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Strain-induced piezoelectric field effectively controls a GaAs/Ge/GaAs quantum well from a normal
state to a topologica insulator state. The quantum piezotronic device can be used for the low power

consumption signal converter and quantum information memory device.
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Abstract

As the emerging fields, piezotronics and piezoptnotocs have recently attracted
extensive attention by the coupling of the semicmhal, photon excitation and piezoelectric
properties. Piezopotential can be induced insidgiezoelectric material by applying an
external mechanical force, which further adjusts ¢hrrier transport property. In this paper,
we theoretically investigate the piezotronic effam topological insulators based on
GaAs/Ge/GaAs quantum well with two quantum poinntacts (QPCs). Strain-induced
piezopotential can drive a topological phase froosnmmal insulator to topological insulator
state. The transport characteristics of edge statedulk states are studied by calculating the
electronic density distribution under various stsai The conductance of the edge states
exhibits an excellent switching behavior with th&l/OFF ratio over 1. By integrating

multiple topological insulator systems into a citcyiezotronic signal converter can be
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bulk-state electrons can be trapped by the douBileéQwhich can be used to realize quantum
information memory devices. This work provides avelo method for developing

high-performance piezotronic devices based on tapchl insulator.

Keyword: piezotronic effect, topological insulator, doubuantum point contacts,

strain-gated transistors, quantum information memor

Introduction

Piezoelectric semiconductor materials, such as Za@l, InN, CdS and monolayer
MoS,, have attracted increasing interests owing tactupling characteristics of piezoelectric
and semiconductor properties [1, 2]. Strain-indupegkopotential can effectively tune the
carrier generation, transportation and recombinatiside the material [3, 4]. Inspired by
ultra-high performancea variety of piezotronic angbiezo-phototronic devices have been
developed such as, nanogenerator [5, 6], piezoelditld effect transistors [7], flexible
spintronic devices [8], acoustic wave devices [, fthoton detectors [11], solar cells [12, 13]
and LEDs (light emitting diodes) [14]. Additionallytilizing the piezoelectric effect to adjust
the quantum states has been proposed for a sénmszotronic devices such as piezotronic
strain-gated logic devices [15] and quantum phdtai®devices [16]. Piezotronic effect is
also able to enhance luminescence in ZnO nanolifed 8] and the monolayer MgflL9].

Topological insulator, as a hew quantum state oftanahas the insulating bulk and
conductive surface, which has been demonstratastdtieally and experimentally [20-23].
Its unique edge state is robust in electron tramapon process against the nonmagnetic
impurity scattering and local perturbation [24-2@laking it a promising material to develop
non-dissipation devices. Since the discovery oblmgical insulators in HgTe quantum wells
[24, 27], most materials have been witnessed tegssssuch topological phase under some
specific conditions.

Recent studies have suggested that the mechawica plays an important role to
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topological insulator BSe, the Dirac states can be tuned by strain at th atale, making
it possible to achieve strain engineering in lagigogologic insulators [30].

In this paper, we discuss the characteristics @ftet switching and charge storage of
the quantum structure based on the GaAs/Ge/GaAstumawell. A thin Ge layer is
sandwiched between two GaAs layers to form a quantell with an inverted band [29].
Double guantum point contacts (QPCs) are formethénquantum well layer and can be
controlled by applying the strain-induced piezoptitd on the split gates [15]. Piezopotential
effectively manipulates the extension of the Gestapence accurately tuning the width of
each QPC [3, 4]. Further, the externally appliedistcan change the topological phase of
guantum well and effectively modulate the electromansport property of the system. By
calculating the conductance and the electronicityedstribution at various applied strains,
we observe an electric switching behavior for edgges, which has ultrahigh ON/OFF
conductance ratio. In particular, by adjusting dtrain and Fermi energy, the electrons can be
confined between the double QPCs.

Figure 1 shows the schematic of GaAs/Ge/GaAs qunantell with double QPCs and
the band structures. Electronic transport in theédhei Ge layer (also named as quantum Hall
bar) is strongly dependent of the topological phhaeis determined by the QPCs width [31].
Figure 1(a) displays the energy structure for aovaQPC width of 2 nm. A band gap appears
and it corresponds to the normal insulator stathethe Fermi energy is located at the gap
region, no quantum states exists and thus theretecwill be blocked in the transport process.
Noting that we assume the first QPC width (labedsdQPC1) to be wide and the band
structure corresponds to the second QPC (label€P&?). Figure 1(b) shows a gapless case
when the QPC width is increased to 8 nm, indicagingpological insulator state. The red line
stretching across the conductance and the valentteeigapless edge states [32]. When the
Fermi energy is in gapless region, the electrons tcavel through the system along its
boundaries.

GaAs/Ge/GaAs structure is a good candidate dukeaiinall lattice mismatch between

3



D e

The transport properties in the GaAs/Ge/GaAs quantell can be obtained by solving

the Schrddinger equation under specific boundangitions
Hy =By @)
where ¢ is wave function with the energf . H is the Hamiltonian describing the

electrons properties in the GaAs/Ge/GaAs quantuify which are governed by a four-band

effective Hamiltonian matrix [29]

E,+EK® Ak, 0 0
* 2
Lol Ak HotHK 0 : 0 2
0 0 E,+Ek® -Ak
0 0 ~AK,  H,+HK

where K= k)%+k§ denotes the in-plane momenturk, =k, +ik, . Other relevant

parameters areE, =-0.19808 eV, E;=-0.4381C eV-A? H;=-0.19152 eV,

H, = -0.2081C eV-A?% andA =0.02851C eV-A [29].

The conductance in GaAs/Ge/GaAs quantum well canchleulated using the

Landauer-Buttiker formula [36, 37]
G=G,) It 3)

where ¢ =€’/ h is conductance unitt,, is the transmission coefficient for the electrons

travelling the system from thath incoming channel to theh outcoming channel.

The boundary of the quantum system has great imfli@n the transport behavior [38].
Experimental results suggested that the QPC wadtlthe boundary of the studying system,
can be effectively controlled by the applied gatdtage [31]. Hence, the piezopotential
arising from the external strain on piezoelectriat@nials can be used as the gate voltage to
modulate the electronic transport.

Piezoelectric charges induced by mechanical st@&ircan be obtained from the

polarization vectoP, which is given by



The constituting equations can be written as [3, 39

()

og=c.S-€'E
D =eS+kE

where E and D represent the electric field and electric disptaeet vectors.c and

ce stand for the stress and elasticity tensdtsis the dielectric tensor. Piezoelectric charges

polarized by an applied strain induce piezopotétiaording to the following relationship
3]
PL

Vpiezo = prezo (6)
gr 80

where Lpi is the length of the piezoelectric materid?, is the polarization vector

obtained from Eq. (5),s, and & are the relative and vacuum dielectric constants

respectively.
For zinc-blende structure grown along the polaeation [111] with shear strairs,5

along they—z plane, the piezopotential is given by

V - el4523L (7)

where g, is the piezoelectric coefficient of zinc-blendezmelectric material and. is the

length of piezoelectric material in the topologiceulator.

Results and discussions
1. Transport Properties of the Edge States

Topological insulator has a unique edge state wisctopologically protected by the
time reversal symmetry and has great potential dewveloping low power consumption
devices [26]. In order to give a direct view of th@nsportation of the edge state, we plot its

electronic density distributions in Figure 2 undédferent QPCs widths. The Fermi energy is
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QPCs are adequately widdgpcy =Wopc2 =8 nm, corresponding to the full ON state.

Figure 2(b) and Figure 2(c) show that the electrames blocked respectively by the second

and first QPC for the width\opcy =8 nm, Wopco =2 nm and Wopcy =Wopco =2

nm. These two blocking cases represent the full Gffe, and no electric current flows

through the system. Besides above full ON and CGiges;, electrons can also partially travel

through the system undéAprl :WQPCZ =5 nm, as shown in Figure 2(d). In this case,

an obvious patrtial reflection can be observed aC®Bnd is enhanced at QPC1. The above
results demonstrate that different QPCs widths sigmificantly influence the transport

behavior of the edge state.

2. Piezotronics Effect on the Topological I nsulator

From the previous investigations, the topologidage transition of HgTe quantum well
heavily depends on the thickness and width of quanell [40-42]. A commonly used
method to control the width is the usage of the QBCthe split gates [31]. For the
GaAs/Ge/GaAs quantum well, the gate voltage is ableroaden or shrink the extension of
the depletion region in Ge layer, making it possital effectively tune the width of each QPC
independently. Figure 3(a) shows the side-view el of using the strain-induced
piezopotential applied on the split gates to maguthe QPC width. The piezopotential is
produced at the substrate of GaAs layer. The Zewede structure piezoelectric

semiconductors, such as CdTe, GaAs, GaP, InSbhindsd can be used to form the substrate

of the GaAs/Ge/GaAs quantum well. The piezoelecifficient g, and relative dielectric

constantg, are listed in Table | [43].

Figure 3(b) shows the piezopotential as a functbstrain for different piezoelectric
materials. With the increase of applied strain, giezopotential increases for CdTe but

decreases for GaAs, GaP, InSb, and InAs due toogpmsite sign of the piezoelectric
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where ¢ is the ratio parametely, is the bias voltage of the split gatéaj, is the initial

QPC width in the absent of piezopotential. Thevaht parameters used in the calculation are
a =225 nmV™ V,=0.2 Vand W, =20 nm [31].

Considering the well width of 20 nm in the systendged, two QPC widths changing
with strain s,3; have upper limit of 20 nm and lower limit of O nag shown in Figure 3(c).
Exceeding the limit leads to unchanged QPC wid#) g4]. By using the quantum transport
package KWANT [45], we calculate the conductancEigure 3(d) as a function of the strain

at the fixed Fermi energyeg =-0.193 eV. As mentioned above, this Fermi energy

corresponds to the edge states and tAGg conductance can be observed. It should be

noted that we assume two QPC widths controlledhleysame piezopotential and thus only

one strains,3 can be used in Figure 3(d). However, in Figurevé,use two independent

piezopotentials induced by different strains totomnthe QPCs. There is a sharp transition

between the zero conductance a@®, conductance in Figure 3(d), behaving as a

high-efficienct switching characteristic. For Ga#ts transition occurs at the strain of 0.83%.
When the strain is lower than the transition pdin¢, QPC width becomes wide and thus the
electrons can travel through the system, leadinthéocON state. The electrons can be fully
blocked if the strain is larger than the transitipoint, giving rise to the OFF state. The
transition points are -3.46%, 1.23%, 2.78%, andB®.9for CdTe, GaP, InSb, and InAs,
respectively. Because the electronic backscattésisgppressed for the edge states, ultra-low
power consumption can be achieved [25, 26, 32].

Strain-induced piezoelectric field can not onlyaiiily modulate the conductance in the
topological insulator, it can also perpendiculartpntrol the electronic transport in
heterojunction devices. Recent reports have demaiadt that by using a perpendicular

piezoelectric field in AlGaN/AIN/GaN heterojunctipthe electric transport of microwire



3. Piezotronic Signal Converter Based on Edge-state Transport

Due to the excellent switching behavior shown iguré 3(d), we propose a novel
method to design a signal converter that can aehtie conversion from external mechanical
stimulus to digital logic output. For simple illuation, we choose three topological insulator
systems with different piezoelectric materials inlthg GaP, InSb and InAs, which are
respectively labelled as system A, B and C. Itosvenient to define the logic signal “1” for
ON state and “0” for OFF state [15, 44]. Their cocigince is plotted in Figure 4(a). Because
of their different switching strains, integratingose three systems into a circuit in parallel
connection can be used to design a strain sigmadecter, as shown in Figure 4(b). We define
the output signal of this parallel circuit aabt” where,a, b andc are the logic outputs of the
system A, B and C, respectively. Specifically, thog strain varying from 0 to 1.23% in region
I, all three systems are at ON state, and thusultgut logic signal is “111”. When the strain
is in region Il from 1.23% to 2.78%, system B andr€ at ON state, but system A is at OFF
state, resulting in “011” output. With the strantieasing to region Ill from 2.78% to 3.98%,
system A and B are at OFF state and C is at ON,d&dding to the output “001”. Further
increasing the strain greater than 3.98% in retjiball three systems are completely blocked
and thus have no current, giving rise to the outf@@0”. Note that external strain is
simultaneously applied on three different systeass,shown in Figure 4(b). This strain
dependence of output logic signal is the principlehe piezotronic signal converter. The
truth table for this converter is shown in Figuie)4 We can distinguish these four output
signals “111”, “011”, “001” and “000” to binary lég signal “11”, “10”, “01” and “00",
respectively.

Because the ON state corresponds to the edge state signal converter based on the
topological insulator has ultra-low power consumpti which possesses outstanding
advantages compared with the conventional strainveer. For instance, for GaN
nanobelt-based strain-gated piezotronic logic deyithe currents of ON state and OFF state
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caused by the edge states is very low [48]. Foenth proposed piezotronic logic devices
based on strain-gated transistors (SGTs), switcbinghore SGTs requires a large amount of
unnecessary energy wasted on those SGTs alreadyNinstate [49]. By contrast, the
piezotronic logic signal converter devices based tgpological insulator can perfectly

overcome this shortcoming. As a subsystem is ondteled on, its energy loss maintains

unchanged due to its consta@G, conductance. Integrating more subsystems witlemifft

switching points can realize more precise convarsiom mechanical stimulus to logic
output signal. Therefore, piezotronic signal coteebased on the topological insulator can

achieve ultra-low power consumption and high prenislevices.

4. Quantum Information Memory Device Based on Charge Trapping Cellsin Bulk-state
Transport

When the Fermi energy is fixed at some other palgrcvalues, bulk states occur. Figure
5(a) shows the conductance as a function of twiergift strains for CdTe material at the
Fermi energy Eg = —0.189 eV where seven bulk states (also call channetsppened. In
this case, two QPC widths are independently cdetidby different strains. The horizontal
coordinate-axis and longitudinal coordinate-axis #re strains imposed on the QPC1 and
QPC2, severally. In contrast to edge states, thewzance of the bulk states exhibits some
obvious step-like plateaus. For illustrating thagioation of those conductance plateaus, we
assume one QPC with its maximum width and varylsrobne by the strain. For the strain
lower than -3.47% where the QPC is narrow enough gtectrons in different bulk channels

are all blocked and thus zero conductance is obdei/hen the strain changes from -3.47%

to -3.31%, the first bulk channel is opened, legdmone 2G, conductance plateau. As the

strain further increases, the QPC width becomeg wibre and more bulk channels will be

opened and contribute ea@G, conductance to the total plateau, giving risentodtaircase



nm, Wopco =3.0 nm, the electrons will be entirely confined betwéeo QPCs, as shown

in Figure 5(b). According to the method in Ref. ][3@e calculated the bandstructure, as
shown in Figure 1. When the Fermi energy is frod9@Q eV to -0.196 eV, the electronic state
is edge state. When the Fermi energy is out ofrétgon, it is bulk state. Figure 5(c) shows

another case where the electrons injected frontethéead are completely blocked by the first

QPC when the Fermi energy is fixed at -0.191 eV dMgpc1 =4.5 nm, Wopcp =3.5

nm. This charge trapping cell based on the QPCstapdlogic insulators provides the
possibility of storing information, which is diffent from the conventional means of charge
storage. Figure 5(d) shows the schematic of thegekmap memory based on GaAs/Ge/GaAs
topological insulator. The applied strain can coafthe electrons between QPCs in Ge layer.
The stored charge effectively shifts the threshetiltage between source and drain,
corresponding to the “write” of information [50, [5Removing the applied strain, the stored
charges are free and threshold voltage changes Wwaath is the “erase” of information [50,

51].

Conclusion
In this study, we investigate the electronic tramspproperties based on the
GaAs/Ge/GaAs quantum well with double QPCs. Thetlwinf QPCs is controlled by the

strain-induced piezopotential that leads to theolmgical insulator transition. The

conductance of edge states saturates2® with the increasing of the QPCs width,

exhibiting an excellent switching behavior. In thisse, a signal converter is demonstrated to
realize the transformation from external mechangtahulus to digital logic output. The
converter is based on the electronic transpom®feidge states and has an ultrahigh ON/OFF
ratio. Besides, the conductance of bulk statesepteshe staircase shaped plateau with the
increase of the new opened bulk channels. In paatic by appropriately controlling the

Fermi energy and mechanical strain, a clear chaagping between the double QPCs can be

10
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Figure 1. Schematic of the GaAs/Ge/GaAs quantunt wigh double QPCs and the band
structures. The spin-up (purple line) and spin-do{green line) electrons travel along
different boundaries. (a) The energy structureafoarrow QPC width of 2 nm. The electrons
are blocked in the transport process. (b) Gapleeggg structure for a wide QPC width of 8

nm (the red lines express edge states). The etsctravel the system without blocking.

Figure 2. Electronic density distributions of edgates under different QPCs widths. The

Fermi energy is fixed at -0.193 eV. (a) Full ONtstander Wopc, =Wopc2 =8 nm. (b)

Full OFF state undeMigpc1 =8 nm and Wopcp =2 nm. (c) Full OFF state under

V\bpc]_ :V\bpcz =2 nm. (d) Partial reflection UndéVVQpC]_ :WQPCZ =5 nm.

Figure 3. (a) The side-view schematic of usingdtrain-induced piezopotential applied on
the split gates to modulate the QPC width. (b) &etential as a function of strain for
different piezoelectric materials (CdTe, GaAs, QaBb, and InAs). (c) The QPC width as a

function of strain. (d) Conductance as a functioh strain at fixed Fermi energy

Er =-0.19C eVv.

Figure 4. (a) Conductance as a function of stramtliree different piezoelectric materials
(InAs, InSb, GaP). The Fermi energy is fixed B =—0.19Z eV. Region | is from 0 to

1.23%, region Il is from 1.23% to 2.78%, regionidllfrom 2.78% to 3.98% and region IV is
over 3.98%. (b) Schematic of piezotronic signalvester based on edge-state transport. (c)

Truth table for the converter under strain in diéfa regions.

Figure 5. (a) Conductance as a function of twoeddit strains for CdTe material. The Fermi

energy is fixed at -0.189 eV. The horizontal copatie-axis and longitudinal coordinate-axis

18



nm and Wopc» =3.5 nm. (d) Schematic of charge-trap memory based afs(&e/GaAs

topological insulator.
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Tablel. Piezoelectric Coefficients and Relative Didlectric Constantsfor the Zinc Blende
Material used in this study

Material Piezoelectric coefficient e, (C/m?) Relative didlectric constant &,
CdTe 0.035 9.8
GaAs -0.16 1
GaP -0.1 10
InSb -0.071 16
InAs -0.045 14.5
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investigated.

2. Strain-induced piezopotential modulates the edge-state transport in topological
insulators.

3. A piezotronic signal converter and quantum information memory device are

demonstrated based on double quantum point contacts.



