

the joint contour slabs, reveals that the shape found in earlier time slices begins

to merge into the surrounding lattice field. However, it is possible to confirm

that the selected object relates to the instanton by observing the JCN in domain

layout (Figure 10).

Time steps t = 1 and t = 2. The JCN for time-steps t = (1, 2) reveals that

the instanton can still be differentiated from the surrounding topological charge

density by again halving the slab size to 0.087890625. Evidence of the emergence

of a potential anti-instanton in the data can also be found in the JCN and Reeb

15



Topo-

logical

charge

density

Figure 10: The JCN in domain layout for t = (8, 1) displayed alongside the joint contour

slabs. The selected glyphs (11) represent the instanton and correlate with the slab structure.

skeleton. This coincides with the global minima QMIN estimated by the cooling

code to be present on the lattice at (6, 2, 7, 2).

Time steps t = 2 and t = 3. The main instanton observable reappears in the

bivariate topology at standard resolution with inputs t = (2, 3). The JCN and

Reeb skeleton identify the instanton as a minor feature of the topology alongside

several more significant features. Two other features, interesting in the context

of lattice QCD, are present including the global minima in 4D – a potential

anti-instanton. The presence of the anti-instanton appears not to distort the

structure of the instanton.

Time steps t = 3 and t = 4. The Reeb skeleton detects the instanton as the most

prominent feature. The slab structure captured by the JCN is well defined and

resembles that of other time slices. The isovalues associated with the instanton

object at t = (3, 4) shows a large jump in isovalue between the two time-slices,

captured by the colour change from red to green in the JCN.

5. A quantitative approach to instanton tracking

We have shown how the instanton can be tracked by the JCN visually; however,

for domain scientists a more quantitative approach is required. In the following

16



section we look at what statistical measurements are available using bivariate

topological structures. It should be noted that each of these process require

manual locating of the target object.

5.1. Slab count

A basic measure of persistence can be computed from the JCN by counting

the number of slabs making up a topological region. Each vertex in the JCN

represents a joint contour slab, or region of the quantised Reeb space, associated

with a pair of isovalues. Throughout the case study it was found that the number

of slabs linked to an object tended to vary with two properties of the object;

the volume of the slabs, and the isovalue range of the object. Sparse objects

with a wide range of isovalues frequently appear as sheet-like structures in the

JCN, and densely packed objects appear with a branch-like structure.

We found that it was possible to get a rough estimate of properties of lattice

objects in the quantised Reeb space by calculating the percentage of vertices in

the JCN contributing to the object, as detected through manual selection.

Input fields Instanton Entire JCN Percentage

sub-graph structure

t = (1, 2) 0 572 0

t = (2, 3) 5 371 1.35

t = (3, 4) 39 339 11.50

t = (4, 5) 199 584 34.08

Input fields Instanton Entire JCN Percentage

sub-graph structure

t = (5, 6) 212 472 44.92

t = (6, 7) 44 237 18.57

t = (7, 8) 6 360 1.67

t = (8, 1) 0 806 0

Table 2: Number of JCN vertices contributing to instanton structure

All values are taken using a slab size of 0.17578125.

Table 2 presents the number of vertices present in each JCN across the

temporal axis at the standard slab size. When plotted as a histogram, as in

Figure 11, a peak in the number of vertices in the manually identified instanton

sub-graph coincides with QMAX .

The JCNs show an increase in the number of total vertices on the lead up

to QMAX and QMIN , followed by a drop in graph complexity after each event.

The peaks were expected to coincide with the emergence of the anti-instanton
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Figure 11: Number of slabs in the JCN representing the instanton structure.

and instanton; however, both peaks seem to proceed the time-steps containing

the (anti-)instanton structures rather than directly matching them.

Viewing the number of vertices in the instanton sub-graph as a percentage

of the entire JCN (Fig. 12) suggests that the structure dominates the quantised

Reeb space at its peak value, where t = 5, agreeing with the predicted global

maxima QMAX . In the t = (1, 2) and t = (8, 1) JCNs the percentage of vertices

is zero — this is where the instanton structure was not detected at all at the

standard resolution.

5.2. Simplification and persistence data using the Reeb skeleton

The Reeb skeleton summarises the multivariate topology in a more compact

graph structure. Adjacent slabs are merged, provided no critical events coincide

with the slab. This allows entire path connected regions to be summarise as a

single unit, represented by a vertex in the Reeb skeleton. Besides simplification
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Figure 12: Percentage of slabs in the JCN representing the instanton structure.

of the quantised Reeb space, the Reeb skeleton enables the generalisation of

persistence measures used in univariate topology to multivariate topology. Each

vertex in the Reeb skeleton has persistence measures attached representing the

connected components (the joint contour slabs), allowing us to further analyse

the instanton structure.

This section examines how different persistence measures, used during sim-

plification, affect the ability of the Reeb skeleton to detect the instanton struc-

ture. The simplification measures are defined as follows:

Reeb skeleton. Collapses adjacent slabs into a single vertex, meaning entire sheet

or branch-like structures in the JCN can be summarised by a single branch of

the Reeb skeleton. Topological events, such as splits and merges, are captured

as vertices with degree 3 or higher. No simplification is performed, frequently

leading to the creation of multiple leaf vertices along branches of the Reeb

19



skeleton.

Simplified Reeb skeleton. This is the full Reeb skeleton except a basic pruning

of non-critical vertices is performed. First, all degree one singular vertices (leaf

nodes) are removed from the Reeb skeleton and replaced with regular vertices.

Next any degree two singular vertices are replaced with regular nodes. Finally,

any regular leaf vertices are merged with their neighbours until a singular vertex

is encountered. This has the effect of collapsing large branches of regular vertices

to a single vertex representing the entire set of connected components.

Persistence simplified Reeb skeleton. The Reeb skeleton is first pruned of non-

critical vertices, as described above. Following this each of the remaining com-

ponents in the graph are assigned a level of persistence based upon the quantity

of JCN nodes that make up the sub-graph represented by the vertex. Next reg-

ular vertices of the JCN that fall below a specified threshold are removed from

the graph. Finally, any remaining non-critical vertices are removed by repeating

the basic pruning technique.

Volume simplified Reeb skeleton. This method of simplification is similar to

“persistence simplification” except instead of counting the number of JCN nodes

in a sub-graph of connected components, the volumes are approximated by

counting the number of fragments passed through. Each fragment represents

a tetrahedra cell in the quantised Reeb space, counting the number of these in

each slab gives a rough estimate of volume.

Table 3 shows the effect that various forms of simplification have on the Reeb

skeleton, also visualised in Figure 15. This confirms that under simplification

the Reeb skeleton often reduces regions of the bivariate topology representing

the instanton to a single vertex.

Simplification using basic leaf pruning and volume measures at first appear

to give similar results. However, when viewing the effect by cross referencing the

JCN (Table 4, Fig. 16) variations appear, as smaller slabs are filtered out under

simplification. The simplification preserves the observed forking behaviour in
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t = (1, 2) t = (2, 3) t = (3, 4) t = (4, 5) t = (5, 6) t = (6, 7) t = (7, 8) t = (8, 1)

Unsimplified Reeb skeleton 0 2 8 43 12 2 0 0

Simplified Reeb skeleton 0 1 1 1 4 1 0 0

Persistence simplification 0 0 1 1 1 0 0 0

Volume simplification 0 1 1 1 4 1 0 0

Table 3: Number of vertices in Reeb skeleton after simplification

t = (1, 2) t = (2, 3) t = (3, 4) t = (4, 5) t = (5, 6) t = (6, 7) t = (7, 8) t = (8, 1)

Manual selection 0 5 39 199 212 44 6 0

Unsimplified Reeb skeleton 0 5 34 186 212 28 0 0

Simplified Reeb skeleton 0 2 33 167 122 1 0 0

Persistence simplification 0 0 26 137 120 0 0 0

Volume simplification 0 2 33 167 122 1 0 0

Table 4: Number of node in JCN relating to instanton after simplification

the instanton structure at t = (5, 6), resulting in four nodes in the Reeb skeleton

(Fig. 13). Investigating the object by viewing the slab geometry (Fig. 14) shows

the instanton splits into an outer (3) and inner (4) shell structure.

Figure 16 shows how under simplification the number of vertices in the JCN

judged to be topological noise varies by the persistence measure used. The

unfiltered Reeb skeleton captures most of the vertices that are chosen by manual

selection. Minor variations are found at the point where the instanton branch

of the Reeb skeleton attaches to the region of percolation around zero. This

appears as a very highly connected vertex at the centre of the JCN and Reeb

skeleton. Under simplification most techniques merge the JCN vertices closest

to isovalue zero into the central vertex due to their low relative persistence.

We also observed that the vertices at the ends of JCN branches, where the

isovalue is furthest from zero, representing the core of an (anti-)instanton are

often removed from the intended observable. There were other situations where

simplification resulted in a single disconnected joint contour slab halfway along

the instanton branch (Fig. 17). This is often linked to the creation of many

small and low persistence slabs — most likely this is an indication that the slab

size parameter is too high.

The most aggressive form of simplification witnessed in this case study was
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Figure 13: Reeb skeleton for t = (5, 6), simplified using volume persistence measures. The

instanton (1) is captured as a branch in the simplified Reeb skeleton. At vertex (2) the

instanton splits into two; the outer part (3) and inner core (4).

Topo-

logical

charge

density

Slab structure Outer core Inner core

Figure 14: The forking behaviour visualised using the slab geometry. The full instanton

structure (1) splits into outer (3) and inner (4) parts.

based upon the number of connected components. This removed the intended

instanton observable from the simplified topology several time-steps earlier than

other simplification techniques. We believe this was likely caused by an overly

strict threshold level and highlights the need for careful selection of simplification

parameters.
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Figure 15: Number of nodes in the Reeb skeleton representing the

instanton under simplification.
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Figure 16: Number of nodes in the JCN representing the instanton

under simplification.

6. Feature detection using the entire lattice data

The final use of the JCN is an experimental attempt to detect the instanton

using all eight time-slices as input. Whilst the Reeb space is only well defined
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Figure 17: Comparison of simplification techniques on the t = (6, 7) joint contour net.

for situations where m > n, the JCN algorithm can be used on data where

this condition is not met. In this situation we will be dealing with data defined

on an m = 3 dimensional mesh with n = 8 function values. The output of

the algorithm is a subdivision of the input field with regard to all 8 functions;

embedded amongst this we expect to find structure relating to the instanton.

The JCN for t = (1, 2, 3, 4, 5, 6, 7, 8) is shown in Figure 18, featuring 36450

vertices and 104373 edges. The structure clearly splits the input space into

distinct topological objects, meaning it is possible to select a single branch of

the JCN to isolate the instanton structure (1). Viewing the instanton as joint

contour slabs (Fig. 19) shows an object very similar to that output by the

bivariate JCNs.

Stepping through the data, colouring the graph by isovalue for each time-

step, allows the variation in isovalues of each branch to be observed. When

reaching peak topological charge density QMAX at time-step t = 5 all other

vertices in the graph have very low relative isovalues, indicated by blue glyphs.

This is largely a side-effect of the colour transfer function being relative to the

data set in view — for QMAX this offsets the values further from zero than

other time-steps. The same effect is less obvious for QMIN at t = 2, but can

still be observed.
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Figure 18: Top: The JCN for t = (1, 2, 3, 4, 5, 6, 7, 8). captures the instanton as branch (1).

Bottom: Examining the branch in greater detail shows that the peak in topological charge

density is capture in only a few vertices at the end of the branch. The peak in the topological

charge density is captured by the multivariate glyph at t = 5. It is also possible to observe

elevated levels in the topological charge density in neighbouring time slices.
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Figure 19: The slab structure of the instanton recovered from the JCN of

t = (1, 2, 3, 4, 5, 6, 7, 8).

7. Conclusion

We have shown in this paper how recent advances in multivariate topological

analysis can be applied to lattice QCD data sets. We have demonstrated how

multivariate topology can be used for comparing data with a temporal element

in order to observe critical topological events as the time step is varied. This

case study also considered some basic multivariate persistence measures avail-

able in the data, such as the number of slabs. These measures are suited to

evaluation as lattice simulation parameters are varied as their values can be

collected autonomously.

In summary this paper makes the following contributions:
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• The JCN was used to track and observe the structure of an instanton in

4D space-time.

• Quantitative measures were taken directly from the JCN and Reeb skele-

ton to evaluate the importance of lattice observables in the context of the

topology of the lattice.

• We demonstrated how multivariate simplification metrics could potentially

be utilised to locate important observables in lattice QCD.

• It was also demonstrated how the JCN can be used to reduce the structure

of a 4D object to a 3D approximation.

The study carried out in this paper forms part of a much larger body of work

studying the use of topological visualisation techniques in lattice QCD [19].

The quantitative approaches demonstrated here can be used to perform anal-

ysis on ensembles of hundreds of configurations. This is a typical use case for

lattice QCD scientists, where averages across a large sample of configurations

are needed to evaluate the effect of changing simulation parameters. We give a

more detailed review of how a domain expert may perform such a study in [20].
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