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ABSTRACT 

 The in vitro MultiFlow® DNA Damage Assay multiplexes γH2AX, p53, phospho-histone 

H3, and polyploidization biomarkers into a single flow cytometric analysis [Bryce et al., 2016]. 

The current report describes a tiered, sequential data analysis strategy based on data 

generated from exposure of human TK6 cells to a previously described 85 chemical training set 

and a new pharmaceutical-centric test set (n=40). In each case, exposure was continuous over 

a range of closely spaced concentrations, and cell aliquots were removed for analysis following 

4 and 24 hr of treatment. The data analyses described herein begins with a machine learning 

ensemble in addition to a rubric that considers fold increases in biomarkers against global 

evaluation factors (GEFs)—a positive finding in either is sufficient to make a genotoxic-positive 

call. In the case of a positive finding, tier 1 further considers the machine learning predictions 

and GEFs to classify the activity as clastogenic and/or aneugenic. Test set results demonstrated 

the generalizability of the first tier, as 35/40 (88%) concordance with a priori genotoxicity 

expectations was observed, and 21/24 (88%) of the chemicals identified as genotoxic were 

predicted to exhibit the expected mode of action (MoA). A second tier applies unsupervised 

hierarchical clustering to the biomarker response data, and these analyses were found to group 

certain chemicals, especially aneugens, according to their molecular targets. Finally, a third tier 

utilizes benchmark dose analyses and MultiFlow biomarker responses to rank genotoxic 

potency. The relevance of these rankings is supported by the strong agreement found between 

benchmark dose values derived from MultiFlow biomarkers compared to those generated from 

parallel in vitro micronucleus analyses. Collectively, the results suggest that a tiered MultiFlow 

data analysis pipeline is capable of rapidly and effectively identifying genotoxic hazards while 

providing additional information that is useful for modern risk assessments—MoA, molecular 

targets, and potency. 



INTRODUCTION 

 Our laboratories have pursued the development and validation of a multiplexed flow 

cytometric assay that combines information from several biomarkers relevant to DNA damage 

response pathways and aneuploidy induction [Bryce et al., 2014, 2016, 2017, 2018; Bernacki et 

al., 2016]. This so-called MultiFlow® DNA Damage Assay is formatted as an add-and-read test 

that efficiently prepares cells in microtiter plates for flow cytometric analysis. The biomarkers 

measured are: i) phosphorylation of H2AX at serine 139 (γH2AX) to detect DNA double strand 

breaks, ii) phosphorylation of histone H3 at serine 10 (p-H3) to identify mitotic cells, iii) nuclear 

p53 content as an indicator of p53 activation in response to DNA damage, iv) frequency of 8n+ 

cells to monitor polyploidization, and v) determination of nuclei counts to provide information 

about treatment-related cytotoxicity and cytostasis. Relative to individual, standard in vitro 

genotoxicity assays, an advantage of the MultiFlow method is that it goes beyond genotoxic 

hazard identification, since it is capable of distinguishing between clastogenic and aneugenic 

MoA [Bryce et al., 2016].  

 Given the multiplexed nature of the MultiFlow assay, the data analysis procedures used 

to synthesize and interpret biomarker responses have resembled pattern-recognition tools as 

opposed to parametric and non-parametric pair-wise tests that are commonly applied to 

traditional single endpoint genotoxicity assays. One published example of a MultiFlow data 

analysis strategy makes use of a series of global evaluation factors (GEFs) [Bryce et al., 2017]. 

This approach is based on cutoff response values that were derived for each biomarker and 

time point from data collected by 7 laboratories. To optimize agreement with a priori calls, a 

rubric was developed around the collection of cutoff values that categorizes chemicals as 

genotoxic or not, and if the former, whether the activity is clastogenic, aneugenic, or both. This 

approach was reported to exhibit good sensitivity and specificity across laboratories, and it 

provided reliable MoA information. However, an important caveat is that the initial report did not 



evaluate the method’s performance against chemicals that were outside of the training set, i.e., 

with an external test set that was not used to develop the GEFs and associated rubric.  

 Other data analysis strategies have made use of supervised machine learning tools. In 

this paradigm, mathematical algorithms were developed based on training set data where 

genotoxic potential and MoA are known. The labeled data provided a means to create models 

that could then be used to make predictions based on new biomarker response data that were 

not part of the training set. For instance, most recently, an ensemble of three machine learning 

algorithms consisting of logistic regression, random forest, and an artificial neural network has 

been described [Bryce et al., 2018]. In this case, a majority vote was used to make a final 

prediction about genotoxicity and genotoxic MoA. As with GEFs, this machine learning strategy 

also demonstrated good performance characteristics, but in this case in a more convincing 

fashion, as performance was maintained with an external test set of 103 chemicals.  

 Whereas there are advantages and disadvantages to the GEF and machine learning 

data analysis strategies, their use is not mutually exclusive, and there may be merit to using 

them in combination. The current experiments were therefore designed to extend our work with 

MultiFlow data analysis strategies by testing the performance of the GEF rubric and/or a 

machine learning ensemble using chemicals outside the training set. Furthermore, we 

investigated the utility of hierarchical clustering to group genotoxic chemicals with similar 

molecular targets, and evaluated the capacity of MultiFlow biomarker responses to provide 

genotoxicity potency ranking. For these investigations, MultiFlow data were generated from TK6 

cells exposed to a diverse set of chemicals using a continuous treatment design (i.e., 24 hr), 

and in some cases these analyses were supplemented with in vitro micronucleus 

measurements. The results are discussed in terms of the performance and benefits of a 

sequential, tiered, high information content data analysis pipeline (see Figure 1). 

 

MATERIALS AND METHODS 



Chemicals 

 The identities of 85 previously reported training set chemicals [Bryce et al., 2018] and a 

new set of pharmaceutical-centric test set chemicals (n=40), the source, and other information, 

are provided in Table I. Merck supplied 20 of the 40 test chemicals (coded) to Litron, and these 

were stored at -20°C until they were solubilized in dimethyl sulfoxide (DMSO), at which point 

they were refrozen at -20°C. Additional test set chemicals (n = 20) were selected by Litron 

scientists largely from the list recommended by Kirkland and colleagues for evaluating new 

genotoxicity tests [Kirkland et al., 2016]. Our a priori expectation regarding the in vitro 

mammalian cell genotoxicity potential for each of the 125 chemicals can be found in Table I. As 

explained in more detail below, the experiments reported herein occurred in the absence of an 

exogenous metabolic activation system. Thus, the a priori calls provided in Table I reflect 

expected genotoxicity assay results in the context of an S9-free mammalian assay system.  

 

Cell Culture and Treatments 

 TK6 cells were purchased from ATCC® (cat. no. CRL-8015). Cells were grown in a 

humidified atmosphere at 37°C with 5% CO2, and were maintained at or below 1 x 106 cells/mL. 

The culture medium consisted of RPMI 1640 with 200 µg/mL sodium pyruvate (both from 

Sigma-Aldrich, St. Louis, MO), 200 µM L-glutamine, 50 units/mL penicillin and 50 µg/mL 

streptomycin (from Mediatech Inc., Manassas, VA), and 10% v/v heat-inactivated horse serum 

(Gibco®, a Thermo Fisher Scientific Company, Waltham, MA).  

 Chemicals selected by Litron scientists were tested using the same experimental design 

described previously [Bryce et al., 2016, 2017]. Briefly, treatments occurred in U-bottom 96 well 

plates, with 198 µL TK6 cell suspension (2 x 105/mL) combined with 2 µL of DMSO-solubilized 

test chemical per well. The highest concentration tested was 1 mM, and the 19 additional 

concentrations were tested using a square root dilution scheme—that is, each concentration 

differed from the one above by a factor of 70.71%. In this manner a wide range of 



concentrations were evaluated (i.e., nearly 3 orders of magnitude, 0.0014 to 1 mM). Each of the 

20 concentrations was tested in a single well, whereas solvent was evaluated in 4 replicate 

wells. Upon addition of test chemical the plates were immediately incubated in a humidified 

atmosphere at 37°C with 5% CO2 for 24 hr.  

 Merck-supplied chemicals were tested similarly, with the following exceptions. 

Preliminary dose-range finding experiments were used to generate 24 hr relative nuclei count 

(RNC) data for each chemical provided (via MultiFlow® — Cleaved PARP Kit, Litron 

Laboratories, Rochester, NY). Concentrations for the definitive experiment were chosen based 

on the RNC results with the intention to test at least one concentration that approached or 

slightly exceeded the MultiFlow assay’s cytotoxicity limit, that is 80% reduction to RNC at 24 hr 

[Bryce et al., 2016]. There were two exceptions, 14n and 16p, compounds that were tested up 

to maximal feasible concentrations due to the low quantity of chemical that could be supplied 

(4.41 and 100 µM, respectively). For the definitive experiments, 10 concentrations of each 

chemical were tested in duplicate wells of a 96 well plate. As described above, the majority of 

chemicals were tested using a square root 2 dilution scheme. Based on data from preliminary 

dose-range finding experiments, some chemicals were tested using finer dilution schemes.  

 

MultiFlow Assay 

 TK6 cells were prepared for analysis using reagents and instructions included in the 

MultiFlow® DNA Damage Kit — p53, γH2AX, Phospho-Histone H3 (Litron Laboratories, 

Rochester, NY). Components and preparation of the MultiFlow working solution have been 

described in detail previously [Bryce et al. 2016, 2017]. At the 4 and 24 hr sampling times, cells 

were resuspended with pipetting, then 25 µL were removed from each well and added to a new 

96-well plate containing 50 µL/well of pre-aliquoted working MultiFlow reagent solution. Mixing 

was accomplished by pipetting the contents of each well several times. After incubation at room 

temperature for 30 min, samples were analyzed via flow cytometry. 



 Flow cytometric analysis was carried out using either a FACSCanto™ II flow cytometer 

equipped with a BD™ High Throughput Sampler or a Miltenyi Biotec MACSQuant® Analyzer 10 

flow cytometer with integrated 96-well MiniSampler device. Stock photomultiplier tube detectors 

and associated optical filter sets were used to detect fluorescence emissions associated with 

the fluorochromes: FITC (detected in the FITC channel, to use BD instrument parlance), PE (PE 

channel), propidium iodide (PerCP-Cy5.5 channel), and Alexa Fluor® 647 (APC channel).  

 Representative bivariate graphs, gating logic, and position of regions were described in 

detail in earlier reports [Bryce et al., 2016, 2017; Bernacki et al., 2016]. Briefly, two biomarker 

measurements, γH2AX and p53, were based on the shift in median channel fluorescence 

intensity relative to same-plate solvent controls. Polyploidy and p-H3 biomarker measurements 

were based on their frequency among other nuclei. Nuclei to counting bead ratios were 

calculated for each sample, and these ratios were used to determine absolute nuclei counts 

(those with 2n and greater DNA-associated propidium iodide fluorescence). Nuclei counts were 

used to derive RNC, and %cytotoxicity was calculated as 100% minus %RNC at 24 hr. 

 

MultiFlow Data Analysis: Pre-Processing 

 Data analyses described herein were restricted to those concentrations that did not 

exceed the MultiFlow assay’s cytotoxicity limit, i.e., the top concentration of each chemical had 

to exhibit ≤ 80% reduction to RNC at the 24 hr time point. This has been described previously 

by Bryce and colleagues [2016, 2017]. The present report differs slightly, such that in addition to 

the 80% maximum cytotoxicity limit noted above, only two concentrations within the cytotoxicity 

range 70-80% were permitted. Finally, except for 14n and 16p as noted above, in the absence 

of excessive cytotoxicity the top concentration was 1 mM or the lowest precipitating 

concentration, whichever was lower.   

 For the GEF, machine learning, and benchmark dose analyses described below, 4 and 

24 hr γH2AX, p53, and p-H3 measurements, and 24 hr polyploidy frequencies, were converted 



to fold-change values by dividing them by the mean value associated with solvent-exposed 

cultures on the same plate (Microsoft Excel 2008, v12.3.6). This was performed for every test 

article concentration that was not excluded due to excessive cytotoxicity or other limits 

described above.  

 Unsupervised clustering analyses benefitted from several transformations. First, feature 

scaling (also known as unity-based normalization) was applied to every test article 

concentration to bring the values into the range 0 to 1 [Jayalakshmi and Santhakumaran, 2011]. 

Second, for each biomarker response and time point combination, fold-change values versus 

normalized concentration curves were used to generate an area under the curve (AUC) value. 

AUC provided a means of converting each biomarker dose-response relationship for every 

chemical into a single value. This was accomplished using Microsoft Excel via the trapezoidal 

rule as described at www.statisticshowto.com/how-to-find-the-area-under-a-curve-in-microsoft-

excel. One (1) was subtracted from every biomarker’s fold-change value before AUC 

calculations were made in order to set the no effect (baseline) value to zero. With this offset in 

place, AUC values were zero or nearly so in the case of no response, positive in the case of an 

increase, and negative in the case of a reduction. Also note that polyploid fold change values 

were transformed with the square root function, a processing step that converted this 

biomarker’s dynamic range to one that more closely approximated that of the other biomarkers 

(found to be advantageous for artificial neural network models, see Bryce et al., 2018). 

 

MultiFlow Data Analysis: Global Evaluation Factors 

 MultiFlow biomarker/time point combinations were compared to GEFs reported by Bryce 

and colleagues [2017]. GEFs for the three clastogen-responsive biomarkers 4 hr γH2AX, 4 hr 

p53, and 24 hr γH2AX, were 1.51-, 1.40-, and 2.11-fold, respectively; GEFs for the three 

aneugen-responsive biomarkers 4 hr p-H3, 24 hr p-H3, and 24 hr polyploidy, were 1.71-, 1.52-, 



and 5.86-fold, respectively; and the GEF for the pan-genotoxicant (clastogen- and aneugen-

responsive) biomarker, 24 hr p53, was 1.45-fold. Meeting or exceeding these interlaboratory-

derived values identified a significant biomarker response at a particular time point. To 

synthesize the results of these multiple comparisons and to make judgments about genotoxic 

potential and MoA, the following rubric was applied. A genotoxic call with a clastogenic MoA 

required two successive concentrations to meet or exceed the GEF for at least two out of four 

clastogen-sensitive biomarkers: 4 hr γH2AX, 4 hr p53, 24 hr γH2AX, and 24 hr p53. A genotoxic 

call with an aneugenic MoA required two successive concentrations to meet or exceed the GEF 

for at least two out of four aneugen-sensitive biomarkers: 4 hr p-H3, 24 hr p-H3, 24 hr 

polyploidy, and 24 hr p53. In cases where both clastogen and aneugen call criteria were met, 

the call was genotoxic with a “mixed” MoA. When the above criteria were not met, the call was 

non-genotoxic under the test conditions. 

 

MultiFlow Data Analysis: Machine Learning Ensemble 

 The development and use of three machine learning models, multinomial logistic 

regression (LR), artificial neural network (ANN), and random forest (RF), was described in detail 

previously [Bryce et al., 2018]. Briefly, these various models utilize 4 and 24 hr MultiFlow data 

fold-change values and predict whether a chemical exhibits genotoxic activity or not, and if 

present whether the genotoxicity occurs via a clastogenic, aneugenic, or clastogenic and 

aneugenic MoA. Each model’s output was synthesized into genotoxicity and MoA calls as 

follows. Genotoxic, with evidence for a clastogenic MoA, required two successive 

concentrations to exhibit clastogen probability scores ≥ 80%, or one concentration to exhibit a 

clastogen probability score ≥ 90%. Genotoxic, with evidence for an aneugen MoA, required two 

successive concentrations to exhibit aneugen probability scores ≥ 80%, or one concentration to 

exhibit an aneugen probability score ≥ 90%. Non-genotoxic was defined as the absence of two 



successive concentrations exhibiting clastogen or aneugen probability scores ≥ 80%, and no 

one concentration exhibiting a clastogen or aneugen probability score ≥ 90%. 

 A majority vote ensemble considered the genotoxicity calls from each of the 3 modeling 

approaches as described above. A simple majority (2 out of 3) was necessary for a summary 

genotoxic call. For most chemicals, MoA predictions were found to be in agreement across 

models. In instances when models showed significant clastogen and aneugen probabilities, the 

chemical was considered genotoxic with evidence for a mixed MoA.  

 

MultiFlow Performance Assessments  

 Training and test set chemicals were evaluated against a priori genotoxicity and MoA 

expectations. This was accomplished via a hybrid strategy that made use of both GEF and 

machine learning predictions. With this approach, an overall genotoxic call was made when 

either the GEF or the machine learning ensemble was positive (see Figure 1). We 

supplemented these analyses by evaluating the performance of the GEF rubric and machine 

learning ensemble on their own.  

 For each strategy described above, performance was assessed by determining the level 

of agreement between expected and observed genotoxicity calls. This was accomplished by 

calculating the percentage of chemicals correctly identified as being genotoxic or non-genotoxic. 

Furthermore, for those agents that were identified as genotoxic, the level of agreement between 

MoA calls was also made by calculating the percentage of compounds that showed expected 

MoA. In the several instances where a priori MoA was either difficult to define or hypothesized 

to be a mixed MoA, any genotoxic MoA prediction was considered correct. In cases where a 

presumably non-genotoxic chemical was identified as genotoxic, any/all associated MoA calls 

were considered incorrect.  

 

Unsupervised Clustering 



 Chemicals that were identified as aneugens by the hybrid GEF and machine learning 

approach were evaluated using JMP software’s unsupervised clustering platform (JMP, 

v12.0.1). As described above, the biomarker response data were first converted to AUC values, 

and when clustering aneugens, the following 7 biomarkers were used as variables: 4 hr γH2AX, 

p-H3 and p53, and 24 hr γH2AX, p-H3, p53 and 24 hr polyploidy. The analysis options were set 

as follows: clustering method = hierarchical; method for calculating distances between clusters 

= “Ward”; data as usual = “Standardize Data”; data visualization = “Dendrogram”, with “two way 

clustering”.  

 Chemicals identified as clastogens by the hybrid GEF and machine learning approach 

were evaluated in a similar manner. However, in this case, the 4 variables were utilized: 4 hr 

γH2AX, 4 hr p53, 24 hr γH2AX, and 24 hr p53.  

 

Benchmark Dose Analyses  

 A subset of the reference genotoxic chemicals (n = 34) were evaluated for in vitro 

micronucleus (MN) formation using TK6 cells from the same treated cultures used in the 

MultiFlow assay. These analyses were conducted at the 24 hr time point, and were 

accomplished via flow cytometric analysis using In Vitro MicroFlow® Kit reagents (Litron 

Laboratories, Rochester, NY). These methods have been reported in detail elsewhere 

[Avlasevich et al., 2006]. For the MN endpoint, concentrations were limited to those that resulted 

in ≤ 55% reduction to relative nuclei counts.  

 The Benchmark Dose (BMD) for continuous data is defined as the dose or exposure that 

results in a predetermined percent change (benchmark response, BMR) in the response rate of 

an adverse effect relative to existing background incidence, generally in the range of 1-10% 

increase in the background [MacGregor et al., 2015]. BMD analyses were performed for the 

subset of 34 chemicals with concurrent MultiFlow and MicroFlow data. Specifically, γH2AX, p-



H3, p53, and in vitro MN dose responses were evaluated using PROAST (v63.3). Values for 

Critical Effect Size (CES, in PROAST notation) of 0.5 (BMR 50%), or 1.0 (BMR 100%, in the 

case of in vitro MN compounds mitomycin C, 4-nitroquinoline 1-oxide, and topotecan) were 

used for covariate BMD analysis for the compounds. The resulting 95% Confidence Intervals 

(CI’s) were used to represent the relative potency of the compound for the endpoint under 

study. After ranking the in vitro MN induction potency of each compound, the data were 

compared with 24 hr γH2AX and 24 hr p53 endpoints for the clastogen group of compounds, 

and 24 hr p-H3 and 24 hr p53 endpoints for the aneugen group of compounds. These 

correlations are represented in cross system plots on a double Log scale [Soeteman-Hernández 

et al, 2016; Bemis et al., 2016]. The analyses were conducted separately for clastogens (n = 21) 

and aneugens (n = 13). 

 

RESULTS AND DISCUSSION 

Tier 1 Analyses: Training Set 

 The 85 reference chemicals that comprise the training set were given a priori 

classifications in regard to their genotoxic potential, as well as their predominant genotoxic MoA, 

clastogenicity or aneugenicity (Table I). Results for several of these agents are presented in 

detail in order to describe prototypical response profiles, and to introduce a new data 

visualization tool. These examples should provide a useful background for interpreting the 

aggregate chemical results that are presented hereafter. 

 Thapsigargin is an inhibitor of the sarco/endoplasmic reticulum Ca++ ATPase [Rogers et 

al., 1995]. A radar plot portrays each biomarker response and time point combination as a 

function of concentration (Figure 2a). As expected for a non-genotoxicant, no substantial 

increases in γH2AX, p-H3, p53 or polyploidization biomarkers were observed, despite that fact 

that it was tested to cytotoxic concentrations (71% cytotoxicity). Thus, it is not surprising that 



neither the GEF rubric or any of the three machine learning models predicted genotoxicity 

(Table II). 

 Treatment of TK6 cells with the reference genotoxicant 4-nitroquinoline 1-oxide resulted 

in a prototypical clastogenic response profile (Figure 2b). The γH2AX biomarker was increased 

at 4 and 24 hr. Whereas p53 activation at the 24 hr time point is a pan-genotoxicity signal, 

activation at 4 hr, as observed here, is quite specific for clastogens [Bryce et al., 2014, 2016]. 

Additionally, 4-nitroquinoline 1-oxide did not increase polyploidization, and the p-H3 biomarker 

was reduced in a dose-dependent manner. Both of these observations provide additional 

evidence of clastogenic as opposed to aneugenic activity. As shown in Table II, the GEF rubric 

and all three of the machine learning models predicted genotoxicity, with a clastogenic MoA.  

 Mebendazole’s aneugenicity has been attributed to microtubule binding [Laclette et al., 

1980]. MultiFlow response data illustrate a typical tubulin binder-induced aneugenic response 

profile (Figure 2c). While anti-γH2AX-associated fluorescence did not increase at either time 

point and p53 translocation was not apparent at 4 hr, marked p53 responses were observed at 

24 hr. Furthermore, robust increases in p-H3 positive events were induced by mebendazole, 

and this was accompanied by polyploidization. GEFs as well as the machine learning ensemble 

identified this compound as genotoxic, with evidence for an aneugenic MoA. 

 Crizotinib is another aneugen that is instructive for several reasons. Crizotinib is a potent 

inhibitor of c-Met and ALK (anaplastic lymphoma kinase), with cell-based assay IC50 values in 

the low nM range [Awad and Shaw, 2014].  Even so, there is evidence that the agent’s in vitro 

aneugenic activity may be related to off-target effects on aurora kinase(s) [Kong et al., 2018]. 

Data presented in Figure 2d support this view, as it generated response profiles that are similar 

to several confirmed aurora kinase inhibitors tested in the MultiFlow assay (e.g., ZM-447439 

and tozasertib). As with many tubulin binders, p53 activation and polyploidization were observed 

at the 24 hr time point. In the case of this kinase inhibitor, polyploidization was especially robust, 



and was evident well before the assay’s cytotoxicity limit was reached (i.e., 8-fold increase in 

polyploidy at 59% cytotoxicity). Unlike tubulin binders, the proportion of p-H3-positive events 

was not elevated. Rather, at the highest concentrations tested, severe decreases were 

observed. These observations are consistent with aurora kinase inhibition, as this activity would 

be expected to repress serine 10 phosphorylation of histone H3 on mitotic chromosomes 

[Crosio et al., 2002]. Despite the response profile being quite different than spindle poisons, 

both the GEF rubric as well as all three of the machine learning models identified crizotinib as 

genotoxic, with evidence for an aneugenic MoA (Table II). 

 Results from the tier 1 data analyses are presented for all 85 training set chemicals in 

Table II. For the combined GEF plus machine learning ensemble, the concordance between a 

priori expected and observed genotoxicity calls was 99%. For those agents with a genotoxic 

call, the agreement with expected MoA was 98%. In both cases, the one mischaracterized 

agent was imatinib mesylate (identified as a clastogen). Table II also provides performance 

metrics for the machine learning ensemble and GEFs used in isolation. The most obvious 

difference between the two is that the former was effective for both genotoxicity calls and MoA 

predictions (at least with a training set size of 85 chemicals), while the GEF rubric showed a 

lower level of agreement between expected and observed genotoxic activity calls (i.e., 93% 

concordance), especially for clastogens. Note: Supplemental file 1a-c provides Manhattan-type 

plots that show machine learning probabilities for each of the 85 chemicals at every 

concentration tested. 

  

Tier 1 Analyses: Test Set 

 With promising results evident for 85 training set chemicals, work with compounds that 

were not used to devise the GEF rubric or the machine learning models were tested in the 

MultiFlow assay. The results from tier 1 analyses are presented in Table III. For this set of 40 

diverse chemicals, the combined GEF plus machine learning ensemble resulted in 88% 



agreement between expected and observed genotoxicity calls.  

 Three suspected genotoxicants were not identified as such: 6f, 13m, and 14n. While 6f 

was an anticipated aneugen, it was not observed to affect any of the aneugen-sensitive 

biomarkers, despite the fact that analyses included concentrations that induced up to 63.8% 

cytotoxicity. Compound 14n was also classified a priori as aneugenic, and in this case only one 

aneugen biomarker was slightly induced: 4 hr p-H3 was increased by 1.39-fold at the highest 

concentration tested, 4.41 µM. This false negative result for 14n should be qualified to some 

degree, since cytotoxicity at the highest feasible concentration tested was 48.7%, well below the 

assay’s cytotoxicity limit of 80%. The third false negative result, 13m, is also noteworthy. 

Whereas 6f and 14n showed slight to nil biomarker responses, 13m caused robust increases 

that exceeded biomarker GEFs for 4 hr p-H3 and 4 hr γH2AX across several consecutive 

concentrations, as well as 24 hr polyploidy at the highest concentration (Figure 3a). This 

response profile was not observed in the 85 chemical training set, and consequentially the GEF 

rubric was not developed with this in mind, and the machine learning models have no 

experience with this pattern.  

 Tier 1 mischaracterized two non-genotoxicants as genotoxic: 2b and 12L. In the case of 

2b (a.k.a., sodium diethyldithiocarbamate trihydrate), it should be noted that this compound has 

been shown to induce cytogenetic damage in both CHO and TK6 cells [Hilliard et al., 1998; 

Galloway et al., 1998; Greenwood et al., 2004], and DNA double strand breaks in rat 

hepatocytes [Storer et al., 1996], but only at concentrations deemed overly cytotoxic by current 

testing standards. There are at least two biologically plausible causes for indirect effects leading 

to in vitro DNA damage: diethyldithiocarbamate chelates copper and zinc, and it is a potent 

inhibitor of superoxide dismutase [Heikkila et al., 1976; Nicotera et al., 1989]. 

 Of the chemicals identified as genotoxic, tier 1 analyses were also used to predict their 

genotoxic MoA. As shown in Table III, 88% agreement was observed between expected and 

observed calls. One compound, 16p, showed mixed activities, as both clastogen and aneugen 



biomarker responses were detected. This was an expected result, as 16p has an 

azobenzimidazole structure that was previously observed to induce premature centromere 

separation at metaphase in addition to induction of micronuclei and structural aberrations. 

MultiFlow biomarker results for this atypical agent are shown in Figure 3b. The three chemicals 

with misidentified MoA included the aneugen call for ciprofloxacin, a fluoroquinoline class 

antibiotic that was expected to exhibit clastogenic activity based on its reported topoisomerase II 

inhibitor activity, and the two a priori non-genotoxicants discussed above (i.e., 2b and 12L; both 

identified as clastogens). 

 Overall, the high concordance values speak to the generalizability of the combined GEF 

and machine learning ensemble to detect genotoxicants, and to furthermore provide an 

indication of genotoxic MoA. As with the training set, GEF and machine learning were also 

considered in isolation. Similar to the training set, these analyses suggest the use of the current 

GEF rubric alone is somewhat suboptimal, as agreement between expected and observed 

genotoxicity calls fell to 75%, a result that is largely attributable to false negative calls. 

Supplemental file 2a-c provides Manhattan-type plots that show machine learning probabilities 

for each of the 40 test set chemicals at every concentration evaluated. 

 

Tier 2 Analyses 

 A set of 21 a priori aneugens and mixed MoA chemicals that were identified as such in 

tier 1 analyses were evaluated via unsupervised hierarchical clustering using 4 and 24 hr 

MultiFlow biomarker data that were each converted to a single AUC value. The resulting 

groupings are presented in Figure 4 in the form of a two dimensional dendrogram. The clade 

denoted “TB” was entirely comprised of tubulin binders. Note that whereas the exact 

mechanism of test agent 17q is not known, it is a benzimidazole-containing structure and 

therefore expected to have tubulin-binding properties. The other clear grouping is denoted “KI”, 

a clade that included each of the presumptive mitotic kinase inhibitors that were tested: AMG 



900, crizotinib, tozasertib, hesperadin, ZM-447439, and 10j. 

 The set of 46 a priori clastogens that were identified as such in tier 1 analyses were also 

evaluated via unsupervised clustering using the 4 clastogen-responsive biomarkers. The results 

are shown in Figure 5. For this set of diverse clastogens, it is less obvious that clusters formed 

around different molecular targets. That said, the clade identified as “TI” was highly enriched for 

topoisomerase inhibitors (6/8), and the “C-L” grouping was enriched for DNA cross-linking 

agents (5/9). 

 Taken together, a second tier that consists of unsupervised hierarchical clustering 

appears to complement genotoxic potential and MoA analyses, as it provides useful information 

about likely molecular targets. This is especially true in the case of delineating aneugens that 

target mitotic kinases versus those that interfere with tubulin polymerization.  

 

Tier 3 Analyses 

 BMD metrics served as a basis for tier 3, analyses that were conducted to determine 

whether MultiFlow biomarker(s) could provide a reliable indication of chemicals’ genotoxic 

potency. The advantage of using BMD-derived potency metrics has been previously discussed 

by Soeteman-Hernández and colleagues [2015, 2016]. As shown in Figures 6 and 7, the BMDs 

in the MultiFlow endpoints were plotted against micronucleus response BMDs on a double-log 

scale. As opposed to representing correlation with a numerical coefficient value, a linear 

relationship with intercept zero equals a straight line in a double-log plot. Therefore, two lines 

with unity slope have been drawn on each correlation plot in such a manner that the majority of 

the BMD confidence intervals are encompassed between the lines. The distribution of BMD 

positions within the two lines show approximate linearity, differing by a proportionality constant. 

Furthermore, the vertical distance between the two lines translates into an uncertainty margin 

given by the estimation of a BMD on the y axis based on a specified BMD on the x axis, and 

vice versa. The uncertainty margin is used as a measure of correlation between two endpoints.       



 For the aneugens, when comparing MN induction to p53 responses, the cross system 

plots show good correlation, with the majority of the compounds located between the two lines 

(Figure 6). Taking the microtubule binder nocodazole as an example, the horizontal dashed line 

intersections with the sloped dashed lines may be considered as the respective upper and lower 

bounds of the uncertainty range for the in vitro MN endpoint. The intercepts of approximately -3 

and -1 on the Log scale correspond to lower and upper bounds of 10-3 = 0.001 and 10-1 = 0.1 

µM, respectively. Hence, the in vitro MN BMD for nocodazole is estimated to lie between 0.001 

and 0.1 µM considering an uncertainty margin of approximately 1 Log. In fact, the in vitro MN 

potency for nocodazole in the dataset represented in Figure 6 has both BMDL and BMDU either 

side of -2 Log, and hence within the estimated potency of -3 Log and -1 Log estimated from the 

p53 response. The MN vs. 24 hr p-H3 system plot also indicates the BMDs for the majority of 

compounds in both systems are proportionally related (Figure 6), however the two lines are 

drawn further apart than the MN vs. 24 hr p53 system (i.e., 2 logs versus 1 log). In both cases, 

MN vs. p53 and MN vs. p-H3, the data are randomly scattered with good correlation.  

 For the clastogens, good correlation is observed for MN vs. γH2AX and MN vs. p53, with 

data randomly scattered between the two diagonal lines of the unity slopes, with distances of 

approximately 3 Log, and 2 Log respectively for each system (Figure 7).  

 The correlations observed here are consistent with those of other genotoxicity endpoints 

which have been compared using similar methodologies. Bemis and colleagues [2016] obtained 

an uncertainty margin of approximately 1.5 Log when comparing the in vitro MN responses 

against in vivo MN responses for a group of 7 clastogens. Similarly, Soeteman-Hernández et al. 

[2015] assessed the ability to predict in vivo MN potency from in vitro MN data. BMD confidence 

intervals span 2 orders of magnitude, with in vivo BMD confidence intervals generally smaller 

than those from in vitro studies.  

 



Conclusions 

 The MultiFlow DNA Damage Assay’s ability to predict chemicals’ in vitro genotoxic 

potential and MoA was demonstrated with an external test set of 40 largely pharmaceutical-

centric compounds. Whereas the GEF and associated rubric exhibited high specificity and 

accurate MoA predictions, it provided lower sensitivity to detect genotoxicants relative to a 

machine learning ensemble. A hybrid strategy whereby GEFs and machine learning are used to 

make calls appears to be advantageous. This approach should allow for the identification of 

most genotoxicants while training set data are still being expanded. Furthermore, even as data 

used to build prediction algorithms become more extensive, concurrent use of the GEF rubric 

represents a safety net of sorts, as it is capable of highlighting biomarker response patterns that 

the machine learning model(s) may not have encountered. In this respect, the hybrid strategy 

should be useful to novice laboratories, as well as established groups as they begin 

investigating new chemical spaces that have not been tested, or that are currently 

underrepresented in the training set. The compound 13m is a useful example. Although the 

GEF rubric did not classify the novel response profile as genotoxic, the fact that three 

biomarkers were elevated over their respective GEFs serves to suggest that the machine 

learning algorithms require additional training in this chemical space if the responses are indeed 

caused by bona fide genotoxic activity that needs to be reliably detected.  

 Unsupervised clustering is able to group certain genotoxicants with the same or similar 

molecular targets based on multifactorial biomarker response patterns. This was especially 

successful with aneugens that were clustered into tubulin binder and kinase inhibitor groups. 

While these analyses do not offer proof of molecular targets, they do represent a powerful 

hypothesis-generating tool, one that could be used to efficiently design the necessary follow-up 

test(s) aimed at directly and conclusively identifying molecular target(s) responsible for in vitro 

genotoxicity  

 With respect to the BMD analyses reported herein, the strong correlation of MultiFlow 



biomarkers to bona fide genomic damage in the form of MN provides assurances of the 

relevance of the new assay’s endpoints. Furthermore, the correlations suggest that potency 

determinations based on MultiFlow endpoints, at least on a rank-order basis, are likely 

comparable to those derived from the MN assay. This bolsters the use case whereby the 

constellation of MultiFlow assay biomarkers serve as a reliable genotoxicity screening tool that 

is predictive of in vitro MN formation, with the benefit of providing more mechanistic information. 

Finally, dose-response analyses such as these are worth pursuing further because they reflect 

the paradigm shift that has been transitioning genotoxicity away from a simple binary yes/no 

characteristic to a quantitative metric that has the potential to better inform risk assessments as 

margin of exposure and other toxicological principles can be considered [Pottenger and 

Gollapudi, 2009, 2010; Gollapudi et al., 2013; Johnson et al., 2014; MacGregor et al., 2015a,b; 

Dearfield et al., 2017]. 
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FIGURE LEGENDS 

Figure 1. Flow chart representing a tiered MultiFlow assay data analysis pipeline. With this 

strategy chemicals are evaluated for their genotoxic potential and genotoxic mode of action (tier 

1), insights into molecular target are provided by unsupervised clustering (tier 2), and finally 

potency metrics are generated (tier 3).  

 

Figure 2. Radar plots show MultiFlow assay data for seven biomarker/time point combinations 

and for each of four chemicals: thapsigargin, 4-nitroquinoline 1-oxide (4NQO), mebendazole, 

and crizotinib. The biomarker data are expressed as fold-increase over mean solvent control on 

the same plate, and each chemical concentration appears as a different colored line. The top-

most endpoint (24 hr p53, at 12 o’clock) is a pan-genotoxic biomarker, whereas the biomarkers 

arranged on the right side of the graph are responsive to clastogens and those arranged on the 

left are responsive to aneugens.  

 

Figure 3. Radar plots show MultiFlow assay data for seven biomarker/time point combinations 

and for each of two chemicals: Merck-supplied test compounds 13m and 16p. The biomarker 

data are expressed as fold-increase over mean solvent control on the same plate, and each 

chemical concentration appears as a different colored line. Same format as Figure 2.  

 

Figure 4. Unsupervised clustering results are shown as a two dimensional dendrogram for 21 

chemicals that were identified as exhibiting aneugenic activity. As described in Materials and 

Methods, each biomarker dose response was converted to an area under the curve for this 

analysis. The abbreviations TB (tubulin binder) and KI (kinase inhibitor) are used to denote 

clades with chemicals that are known to exhibit these activities. 

 

Figure 5. Unsupervised clustering results are shown as a two dimensional dendrogram for 46 



chemicals that were identified as exhibiting clastogenic activity. As described in Materials and 

Methods, each biomarker dose response was converted to an area under the curve for this 

analysis. The abbreviations TI (topoisomerase inhibitor) and C-L (cross-linker) are used to 

denote clades that are enriched for chemicals known to exhibit these activities. 

 

Figure 6. Left panel: BMD analyses of aneugen compounds represented in cross system plots 

with BMD50 confidence intervals for in vitro MN against BMD50 24 hr p-H3 responses in TK6 

cells, with both x and y axes representing Log10 concentration of compounds in µM. The 

dashed parallel lines are drawn in such a way that encompasses most of the confidence 

intervals. Compound ‘car’ falls outside the trend with unbound confidence intervals in the 24 hr 

p-H3 endpoint. Right panel: BMD50 confidence intervals for in vitro MN against BMD50 24 hr 

p53 responses in TK6 cells, with both x and y axes representing Log10 concentration of 

compounds in µM. Dashed parallel lines encompassing most of the BMDs, similarly to the left 

panel correlation plot. Compounds ‘gli’ and ‘des’ lie outside the general observed trend, with 

unbound upper confidences interval in the 24 hr p53 endpoint. Dashed horizontal lines obtain 

the uncertainty range with corresponding circles intercept with the x axis predicting the BMD50 

for in vitro MN response. See Table I for compound abbreviations. Abbreviation: BMD, 

Benchmark Dose. MN, micronucleus. 

 

Figure 7. Left Panel: BMD analyses of clastogen compounds represented in cross system plots 

with BMD50 confidence intervals for in vitro MN (with the exception of mmc, nqo and top) 

versus BMD50 24hr H2AX responses in TK6 cells, with both x and y axes representing Log10 

concentration of compounds in µM. The dashed parallel lines are drawn in such a way that 

encompasses all of the confidence intervals. Right Panel: BMD50 confidence intervals for in 

vitro MN (with the exception of mmc, nqo and top) versus BMD50 24hr p53 responses in TK6 



cells, with both x and y axes representing Log10 concentration of compounds in µM. Dashed 

parallel lines encompassing most of the BMDs. Compound ola lies outside the general observed 

trend, with an unbound upper confidence interval in the p53 endpoint. Compound cis displays 

an unbound upper confidence interval in the p53 endpoint. See Table I for compound 

abbreviations. Abbreviation: BMD, Benchmark Dose. MN, micronucleus. 

 

 

 

 

 

 

  


