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The two dimensional electron gas (2DEG) in AlGaN/GaN heterostructure has been 

investigated under various strain-induced piezoelectric fields. Quantum state can be 

effectively modulated by a perpendicular piezoelectric field. Piezotronic effect can be used for 

enhancing infrared photoelectric detection. 
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Abstract 

Recent developments of piezotronic devices start to focus on the quantum behaviors of 

the nanostructured system going beyond the conventional device applications. Piezotronic 

devices utilize piezoelectric field to control the charge carrier behaviors at the junction, 

contact or interface of piezoelectric semiconductor, such as ZnO, GaN, and two-dimensional 

materials. In this study, we theoretically investigate the piezoelectric field effect on 

two-dimensional electron gas (2DEG) in AlGaN/GaN heterostructure by employing an 

approximate triangular potential model. Basic electronic properties such as wave function, 

electronic energy, electronic density distribution and the width of potential well are explored 

under the influence of the externally applied strain. From the electronic density, bound state 

can be eliminated or created by properly changing the external strain, meaning the effective 

modulation of piezotronic effect on quantum states. The piezoelectric field in 2DEG system is 

perpendicular to the electronic transport, which has remarkable advantage over the parallel 

case in switching devices. Furthermore, piezoelectric modulation of intrasubband transition 

enriches the fundamental theory of piezo-photonics and provides guidance for designing 

strain-gated infrared devices.  
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1. Introduction 

Much attention has recently been concentrated on piezotronic and piezo-phototronic 

devices based on piezoelectric semiconductor materials, such as ZnO, GaN, InN and CdS. 

Following closely the invention of nanogenerator [1-4], plenty of multifunctional 

electromechanical devices such as solar cells [5, 6], light-emitting diodes (LEDs) [7, 8], strain 

sensor [9] and piezotronic field effect transistor [10] remarkably broaden the application 

prospects of conventional semiconductor transistors. In the development of flexible electronic 

devices, taxel-addressable matrices and photon-strain sensor arrays have also been made 

significant progresses in their chip integration [7, 11]. Piezotronic analog-to-digital converters 

(ADC) based on strain-gated transistors can realize the conversion from mechanical stimulus 

to digital logic signal [12]. Piezotronic effect on the performance improvement of wavelength 

and luminescence is studied in ZnO nanowires, CdTe quantum dot and single-layered MoS2 

[13-16]. Furthermore, piezotronic transistors based on topological insulators have received 

extensive attentions in their high-performance device applications [17, 18].  

Since the concept of modulation doping in AlGaAs/GaAs system was introduced by 

Dingle et al in 1979 [19], two-dimensional electron gas (2DEG) has been widely studied in 

the area of theory and experiment. Due to the properties of high electron density and high 

mobility, 2DEG has much crucial applications in field effect transistors (FET) for high-power, 

high-frequency and high-temperature applications [20, 21]. Ultrafast optical switches can be 

designed based on the inter-subband transition (ISBT) of 2DEG in AlN/GaN multiquantum 

wells [22-24]. Additionally, terahertz and infrared detectors have also been developed by 

using 2DEG based transistors such as Schottky diodes and splitting-gated FET [25, 26]. On 

other hand, 2DEG is also an important studying platform for many quantum behaviors such as 

quantum Hall effect [27], topological insulator [28, 29] and topological superconductors [30]. 

Electron flowing in inversion asymmetric 2DEG can induce spin current which is promising 

for spintronic devices and quantum computing [31].  

In this study, we take 2DEG in AlGaN/GaN heterostructure as a typical representative of 

perpendicular piezotronic modulation to explore the basic quantum properties and potential 
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device applications. Figure 1 depicts the schematic of utilizing piezotronic effect to modulate 

2DEG in quantum well and the corresponding band diagram. The basic structure consists of a 

thin undoped AlGaN spacer layer sandwiched between an n-type AlGaN layer and a thick 

undoped GaN buffer [32]. The undoped AlGaN is used to reduce the scattering in 2DEG by 

the ionized impurities in n-type AlGaN layer [33]. Due to the spontaneous and piezoelectric 

polarization [24, 34, 35], the band structure is strongly bended by the sizable interfacial 

electric field. An approximate triangular potential well is then formed and high density 2DEG 

resides  near the interface in GaN layer [36], as shown in Figure 1(a). Due to the 

piezoelectric property of GaN, tensile and compressive stress can produce additional 

piezoelectric polarization charges at the interface and weaken or enhance the interfacial 

electric field in triangular potential well, as illustrated in Figure 1(b) and (c). The carrier 

properties such as current-voltage characteristics, band structure and luminescence properties 

can be tuned and controlled by the piezoelectric field. The wave function, subband energy, the 

intrasubband transition energy, electron density and the width of potential well are 

investigated as the external applied strain varies. From the point view of electron density, the 

emergence of different bound state is significantly dependent on the external strain, 

demonstrating that quantum states in 2DEG can be controlled by piezotronic effect. Because 

the distribution width and total electron density in potential well is sensitive to the change of 

strain, the performance of the field effect transistor can be remarkably enhanced by 

perpendicular piezoelectric field.  Distinguishing carrier recombination (happens in 

conduction electrons and valance holes) in piezo-phototronic effect, the tuning of 

piezoelectric field on intrasubband transition (for conduction electrons and carrier 

recombination) has potential applications in infrared detection.  

 

2. Piezoelectric Field on 2DEG 

Strain-induced piezoelectric field can be parallel or perpendicular to the direction of 

electric field produced by source-drain voltage. Parallel field is able to raise or reduce the 

barriers height along the carrier flowing direction and thus effectively control the carrier 

transport of nanodevices. Typical representatives include piezotronic p-n junction, 

metal-semiconductor (MS) contact and PIN diode [37, 38], which exhibit high performance 
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and low power consumption. While piezoelectric field is perpendicular to transport direction 

of charge carriers, for instance, in piezotronic field effect transistor, the opening and closure 

of conducting channel is controlled by piezoelectric field and the ON/OFF current ratio is as 

high as 1010 which is much higher than those of parallel piezoelectric field cases. The 

conducting channel is formed by a thin layer two-dimensional electron gap (2DEG) near the 

interface of heterostructure.  

Figure 2(a) shows the side view of AlGaN/GaN heterostructure and the conduction band 

structure. Because of the presence of the sizable interfacial electric field, amount of electrons 

are attracted to the interface and form a high concentration 2DEG region. The interfacial 

electric field is caused by the piezoelectric polarization charge (induced by lattice mismatch) 

and the spontaneous polarization [24, 34, 35]. Except for the above two polarization cases, 

applied strains can also produce piezoelectric charges at the interface and further modulate the 

quantum behaviors of 2DEG. By solving Schrödinger equation and Poisson equation [36], the 

wave function, subband energy, the intrasubband transition energy, distribution of electron 

density and the width of potential well are calculated by basic theory of quantum mechanics. 

The governing equations for describing 2DEG in AlGaN/GaN heterostructure are presented as 

follows. 

The energy band can be controlled by strain-induced piezoelectric charges, which is the 

electrostatic effect governed by Poisson equation. For wurtzite structure semiconductor 

heterostructure AlGaN/GaN [39], Poisson equation is solved for the displacement field [32] 

( ) ( ) ( ) 2s DEG D A piezo

d d
D x x F P x q p n N N

dx dx
ε ρ+ − = + = − + − +          (1)  

where ( )D x  is the displacement field, ( )s xε  is the position-dependent dielectric constant, 

F  is the electric field, ( )P x  is the total polarization, p  is the hole concentration, 

2DEGn  is the electron density of 2DEG, DN +  is the ionized donor concentration, AN −  is the 

ionized acceptor concentration, piezoρ  is the strain-induced piezo-charges concentration. The 

total polarization ( )P x  is the sum of the spontaneous and (lattice mismatch) piezoelectric 

polarization [32]. 

Due to the presence of strong polarization field near the interface, the bending of 
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conduction band is considerable. Strictly speaking, the field is nonlinear and should be solved 

numerically from self-consistent method by the coupling of Schrödinger equation and Poisson 

equation [32, 36, 40, 41]. As an excellent approximation, triangular potential is commonly 

used to give the analytical results and presented as [36]  

( ) 0

0piezo

, x
x

F x , x
φ

∞ =
=  >

                         (2)  

where ( )xφ  is the potential distribution, piezoF  is the piezoelectric field. At the interface 

0x = , the electrostatic potential is assumed to be infinite height potential barrier due to the 

presence of larger band discontinuity [36, 41]. The electric field derives from piezoelectric 

polarization and spontaneous polarization in depletion region. Strong polarization field bends 

the band-edge profile, which can be considered as a quasi-triangular potential. Previous 

results have indicated that theoretical models based on triangular potential approximation are 

consistent with the experimental results for heterojunction devices, such as in Si inversion 

layer, AlGaAs/GaAs and AlGaN/GaN [36, 42, 43].  

The piezoelectric field is tunable by the external applied strain. For three-dimensional 

bulk material [37, 44], piezoelectric field can be written as  

0
piezo piezo

piezo
GaN

q W
F F

ρ
ε

= +                          (3)  

where 0F  is the intrinsic electric field without external strain, piezoW  is the width of 

piezo-charges distribution, GaNε  is the dielectric constant of GaN. 

Take one-band effective mass model as a typical example, we investigate piezotronic 

effect on 2DEG in wurtzite heterojunctions. Electron states in triangular potential well are 

described by Schrödinger equation 

( )
2 2

2
0

2 piezo*

d
E qF x

m dx

ψ ψ+ − =h
,                    (4)  

where *m  is the electron effective mass of GaN. Solving equation (4) under the boundary 

condition: ( )0 0ψ = , ( ) 0ψ ∞ = , the energy levels and wave functions are given by [36] 
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1 3 2 32 3 3

2 2 4

/ /

k piezo*
E qF k

m
π    = +    

   

h
                  (5)  

( )
1 3

2

2
/*

k
k piezo

piezo

Em
x C A qF x

qF
ψ

   
= ⋅ −          h

             (6)  

where ( ) ( )3

0
1 3A z / cos t / zt dtπ

∞
= +∫  is Airy function and 

( ) ( )1 32

0
1 2

/*
s k sC A m qF / x E / qF dx

∞  = −  ∫ h  is normalization factor. Once the basic 

quantum states are obtained, electron density of 2DEG can be calculated from  

( ) ( ) ( )2
1

M
*

DEG k k k
k

n x x x nψ ψ
=

= ⋅∑                  (7)  

where M  is the number of bound states. kn  is the electron density occupied in k-th bound 

state  

( )2

1

1 exp
k

*

k
FE

m
n dE

E E kTπ

∞

=
+ −  ∫h

             (8)  

where kE  is subband energy in the k-th bound state, FE  is the Fermi energy. The energy 

difference between two nearest subbands is obtained as 

1 3 1 32 3 3

2 2 4

/ /

k s s*
E qF qF k

m
π π

−
    ∆ = +    

   

h
           (9)  

The width of potential well can be evaluated by using the average distance of electron 

distribution in the k-th subband, which is defined by [36]  

( ) ( )
0

*
k k kX x x x dxψ ψ

∞
= ∫                       (10)  

For wurtzite structure GaN grown along c-axis [39], the piezoelectric coefficient is given 

by 

( )
15

15

31 31 33

0 0 0 0 0

0 0 0 0 0

0 0 0
ijk

e

e

e e e

 
 =  
 
 

e                  (11)  

When only axis strain 33s  is supplied, the piezoelectric polarization vector is written as [37] 

33 33z piezo piezoP e s q Wρ= = .                         (12)  
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Substituting Eq. (12) into Eq. (3), the electric field is obtained as 

33 33
0piezo

GaN

e s
F F

ε
= +                              (13)  

In piezoelectric semiconductor devices, external applied strain induces the pure strain 

effect and the piezotronic effect. In this study, we consider the piezotronic effect and neglect 

the pure strain effect. The piezoelectric field can shift around 400 meV, and pure strain shift 

the conduction band-edge ~5 meV under the strain of 1.0% in AlGaN and GaN layer [45]. In 

addition, previous experimental and theoretical results show that the piezoelectric field in 

AlGaN/GaN heterojunction can reach over MV/cm [46, 47]. Therefore, the piezoelectric field 

can remarkably change the potential well structure and offer a strong piezotronic effect in 

AlGaN/GaN heterojunction.  

For simplicity, the triangular potential approximation is used for clearly describing 

piezotornic effect on 2DEG. The self-consistent method can also be used for quantitative 

analysis of piezotronic device [41]. An initial trial electric potential ( )xφ  calculates the 

wavefunction and eigenenergies from Eq (4). The electron density of 2DEG 2DEGn  is then 

obtained from Eq. (7) and Eq. (8), and further used to calculate a new electric potential( )xφ . 

If the new electric potential is convergent to the old one, the obtained results are 

self-consistent. Otherwise, the iterative process will proceed until the convergence occurs.  

The typical constant used in the calculation is presented as follow: The piezoelectric 

coefficient of GaN 33e  is 0.65 C/m2 [35], the dielectric constant GaNε  is 10.4 0ε with the 

vacuum permittivity 0ε  [35], the effective electronic mass is 00 19. m  with the free 

electron mass 0m  [32], the temperature is 300 K, the width of piezo-charges distribution 

piezoW  is 0.25 nm [37], the intrinsic electric field 0F  without piezo-charges is 0 5.  MV/cm 

[48], the Fermi energy FE  is 0.3 eV [24, 48]. 

The parameters for simulations are obtained from previous experimental works [49, 50], 

as shown in Table I. The x-axis is c-direction of wurtzite material. GaN and AlGaN layers are 

unintentionally doped and n-AlGaN layer is doped with shallow donors. 
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Figure 2(a) shows the calculating model of 2DEG based on triangular potential well 

located at the GaN layer near the interface. Electron density kn  is predominated by those 

bound states with the energy lower than the Fermi energy. The 2DEG electron density 2DEGn  

is the summation over all subband electron density and localized in the potential well. The 

piezoelectric field piezoF  is linearly dependent on the external strain, as shown in Figure 2(b). 

For tensile stress (positive value strain 33s ) supplied to GaN, the piezoelectric field is 

enhanced by strain-induced positive piezo-charges. Negative piezo-charges will weaken the 

piezoelectric field when the GaN endures compressive stress (negative value strain 33s ). 

Wave function and corresponding energy eigenvalue are prerequisite to understand or obtain 

various quantum effects. Figure 2(c) plots the wave function of the lowest four bound states 

under strain varying from -0.6% to 1.0%. As the strain grows, the distribution of wave 

function becomes narrow and thus the electronic density distribution is increasingly 

concentrated at the interface. The shrinking of the distribution width is due to the increase of 

piezoelectric field which attracts more electrons close to the interface to screen the growing 

electric field. Additionally, for a fixed external strain the width of wave function distribution 

also gradually increases with the level of bound state. Figure 2(d) shows the subband energy 

of the lowest four states as a function of strain. Energy in different bound state decreases with 

the reducing of the strain and ends up to zero at the strain s33=-0.7% where the piezoelectric 

field vanishes.  

In order to give direct insight into piezotronic effect on electron states, the electron 

density of the lowest eight bound states is plotted in Figure 3(a). While the strain is low and 

close to -0.7%, electron density for different subbands becomes very high, which is mainly 

attributed to the vanishing piezoelectric field. In this case, the potential well is near flat and 

equivalent to unilaterally infinite depth potential well where almost all electrons are confined 

in the well. With the increasing of the strain, the electric field intensifies gradually and the 

potential well starts to decline. Electron density in high bound states reduces rapidly and 

ultimately becomes zero at a critical strain. This zero electron density can be viewed as the 

vanishing of quantum state (precisely speaking, quantum state always exists and cannot be 
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eliminated just because the corresponding electron density becomes much lower comparing to 

other bound states). Therefore, strain can effectively control the predominant quantum states 

existed in potential well which is the consequence of piezotronic effect. The critical strain 

from the ground state to the seventh bound state is 1.18%, 0.18%, -0.14%, -0.30%, -0.38%, 

-0.43%, -0.48% and -0.51%, respectively.  

Figure 3(b) shows the total electron distribution of 2DEG in the potential well with the 

strain varying from -0.6% to 1.0%. Both the peak and width of electron density distribution 

increase with the strain decreasing, indicating that more and more electrons are populated on 

the well. Combining with the property of high mobility [51], high concentration electron gas 

in potential well leads to 2DEG being superior conductivity. Based on this principle, 2DEG is 

widely used in field effect transistor. In piezotronic field effect transistor, the formation of 

2DEG is controlled by strain-induced piezoelectric field and ON/OFF switching ratio is 

105-107 [52]. This ultrahigh switching ratio is attributed to the piezoelectric field which is 

perpendicular to the flowing direction of charge carriers and directly controls the opening and 

closure of the conducting channels in 2DEG, giving arise to excellent switching behavior. By 

contrast, those devices with piezoelectric field parallel to the transport direction, such as 

piezotronic p-n junction, metal-semiconductor contact and PIN diode is difficult to achieve 

high ON/OFF ratio due to the presence of tunneling current. 

The energy transition between two intrasubbands in quantum dot or quantum well is 

usually related to the infrared photodetector [53-55]. Figure 4(a) plots the energy difference 

between two nearest subbbands as a function of strain. The breaking curve of energy 

difference is due to the consideration of the vanishing electron density of bound states in 

Figure 3(a). Energy difference decreases with the strain approaching to -0.7%. The first 

energy difference between the ground state and the first excited state is largest and has the 

critical strain greater than 0. As level of bound state increases, the breaking point decreases. 

When the applied strain is larger than the breaking point, the electron density vanishes and 

thus this energy transition is forbidden.  

It should be noted that the bound states studied here are the conduction electron states 

and thus the energy transition between different states is intrasubband transition. As we can 

see from Figure 4(a), the transition energy varies in the order of 0.01 to 0.1 eV. However, for 
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III-IV compound wurtzite materials, the band gap for GaN, InN and AlN is respectively 3.507 

eV, 1.994 eV and 6.23 eV [56]. Evidently, the transition energy in intrasubbands is much less 

than the band gap of material which is the energy in interband transition between conduction 

electrons and valence holes. In piezo-photonics devices, light absorption or emission is based 

on the interband transition between electrons and holes, and thus the light frequency is higher. 

The tuning of piezoelectric field on intrasubband transition is a completely novel mechanism 

for mechanical-optical coupling devices, which broadens the fundamental theory of the 

piezo-photonics effect. Meanwhile, the light frequency of intrasubband transition in 2DEG is 

in infrared region which is much desired in infrared detector based on piezo-photonics effect.  

Conventional AlGaAs/GaAs quantum well based far infrared photoelectric detectors use 

gate voltage to change wavelength [57]. Electric field induced by the gate voltage is limited to 

the level of ~100 KV/cm. Piezoelectric field can reach up to ~10 MV/cm, which is 100 times 

larger than the gate voltage induced field [46, 47]. As a result, wavelength can be effective 

adjusted by the piezoelectric field.  

We also plot the average distribution width of the bound states as a function of strain in 

Figure 4(b). Similarly, there exists the breaking point in the curve owing to the vanishing 

electron density in bound states. The width sharply decreases when strain is closes to -0.7% 

and subsequently changes slowly. Ground state has the minimum width due to its low energy 

which is located at the bottom of triangular potential well. 

In order for demonstrating the practical device application, we simulate the piezotronic 

transistor based on AlGaN/GaN heterojunction by the finite element method. The piezotronic 

device models including p-n junction, M-S junction, bipolar transistor and metal–insulator–

semiconductor tunnel device have been simulated by using the COMSOL software package 

[37, 58, 59]. The structural parameters used in the AlGaN/GaN piezotronic transistor are 

displayed as following: the lengths of GaN, AlGaN and n-AlGaN are 20 nm, 1 nm and 40 nm, 

respectively. The dopant concentrations are 1014 cm-3, 1014 cm-3 and 1017 cm-3, and the 

cross-sectional area is set as 2 μm × 2 μm. Figure 5(a) shows I-V characteristics of the 

AlGaN/GaN piezotronic heterostructure with various strain-induce piezoelectric fields. The 

current significantly changes while the strain increases from -0.4% to 0.4%. Figure 5(b) 

shows an enhancement of the current when the strain increases from -0.4% to 0.4%, 
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indicating that piezotronic effect can effectively improve the device performance.  

 

3. Conclusions 

We have theoretically studied the impact of piezotronic effect on 2DEG in AlGaN/GaN 

heterostructure. Using the approximation of triangular potential well, various electronic 

characteristics of 2DEG such as wave function, subband energy, band transition, electron 

density and the width of potential well are calculated under external applied strain. External 

strain can sensitively control electron density of bound states and even determine the 

appearance of bound state, directly demonstrating the piezotronic tuning of quantum states. 

Furthermore, we calculate the total electron concentration and effective distribution width of 

2DEG which can remarkably enhance the switching performance of piezotronic field effect 

transistors due to the modulation of perpendicular piezoelectric field. Distinguishing the 

interband transition in conventional piezo-photonic devices, the intrasubband transition in 

2DEG not only enriches the fundamental theory of piezo-photonics effect, but also offers a 

method for designing strain-gated infrared detecting devices.  
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Figure captions 

 

Figure 1.  Schematic of piezoelectric field on 2DEG in AlGaN/GaN quantum well and 

corresponding energy band diagram for (a) unstrained case, (b) stretched case and (c) 

compressed case. The height of the triangle potential well Φ
�
 is tunable by the piezoelectric 

potential Φ
����	

. 

 

Figure 2.  (a) Side view of AlGaN/GaN quantum well. Strain-induced piezo-charges is 

distributed at the interface. (b) Total piezoelectric field versus strain. (c) Wave function 

distribution for the first three subbands under different strains. (d) Subband energy as a 

function of strain. 

 

Figure 3.  (a) Electron density against strain for the different bound states; (b) Total electron 

density distribution of 2DEG in the potential well under different strains. 

 

Figure 4.  (a) The energy difference between two nearest intrasubbands as a function of 

strain; (b) the average distribution width of different bound states varying with strain. The 

appearance of the breaking point in the curves is due to the consideration of the vanishing 

bound state. 

 

Figure 5.  I-V characteristics of piezotronic transistior based on AlGaN/GaN heterojunction. 

(a) The current versus the voltage for the strain varying from -0.4% to 0.4%; (b) the current 

versus the strain under different applied voltages. 
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Table I. The structural parameters and dopant concentrations for AlGaN/GaN heterojunction. 

material length x (c axis) width y height z dopant concentration (cm-3) 

GaN 200 nm [49] 8 
m [50] 8 
m [50] 1.0 × 10
15

 [49] 

AlGaN 2 nm [49] 8 
m [50] 8 
m [50] 1.0 × 10
15

 [49] 

n-AlGaN 20 nm [49] 8 
m [50] 8 
m [50] 5.0 × 10
18

 [49] 
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Highlights: 

1. Piezotronic effect on the two-dimensional electron gas has been studied in AlGaN/GaN 

devices. 

2. The strain-induced piezoelectric field can effectively manipulate quantum state of 2DEG.  

3. Piezoelectric field can enhance infrared photoelectric detection. 


