

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:

Circuits, Systems, and Signal Processing

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa49021

Paper:

Torquato, M. & Fernandes, M. (2019). High-Performance Parallel Implementation of Genetic Algorithm on FPGA.

Circuits, Systems, and Signal Processing

http://dx.doi.org/10.1007/s00034-019-01037-w

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa49021
http://dx.doi.org/10.1007/s00034-019-01037-w
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Noname manuscript No.
(will be inserted by the editor)

High-Performance Parallel Implementation of

Genetic Algorithm on FPGA

Matheus F. Torquato · Marcelo A. C.

Fernandes

Received: date / Accepted: date

Abstract Genetic Algorithms (GAs) are used to solve search and optimiza-
tion problems in which an optimal solution can be found using an iterative pro-
cess with probabilistic and non-deterministic transitions. However, depending
on the problem's nature, the time required to �nd a solution can be high in se-
quential machines due to the computational complexity of genetic algorithms.
This work proposes a full parallel implementation of a genetic algorithm on
�eld-programmable gate array (FPGA). Optimization of the system's process-
ing time is the main goal of this project. Results associated with the processing
time and area occupancy (on FPGA) for various population sizes are analyzed.
Studies concerning the accuracy of the GA response for the optimization of
two variables functions were also evaluated for the hardware implementation.
However, the high-performance implementation proposes in this paper is able
to work with more variable from some adjustments on hardware architecture.
The results showed that the GA full parallel implementation achieved through-
put about 16 millions of generations per second and speedups between 17 and
170000 associated with several works proposed in the literature.

Keywords Parallel implementation · FPGA · Genetic algorithms · Recon�g-
urable computing

Matheus F. Torquato
College of Engineering, Swansea University, Swansea, SA2 8PP, Wales, UK
ORCiD: 0000-0001-6356-3538
E-mail: m.f.torquato@swansea.ac.uk

Marcelo A. C. Fernandes
Department of Computer Engineering and Automation, Federal University of Rio Grande
do Norte (UFRN), 59078-970, Natal, RN, Brazil
Tel.: +55-84-3215-3771
ORCiD: 0000-0001-7536-2506
E-mail: mfernandes@dca.ufrn.br

2 Matheus F. Torquato, Marcelo A. C. Fernandes

1 Introduction

In the last years, the increasing number of critical applications involving real
time systems in conjunction with the growth of integrated circuits density and
the continuous reduction in the power supply voltages transformed the devel-
opment of new suitable computational solutions an even harder task to achieve.
Due to the intense demand in the electronics goods market for high processing
speeds at smaller time frames, without neglecting the energy savings, the tech-
nology industry has faced an extremely competitive and challenging scenario
in terms of designing hardware solutions to meet this constantly growing de-
mand. One way found by researchers and developers to address such demands
is by using algorithm parallelization techniques. Parallel processing is used
to manipulate data concurrently, so that while computing one section of the
algorithm, other stations perform similar operations on another set of data
[26]. Combining the hardware implementation with the parallelization of algo-
rithms is often a satisfactory solution for high performance and higher speed
applications when compared to sequential solutions.

The Field Programmable Gate Arrays (FPGAs) are recon�gurable hard-
ware devices suited to this scenario due to the nature of its architecture. Given
that FPGAs are huge con�gurable gates, they can be programmed to operate
as multiple parallel paths in hardware. In this way, there is a real parallelization
in which the running operations do not need to compete for the same resources
since each one will be executed by di�erent gates [12]. The increasing density
and price reduction of FPGAs expand the opportunities for developers and
researchers to use higher density FPGA devices for hardware implementations
[14] considering the use of such devices is advantageous since the development
time and costs are signi�cantly reduced [29].

The convergence among genetic algorithms, parallelization techniques and
recon�gurable hardware implementation results in this work which presents a
proposal of parallel implementation of a genetic algorithm on FPGA. This pa-
per focuses on high-performance and critical applications that require nanosec-
onds time constraints to be satis�ed. On the other hand, in applications where
processing speed is not the critical factor or it is less limiting than the necessity
for low power consumption, it is possible to decrease the energy utilization by
reducing the clock cycles rate, considering that the dynamic power utilization
is diminished when an operating frequency lower than the maximum theoret-
ical one is used [30]. Applications that process a large �ow of data can be
bene�ted and accelerated by this implementation here developed. Some appli-
cations examples are: data mining, tactile internet, massive data processing
and bioinformatics.

1.1 Related Work

Genetic algorithms and Arti�cial Intelligence (AI) have long been used in ap-
plications of the most diverse areas to optimize and �nd satisfactory solutions

High-Performance Parallel Implementation of Genetic Algorithm on FPGA 3

in computing, engineering and other �elds. More recently, a wider range of ap-
plications and variations of genetic algorithms such as parallel and distributed
applications, hardware implementations, new proposals for genetic operators,
and hybrid (software and hardware) implementations of genetic algorithms
have been observed within the research scenario.

In [6,7], it is proposed an implementation of a customizable Intellectual
Property Core (IP Core) for FPGA that implemented a general-purpose ge-
netic algorithm. In this work, the authors have focused on the genetic algorithm
programmability implemented in the IP core. The customization could be done
regarding population size, generation number, crossover and mutation rates,
random number generators seeds and the �tness function. One of the work's
highlights is the support for a multiple of these functions. The proposed IP can
be programmed with up to eight �tness functions which could be synthesized
in conjunction with the GA and implemented in the same FPGA device. The
proposed core also has additional input/output ports that allow the user to
add further �tness functions that have been implemented on a second FPGA
device or some other external device. The implementation utilized 13% of the
available logical cells of a Xilinx Virtex II Pro (xc2vp30-7�896). However, since
a trade-o� between performance and �exibility exists, and once the authors
focused on �exibility over performance, the speedup over analogous software
implementation was only of ×5.16.

Hardware Genetic Algorithms implementations can also be observed in [23,
31,33,17,22] and [32]. The work detailed in [33] showed the OIMGA which its
strategy was to retain only the ideal individual from the population making the
memory requirements drastically reduced. The paper [23] presented a compact
implementation of a genetic algorithm on FPGA that represented the popula-
tion of chromosomes as a vector of probabilities. The work focused on the lower
consumption of memory, power and space resources in hardware, but it was not
fully implemented on FPGA as it used a software written in C++ to compute
the values from the �tness function. The work [31] proposed a high-speed GA
implementation on FPGA. The implementation was based on the HGA pro-
posed by [27], the �rst known GA implementation on FPGA, and the authors
claimed that the developed system surpassed any existing or proposed solution
according to their experiments. The P-HGAv1, version developed by [31] of
the HGA claimed to be parametric, have low silicon requirements and support
multiple �tness functions. Although the authors have focused on the speed of
the algorithm and reached a time of 0.021 milliseconds for each GA generation,
this speed may not be compatible with real-time applications that require low
latency. In [17,22] and [32], it is developed a modular implementation of a GA
for FPGA. However, the implementation does not use the full-parallel strategy
and spend several clocks for each generation. Basically, in each generation it
is necessary to read and write individuals from/to a memory bank, in other
words, this work spends more than N clocks for N individuals per generation.

The works presented by [19], [13] and [25] showed applications for ground
mobile robots using GAs, where these �rst two were embedded implemen-
tations on FPGA. The work [19] developed, according to the authors, the

4 Matheus F. Torquato, Marcelo A. C. Fernandes

�rst GA-based hardware implementation of a simultaneous localization and
mapping (SLAM) system for ground robots. The authors achieved signi�cant
hardware acceleration compared to software implementation by exploiting the
pipelining and parallelization capabilities of recon�gurable hardware. In this
project the GA's genes that made up the population represented possible robot
movements based on the previous position. Later, In the work developed by
[13], the goal was to determine the optimal movements considering various
aspects such as route tracking and low energy consumption, avoiding obsta-
cles collision. The authors pointed out that the implementation was suitable
for real-time use and stated that all GA stages have been implemented in
hardware modules. The solution presented in this work o�ered a convergence
time of less than 2 milliseconds, it used 17124 out of the 17600 (97%) Lookup
tables (LUTs) available in the FPGA, but the frequency obtained after the
synthesis process was not informed. [25] developed a genetic algorithm with a
coevolutionary strategy for global trajectory planning of several mobile robots.
According to [15], co-evolution is the process of mutual adaptation of two or
more populations simultaneously, and it was used to re�ect the fact that all
species are simultaneously co-evolving in a given physical environment. The
implementation of [25] promised an improvement in the genetic operators of
conventional GAs and proposed a new operator of genetic modi�cation, but
these developments were not implemented in hardware.

The implementations seen in [18], [28] and [4] were GA applications in
digital signal processing and control systems embedded on FPGA. The work
[18] presented a real-time GA for adaptive �ltering application with all mod-
ules implemented in hardware such as �tness function, selection, crossover,
mutation and random number generator functions. The implementation was
designed in hardware and after its synthesis, a rate of 320 thousands genera-
tions per second was achieved. Meanwhile, [28] proposed a GA for multi-carrier
dynamic systems based on �lter banks. The authors of [4] proposed a design
and an implementation of a PID controller based on GA and FPGA. The re-
searchers stated that the design method of the intelligent PID controller based
on FPGA and GA was successfully veri�ed and had some advantages such as
�exible design, automatic online tuning, high reliability, short technical devel-
opment cycle and high execution speed. For this case, each GA chromosome
was coded with the controller set of gains Kp, Ki and Kd. Details of FPGA
area occupancy and obtained throughput were not reported.

The works [9] and [16] presented parallel and distributed implementation
of GA using FPGAs. The paper [9] proposed a solution for parallel genetic
algorithms in multiple FPGAs. Using multiple populations in parallel GAs
was based on the idea that population isolation can maintain greater genetic
diversity, while communication between them can cause GAs to work together
to �nd good solutions. The implementation of [9] was applied to three di�er-
ent benchmarks, including the traveling salesman problem, and the authors
stated from the experimental results that in a con�guration of 4 FPGAs an
average acceleration of 30 times over a multi-core processor GA was achieved.
[16] introduced GRATER, an automated design work�ow for FPGA acceler-

High-Performance Parallel Implementation of Genetic Algorithm on FPGA 5

ators that leveraged imprecise computation to increase data-level parallelism
and achieved higher computational throughput. In this work the main idea
was establishing a negotiation among circuit that involved area, energy and
performance in exchange for precision reduction. This was achieved through
an imprecise implementation of speci�c hardware blocks such as adder and
multiplier, since hardware area reduction resulted in better data parallelism
utilization and, therefore, increased the yield. Also in [16], genetic program-
ming was used to evolve variants of the input kernel until one was found
with ideal assignments which reduced the synthesized kernel area while still
stochastically satisfying the output desired quality. The synthesis results in
an Altera Stratix V FPGA showed that the reduced area of the approximate
kernels produced a gain of ×1.4 to 3.0 higher with less than 1% of quality loss
compared to benchmarks.

Lastly, recent works, [20,10,1,2,24], have been proposing generic imple-
mentations relative to GA parameters, similar to the proposals [6] and [7].
In [20] it proposed an implementation of the genetic algorithm (called HGA)
on recon�gurable hardware using the hardware-software (HW/SW) co-design
methodology. Part of the GA algorithm is executed by a software embedded on
CPU, the other is on a dedicated hardware (both are embedded on a FPGA).
Several approaches of the high-speed general purpose hardware to accelerate
genetic algorithms are proposed in [10,1,2,24]. These approaches improve the
GA parameter con�guration on hardware architecture, on the other hand,
reduce the parallelization of the hardware design and decrease the speedup.

It is essential to observe that the works presented in the literature propose
the solutions based on software and hardware on FPGA. This kind of the
answer increase de �exibility but decrease the throughput. Thus, di�erently,
of the papers in the literature, this work proposed a high-performance parallel
implementation of GA. The implementation uses the full-parallel strategy in
all GA operations in order to maximize the throughput.

1.2 Paper organization

In section 2 a theoretical foundation about the genetic algorithms will be
explored. Section 3 will present a detailed description of the architecture de-
velopment and implementation, describing the various hardware modules used
to construct the parallel genetic algorithm. Later, in section 4, a careful anal-
ysis of the results obtained from the implementation described in the previous
section will be performed. Simulation results, synthesis in the FPGA and the
validation of the proposed architecture will be presented. The analysis will be
carried for parameters such as occupation area and sampling frequency, taking
into account di�erent con�gurations of the proposed architecture embedded
in the recon�gurable hardware. Following, Section 5 shows a comparison of
the obtained with other similar works found in the state of the art. Finally,
Section 6 will present the conclusions about the work.

6 Matheus F. Torquato, Marcelo A. C. Fernandes

2 Genetic Algorithms

The GAs are used to solve search and optimization problems where an optimal
solution can be found through an iterative process in which the search starts
from an initial population and then, combining the best representatives of it,
obtains a new population that replaces the previous one [11].

GA is an iterative algorithm that is started from a population of N chro-
mosomes randomly created. N is even, in the case of this proposed work, in
order to facilitate the implementation. In every k-th iteration, also called gen-
eration or epoch, the N chromosomes are evaluated, selected, recombined and
mutated to form a new population also of N chromosomes, that is, the entire
population of parents is replaced by the new o�spring. Then, the new popu-
lation is used as input to the algorithm's next iteration (generation), and this
procedure of population updating is repeated K times, where K is the GA
generations number.

The Algorithm 1 displays the pseudo code of a GA. This code details all
the variables and procedures that will be used in the implementation to be
presented in the following sections. The variable xj [m](k) represents the j-th
chromosome of m bits in the k-th generation and X[m](k) is a vector that
stores all the N chromosomes, that is,

X[m](k) =

x1[m](k)
...

xN [m](k)

 . (1)

After the initialization process, the �tness function, called FF (Line 4 of
Algorithm 1), calculates the �tness value of the N chromosomes xj [m](k) of
the population. This operation is applied to all chromosomes and results in
a respective value yj [a](k) for each j-th chromosome, where b is the number
of bits representing the �tness value. The better the value yj [a](k) of the
chromosome xj [m](k), the more likely it is to continue in the new generations.
The �tness values of all N individuals are stored in

Y[a](k) =

 y1[a](k)...
yN [a](k)

 . (2)

After calculating the �tness value of each j-th chromosome of the k-th gen-
eration, the selection operation is performed. In GAs, the selection's purpose
is to highlight the chromosome xj [m](k) alongside its respective �tness val-
ues, yj [a](k), in order to produce better populations. There is a great variety
of selection methods in the literature and among them it can be mentioned:
the method of selection by ranking, by tournament, roulette selection and
elitism. The tournament selection method used in this implementation is one
of the most used [22,32] and it makes a competition between two or more
randomly chosen chromosomes from the population stored in X[m](K). This

High-Performance Parallel Implementation of Genetic Algorithm on FPGA 7

Algorithm 1 Genetic algorithm.
1: Initialise X[m](k) with random values
2: for k ← 1 to K do

3: for j ← 1 to N do

4: yj [a](k)← FF (xj [m](k))
5: end for

6: for j ← 1 to N do

7: wj [m](k)← SF (Y[b](k),X[m](k))
8: end for

9: for i← 1 to N/2 do

10:

[
z2i−1[m](k)
z2i[m](k)

]
← CF

([
w2i−1[m](k)
w2i[m](k)

])
11: end for

12: for v ← 1 to P do

13: xv [m](k)← MF (zv [m](k))
14: end for

15: end for

competition consists of comparing the strength (�tness), yj [a](k), of all par-
ticipating chromosomes and the one who holds the best respective value in
Y[a](K), proceeds in the algorithm to pass their genes forward. The selection
function, called here SF (Line 7 of the Algorithm 1), has the vectors Y[a](k)
and X[m](k) from the k-th generation as it inputs and, for each input value,
it outputs the variable wj [m](k) that can assume the value of any of the N
chromosomes stored in X[m](k). All wj [m](k) values are grouped in

W[m](k) =

w1[m](k)
...

wN [m](k)

 (3)

in order to be used in the crossover stage.
The crossover stage in the k-th generation occurs after the selection of

the most �t chromosomes in the population (stored in W[m](k)) by the se-
lection function and aims to originate new chromosomes of which will, after
the mutation stage, compose the next GA generation updating the vector
X[m](k)). There are several crossover techniques presented in the literature
and the strategy adopted in this implementation was the single point crossover.
The crossover operation, called here CF (Line 10 of the Algorithm 1), has as
input pairs of elements from vector W[m](k) of the k-th generation and as
output, pairs of

Z[m](k) =

 z1[m](k)
...

zN [m](k)

 (4)

which stores the chromosomes after crossingover, that is, the new k-th o�-
spring.

The last GA's step is the mutation operation that changes the value of a
group P chromosomes, in order to provide greater diversity to the population

8 Matheus F. Torquato, Marcelo A. C. Fernandes

avoiding its solution to stabilise in local minimums. The mutation rate, MR,
is the parameter responsible for controlling the amount of mutated chromo-
somes. Normally, the MR ranges from 0.1% to 2%. The P value can be easily
calculated by the expression

P = dN ×MRe. (5)

The mutation operation, referred here as MF, is presented in the Line 13
of the Algorithm 1 and detailed in Equation 6.

x = (¬z ∧Rand) ∨ (z ∧ ¬Rand). (6)

Where z is the chromosome to be mutated and Rand is a random variable.
The result of this exclusive OR operation between z and Rand (Z ⊕ Rand)
results in x.

3 Hardware Proposed

Figure 1 presents the general architecture of the proposed GA hardware im-
plementation. The entire algorithm was developed using a parallel architecture
focusing on accelerating the processing speed, taking advantage of the avail-
able hardware resources, similarly to [21]. The Figure details in block diagram
the main subsystems of the proposed implementation, which in turn were en-
capsulated in order to make the general visualization of the architecture less
complex. It is possible to observe a population of N chromosomes of m bits
in which xj [m](k) represents the j-th chromosome of the population in the k-
th generation, according to the Algorithm 1. Each j-th chromosome xj [m](k)
is stored in a m-bit register, called here RXj whose value is updated by the
new population of N chromosome produced after the processes of selection,
crossover and mutation. This updating process occurs every time the synchro-
nization module, called here SyncM, enables the registers to store new values.

Given that the implementation optimizes two-variables functions, each reg-
ister RXj stores the values of both binary inputs for the �tness function using
bits concatenation for such storage. The �rst m

2 bits represent the �rst input
of the �tness function, pxj [

m
2](k), while the second block of m

2 bits stores the
second input for the �tness function, qxj [

m
2](k). Thus,

xj [m](k) = pxj

[m
2

]
(k)‖qxj [

m

2
](k) (7)

where ‖ is the concatenation operator.
The initial population of the algorithm is randomly chosen. All random

values from the present implementation is generated by pseudo random num-
ber generators based on Linear Feedback Shift Register (LFSR) [5] and [8]. 32
bits independent LFSRs based on the polynomial r32 + r22 + r2 + 1 [8] were
used. Each generator is characterised as CCLFSRlj whose CC, l and j are
labels for its position in the circuit. Every k-th generation a random variable

High-Performance Parallel Implementation of Genetic Algorithm on FPGA 9

�
�
�

RX1

RX2

RXn

FFM1

FFM2

FFMn

�
�
�

SM1

SM2

SMn

�
�
�

CM1

CMn/2

MM1

�
�
�

x1[m](k)

x2[m](k)

xn[m](k)

y1[a](k)

yn[a](k)

w1[m](k)

w2[m](k)

wn-1[m](k)

wn[m](k)

z1[m](k)

z2[m](k)

zn-1[m](k)

zn[m](k)

SyncM

Fig. 1 General architecture of the proposed parallel genetic algorithm implementation.

of 32 bits, called here CCrlj [32](k), is produced by each LFSR. To avoid the
same sequence of values, each generator LFSRCClj has a di�erent initial value
of 32 bits, called CCseedlj [32].

The notation used in the following diagrams will be in the x[m](c) form,
where x is the variable,m is the bit word width and c represents the generation
of the genetic algorithm ranging from 1 to K. In some cases only the bracketed
notation, [m], will be shown to represent the amount of bits transferred on the
bus.

The implementation consists of �ve main modules called: Fitness Function
Module (FFM), the Selection Module (SM), Crossover Module (CM), Muta-
tion Module (MM) and Synchronization Module (SyncM). Each module has
its speci�c implementations that will be detailed in the following sections.

3.1 Fitness Function Module - FFM

The Fitness Function Module (Figure 2) has the purpose of calculating the
�tness value of each j-th chromosome from a �tness function f(·). The pro-
posed structure has N FF modules and each j-th module, called here FFMj ,
is associated to an individual xj [m](k) and generates as output in every k-th
generation a �xed-point �tness value expressed by

yj [a](k) = FFMj(xj [m](k)), (8)

where a represents the bit width (equivalent to the 4 line of the Algorithm 1).
Not only for the Fitness Function Module, but for all other stages, the

proposed architecture is capable of solving one or two variable problems. Re-
gardless of the case, the user will not need to make any adjustments to the

10 Matheus F. Torquato, Marcelo A. C. Fernandes

input data. The di�erence between these two options re�ects only on how the
data is manipulated by the subsequent modules, but this does not change the
performance of the system and is done invisibly to the operator.

Figure 2 details the operation of the jth FFM. The FFM input value,
xj [m](k) stored in the RXj register, is divided into two halves of m

2 bits,
pxj [

m
2](k) and qxj [

m
2](k), by the bit splitters FFMDIV1j and FFMDIV2j so

that it is thus possible to operate each variable independently in the case of
two variables problems.

After split, the variable pxj [
m
2](k) is directed to the ROMmemory FFMROM1j

which implements the α function through a Look-Up Table (LUT) and the
variable qxj [

m
2](k) is directed to FFMROM2j which implements the β func-

tion in the same fashion.
After this, both values are added by the FFMADDj adder resulting in the

δj [d](k) variable, where

δj [d](k) = α(pxj)[c](k) + β(qxj)[c](k). (9)

The variable δj [d](k) is then directed to the LUT FFMROM3j where the γ
function will be implemented, hence

yj [a](k) = γ(δj [d](k)). (10)

In general, the FFM shown in Figure 2 is able to solve any one or two
variables problem in the format

yj [a](k) = γ(α(pxj [c](k)) + β(qxj [c](k))). (11)

Other expressions are possible, but it is necessary to change the hardware
structure of the FFM.

3.2 Selection Module - SM

The selection module (SM) implements the tournament selection method, as
mentioned in Section 2, by doing a competition between two chromosomes.
Similarly to the FFM, there are N SMs for a group of N chromosomes. As
detailed in Figure 3, each j-th SM, here called SMj, has as input the N �t-
ness values, yj [a](k), and N chromosomes, xj [m](k), from the k-th generation
(equivalent to the 7 line of the Algorithm 1).

xj[m](k)

�������
�

�������
�

pxj[m/2](k)

qxj[m/2](k)

+

α(pxj)[c](k) FFMADDj
����	��

�

��

����	��
�

��

β(qxj)[c](k)

δj[d](k) yj[a](k)����	�

�

��

Fig. 2 Fitness function module - FFM.

High-Performance Parallel Implementation of Genetic Algorithm on FPGA 11

SMCOMPj

�

�

�

�

�

�

�

�

�

�

y1[a](k)

y2[a](k)

yj[a](k)

D0

D1

DN

SMLFSR2j

[Log2(N)]

SMMUX2j

�

�

�

�

�

y1[a](k)

y2[a](k)

yj[a](k)

�

�

�

�

�

D0

D1

DN

SMLFSR1j

[Log2(N)]

SMMUX1j

�

�

�

�

�

x1[m](k)

x2[m](k)

xj[m](k)

�

�

�

�

�

D0

D1

DN

[Log2(N)]

SMMUX3j

D0

D1

SMMUX4j

D0

D1

SMMUX5j

D0

D1

SMMUX6j

wj[m](k)

[a]

[a]

SMMAXMINj

[1]

A

B

A>B

Fig. 3 Selection module - SM.

Each j-th SM has two random generators called SMLFSR1j and SMLFSR2j.
In addition to the random generators, this module is formed by three N in-
put multiplexers called here SMMUX1j, SMMUX2j and SMMUX3j, a m
bits comparator, called SMCOMPj and three two-input multiplexers, called
SMMUX4j, SMMUX5j and SMMUX6j.

The SMMUX1j and SMMUX2j multiplexers are driven by the SMLFSR1j
and SMLFSR2j generators output signal, (SMr1j [32](k) and SMr2j [32](k)), re-
spectively. As shown in Figure 3 the output signal of each generator (SMr1j [32](k)
and SMr2j [32](k)) is truncated in the most signi�cant dlog2(N)e bits in order
to match the population size. The SMMUX1j and SMMUX2j multiplexers
select one �tness value each, which is related to its correspondent chromosome
by its index value.

Finally, SMMUX3j selects the chromosome associated with the best �tness
function value from the output of SMMUX6j which selects whether the goal is
to maximize or minimize the evaluation function through the SMMAXMINj
variable.

3.3 Crossover Module - CM

The crossover module detailed here in this section implements single point
crossover. The architecture proposed here contains N

2 crossover modules and
each one consists of four bit splitters, two identical crossover submodules, and
two concatenators. Similarly to the FFM described in Section 3.1, the CM also

12 Matheus F. Torquato, Marcelo A. C. Fernandes

has chromosome splitters in order to manipulate the two variables stored in
w[m](k) independently.

As seen in Figure 4, the two input chromosomes, wj−1[m](k) and wj [m](k),
are split into two halves, each. The �rst wj−1[m](k) half is sectioned by the
splitter CMDIV1j which is renamed pwj−1[

m
2](k) and the second half of that

same variable is sectioned by the splitter CMDIV2j and becomes qwj−1[
m
2](k).

The same happens with the chromosome wj [m](k) which is sectioned into
pwj [

m
2](k) and qwj [

m
2](k) through the divisors CMDIV3j and CMDIV4j , re-

spectively.

wj-1[m](k)

������
�

������
�

wj[m](k)

������
�

�����	
�

�
����
�
��

�����
�

�
����
�
��

�����
�

pwj-1[m/2](k)

qwj-1[m/2](k)

pwj[m/2](k)

qwj[m/2](k)

������

�������
�

������

�������
�

pzj-1[m/2](k)

qzj-1[m/2](k)

pzj[m/2](k)

qzj[m/2](k)

zj-1[m](k)

zj[m](k)

Fig. 4 J-th Crossover module (CMj).

Separating the variables of each chromosome, they are forwarded to the
CM submodules CMPQ1j and CMPQ2j so then the crossing is performed.
This is conducted in such a way that the crossover is performed between sim-
ilar variables, that is, the �rst variable pwj−1[

m
2](k) from the chromosome

wj−1[m](k) will be crossed with the �rst variable pwj [
m
2](k) from the chromo-

some wj [m](k).
In the case of single variable problems the system works in an equivalent

way. Only the least signi�cant half of the variables wj−1[m](k) and wj [m](k)
will contain useful data and only block CMPQ2j will handle nonzero data.

Figure 5 presents in detail the circuit of the j-th crossover submodule
named CMPQ1j . It is composed by a

m
2 -input MUX, called here CMPQMUXj ,

whose purpose is to randomly select one of the m
2 possible cutting points. The

selection of each CMPQMUXj is controlled by the pseudo random number
generator CMPQLFSR1j whose output signal, CMPQr1i[32](k), is truncated
in the

⌈
log2(

m
2 + 1)

⌉
more signi�cant bits before entering the MUX selector.

The selection of the CMPQ1j cut-o� point is done relying on the mask
originated from the constant 2

m
2 − 1. This constant creates a vector of 1s of

the size of the chromosome to be crossed, in the case m
2 . Then, a random

and zero-padding right shift is performed according to CMPQLFSR1j value.
This displacement will transform the vector of 1s into a vector of 0s and 1s
concatenated and still of size m

2 . This mask and its inverse will be responsible
for carrying out the crossover operation aided by the AND and OR logic gates
shown also in Figure 5.

High-Performance Parallel Implementation of Genetic Algorithm on FPGA 13

�
�
�
�
�

D0

D1

DN

CMPQLFSR1j

CMPQMUXj

>>m/2

>>2
s[m/2](k)

pwj-1[m/2](k)

pwj[m/2](k)

hpwj-1[m/2](k)

tpwj[m/2](k)

tpwj-1[m/2](k)

hpwj[m/2](k)

pzj-1[m/2](k)

pzj[m/2](k)

12 2 −
m >>1

]1
2

[2 






 +m
Log

Fig. 5 J-th Crossover submodule (CMPQ1j).

Equations 13 and 14 exemplify a case where m = 20 and CMPQMUXj

shifts the value of 2
m
2 − 1 three times

2
m
2 − 1 = 1111111111; (12)

si

[m
2

]
(k) = 0001111111; (13)

¬si
[m
2

]
(k) = 1110000000. (14)

In each k-th generation, the two entries of the module CMPQ1j , the vari-
ables pwj−1[

m
2](k) and pwj [

m
2](k) are divided into head

hpwj−1

[m
2

]
(k) = ¬sj

[m
2

]
(k) ∧ pwj−1

[m
2

]
(k) (15)

hpwj

[m
2

]
(k) = ¬sj

[m
2

]
(k) ∧ pwj

[m
2

]
(k) (16)

and tail
tpwj−1

[m
2

]
(k) = sj

[m
2

]
(k) ∧ pwj−1

[m
2

]
(k), (17)

tpwj

[m
2

]
(k) = sj

[m
2

]
(k) ∧ pwj

[m
2

]
(k), (18)

where s[m2](k) is the CMPQMUX output. After this step, the crossover will
be performed by concatenating the head of parent 1, hpwj−1[

m
2](k), with the

parent's tail 2, tpwj [
m
2](k), and the parent head 2, hpwj [

m
2](k), with the par-

ent's tail 1, tpwj−1[
m
2](k), thus giving rise to two new chromosomes of the new

population,

pzj−1

[m
2

]
(k) = hpwj−1

[m
2

]
(k) ∨ tpwj

[m
2

]
(k). (19)

and
pzj

[m
2

]
(k) = hpwj

[m
2

]
(k) ∨ tpwj−1

[m
2

]
(k). (20)

14 Matheus F. Torquato, Marcelo A. C. Fernandes

For the CMPQ2j submodule the equivalent happens. In this case, the input
values will be qwj−1[

m
2](k) and qwj [

m
2](k) and the outputs will be qzj−1[

m
2](k)

and qzj [
m
2](k).

After the similar variables have been crossed within each submodule, they
are directed to the outputs of each respective CMPQs where the concatenators
CMCCAT1j and CMCCAT2j will give rise to new individuals (chromosomes)
from the population by concatenating both the parts forming them, pz[m2](k)
and qz[m2](k) (Figure 4).

It is important to emphasize that after N
2 CMs have performed their op-

erations, N new chromosomes that will form a new population will have been
created. Some of these individuals will pass through the MM (to be described
in Section 3.4) before the start of the next generation, but always at the end
of each iteration, N new individuals will have been created so that the GA
population will always remain with N chromosomes.

3.4 Mutation Module - MM

As in the Algorithm 1 in Line 13 the mutation operation will be performed on
a group of P individuals, that is, there are P mutation modules and each j-th
module, MMj , changes the value of the chromosome to be mutated through an
XOR operation with a number created randomly by an associated generator
called MMLFSRj (Figure 6). The P MM will modify the �rst P individuals
of the population as shown in Figure 1.

xj[m](k+1)
zj[m](k)

���

MMLFSRj

MMrj[m](k)

Fig. 6 Mutation module - MM.

The output of the j-th, MMj , module in every k-th generation can be
expressed by

xj [m](k + 1) = (¬zj [m](k) ∧MMrj [m](k))

∨ (zj [m](k) ∧ ¬MMrj [m](k)) (21)

where MMrj [m](k) represents the pseudo random number generated by j-th
MMLFSRj.

In the case of single-variable problem optimization, this mutation opera-
tion will possibly assign non-zero values to the m

2 unused bits of the mutated
chromosome. However, this will not be a problem since these m

2 bits will be
zeroed when passing through the FFM in the following generation.

High-Performance Parallel Implementation of Genetic Algorithm on FPGA 15

3.5 Syncronization Module - SyncM

Finally, the last module is the synchronization module. It aims to enable the
registers, responsible for storing the population chromosomes of the genetic
algorithm, to receive new values. These new values result from the mutation
and crossover processes of the previous generation and are stored in the RX
registers to initiate a new iteration of the algorithm.

This module contains a counter, a constant value and a comparator as
shown in Figure 7. The variable enable is enabled when the comparison returns
a true value, that is, when the counter value matches the value stored in the
constant. The SyncV al[2] value is obtained according to the implemented
design, and it is adjusted according to the delay that the system needs to
perform all its operations and provide a new set of chromosomes. The output
value of this module is a boolean value, and the values of the counter and
constant output are 2-bit values. This number was chosen because it was the
maximum delay found in the implementation for an entire generation, a delay
for each ROM of the FFM.

SyncMConst

enable[1]

SyncVal[2]

SyncMCount
�

�
���

CountVal[2]

Fig. 7 Syncronization module - SyncM.

In all the tests performed in this work the GA operations were performed
at a sampling rate (or clock frequency)

Rc =
3

Tg
(22)

where Tg is the time for each k-th generation be �nished.

Although Rc is the maximum possible sample rate to operate the system
and Tg is the minimum equivalent time, the equation 22 divides these values
by 3 since only every three clocks a new population is originated in the GA,
since there are two delays in the architecture between the beginning of the
k generation and the end of it. Thus, these two delays caused by the LUTs
contained in the FFM (Section 3.1) make the frequency 3

Tg
the one which will

process the population k + 1 from an earlier population k. The Equation 22
can be rewritten as

Rg =
Rc

3
(23)

where Rg is the number of generations per second (Rg = 1
Tg
).

16 Matheus F. Torquato, Marcelo A. C. Fernandes

Generally, if the architecture contained any η components that caused sys-
tem delays, the sample rate Rc of this system would be

Rc =
η

Tg
. (24)

4 Results

Aiming to validate the proposed implementation of the GA on FPGA, simula-
tions, analyses and syntheses were performed in the optimisation of di�erent
functions for various population sizes. The �rst function, called here F1, used
in the tests to validate the proposal was an one variable function expressed as

f(x) = x3 − 15x2 + 50, (25)

The second function, called here F2, was

f(x, y) = 8x− 4y + 1020, (26)

and, lastly, the last function, here called F3, was the function

f(x, y) =
√
x2 + y2. (27)

This work has implemented and synthesised on FPGA the three functions
previously mentioned for populations of size N = 4, N = 8, N = 16, N = 32
and N = 64 and for chromosomes with size m = 20, m = 22, m = 24, m = 26,
and m = 28 bits.

It is important to emphasise that these functions were chosen for compar-
ison reasons, since they have already been used in the state of the art in pre-
vious works that will be shown next. However, the implementation proposed
is capable of implementing any function in the format shown by Equation 11
requiring only the modi�cation of the values stored in the memories.

All results were obtained using the development platform and a FPGA
Virtex 7 xc7vx550t-1�g1158. The Virtex 7 FPGA used has 86, 600 slices that
group 692, 800 �ip-�ops, 554, 240 logical cells that can be used to implement
logical functions or memories and 2, 880 DSP cells with multipliers and accu-
mulators.

As previously mentioned, three di�erent functions were minimised for the
validation of the implementation. The �rst one was the function F1 presented
in Equation 25 and shown in Figure 8.

This function was chosen because it was previously used by [31] to validate
its proposal which developed a high-speed Genetic Algorithm on FPGA. Re-
garding the implementation of this function as described in Equation 11, the
following associations can be made:

α(px) = 0, (28)

β(qx) = (qx)3 − 15(qx)2 + 50, (29)

High-Performance Parallel Implementation of Genetic Algorithm on FPGA 17

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000

x

-1

-0.5

0

0.5

1

x
3
−

1
5
x
2
+

5
0

×1011

Fig. 8 Fitness function F1: f(x) = x3 − 15x2 + 50.

γ(δ) = δ, (30)

Therefore, F1 can be represented by

y(px, qx) = 1 ∗ ((qx)3 − 15(qx)2 + 50 + 0). (31)

The second function is presented in Figure 9 and has been previously used in
[6,7] to validate the implementation of a customizable GA IP core for general
purposes.

-1
1

-0.5

0.5 1

0

×105

8
x
−

4
y
+

1
0
2
0

0.5

0.5

×104

y

0
×104

x

0

1

-0.5 -0.5
-1 -1

Fig. 9 Fitness function F2: f(x, y) = 8x− 4y + 1020.

18 Matheus F. Torquato, Marcelo A. C. Fernandes

Regarding the implementation of F2 as described in Equation 11, the fol-
lowing associations can be made:

α(px) = 8(px), (32)

β(qx) = −4(qx) + 1020, (33)

γ(δ) = δ, (34)

Therefore, F2 can be represented by

y(px, qx) = 1 ∗ (8(px)− 4(qx) + 1020). (35)

Finally, Figure10 shows the last function used to validate the proposal
presented here. This function could be seen previously with the same use in
[9] and [25]. Both works use GA, but only [9] implements the algorithm on
FPGA.

Similarly, the F3 in the parameters of the equation 11, can be seen as
follows:

α(px) = (px)2, (36)

β(qx) = (qx)2, (37)

γ(δ) =
√
δ, (38)

Therefore, F3 can be represented by

y(px, qx) =
√

(px)2 + (qx)2. (39)

10
1

0.2

0.4

√

x
2
+
y
2

x

0.6

0

y

0.8

0

1

-1-1

Fig. 10 Fitness function F3: f(x, y) =
√
x2 + y2.

The parameters used in the experiments were based on con�gurations of
previous experiments found in the literature together with some empirically

High-Performance Parallel Implementation of Genetic Algorithm on FPGA 19

obtained con�gurations. For the number of generations k, it was experimen-
tally observed that for all evaluated functions, the minimum value sought was
obtained before the 100 GA generations were reached. This number is in agree-
ment with what was found in the literature, as can be seen in [31], for example.
Thus, k = 100 was adopted as default value for the optimization experiments
performed here.

Similarly, the GA population sizes to be implemented and synthesised in
the FPGA were determined. As seen in [21] the population size was N =
32. In [27] the population had size N = 16 and in [5] GA was implemented
with populations of sizes N = 64 and N = 128. Thus, the architecture of
the proposal presented here was implemented for the �ve population sizes
already mentioned before. The aim behind these di�erent sizes of N was to
compare how much this parameter in�uences the convergence, speed and area
occupation in the FPGA.

Finally, for the same purpose of comparing how much a parameter in�u-
ences certain convergence and synthesis characteristics, the bit lengthm varied
for all population sizes as also quoted previously. The Figures 11 and 12 pic-
ture the operation of the proposed GA for the �tness functions F1 and F3,
respectively.

0 20 40 60 80 100
k-th Generation

-7

-6

-5

-4

-3

-2

-1

0

f
(x
)
=

x
3
−

1
5
x
2
+

5
0

×1010

Fig. 11 Optimising F1.

The �tness function 1 (Equation 25) was minimized using the GA with a
population size of N = 32 and m = 26. Thus, [m2] bits were used for each
variable from the �tness function. Given that this is a single-variable problem,
the function made use of only [m2] bits. For the minimization shown in Figure
11 the range of the F1 was of f(−212) to f(212 − 1). Thus, the minimum
possible value in the range is f(−212) = −6.8971 ∗ 1010. As depicted, it is
noticed that the global minimum was reached approximately in the half of the
100 generations, thus proving the functionality of the proposed system.

20 Matheus F. Torquato, Marcelo A. C. Fernandes

0 20 40 60 80 100

k-th Generation

0

2

4

6

8

10

12

f
(x
,y
)
=

√

x
2
+
y
2

Fig. 12 Optimising F3.

Similarly, the �tness function F3 (Equation 27) was also minimized, as
shown in Figure 12 but with a population size of N = 64 and m = 20. In this
case, f(x, y) only allows results greater than or equal to zero when working in
the domain of real numbers, so the smallest possible value is zero. The parallel
Genetic Algorithm implemented on FPGA proposed herein has managed to
minimize F3 in a little over 20 iterations of the algorithm. This is not a �xed
value, since the GA is a stochastic algorithm, but with this value it is possible
to have an idea of the number of generations required for convergence.

Both results were obtained from the average of multiple results. It is also
important to emphasize that parameters such as the range of values to be
calculated, bit width (m), decimal precision and the possibility of exploring
negative numbers are all parameters of the LUT (Section 3.1) and con�gurable
by the user. As already mentioned, the option of maximizing or minimizing
the function to be optimized is also another con�gurable variable.

The Table 1 presents the synthesis results in the target FPGA for vari-
ous population sizes and m = 20. It is clear in all scenarios that the area of
occupation, clock frequency (or sampling rate), Rc, consequently the number
of generations per second, Rg, are parameters considerably sensitive to the
population size, N . Here, the Rg represents the number of generations per-
formed in the GA per second, which can also be interpreted as some possible
solutions which the system provides in that interval. Equation 22 states that
this number is equal to Rc

3 , that is, the clock frequency (or sampling rate)
divided by three. This is explained because the system generates two delays
when placing two ROM memories in series in the FFM described in Section
3.1. Consequently, a new GA population is generated only after three system
clocks.

The clock is the maximum frequency the system performs when implement-
ing this architecture, and it does not take into account the delays required to
generate a new population. The clock represents only the hardware speed for

High-Performance Parallel Implementation of Genetic Algorithm on FPGA 21

that speci�c implementation, so it is 3× faster than the number of generations
performed in the GA per second.

Table 1 GA synthesis on FPGA for m = 20.

N Registers Logic cells Clock frequency (Rc) Generations per second (Rg)
�ip-�ops (LUTs) (MHz) ×106

4 457 592(1%) 50.28 16.76
8 839 1.558(1%) 49.32 16.44
16 1.616 4, 400(1%) 49.32 16.44
32 3.225 15, 908(4%) 48.51 16.17
64 6.598 58.875(16%) 34.56 11.52

The area occupation spent in registers (Figure 13), presented in the second
column of the Table 1, is due to the storage of population values in RX (Fig-
ure 1) and the pseudo random number generators, mainly. This occupation
increases linearly according to N , since the larger the population, the greater
the number of RX registers required, as well as operations that require the
pseudo random number generators. Figure 13 shows this growth graphically
with a linear interpolation.

4 8 16 32 64

Population Size - N

0

1000

2000

3000

4000

5000

6000

7000

N
u
m
b
er

o
f
R
eg
is
te
rs

Fig. 13 Registers' occupation in the FPGA varying with N .

The logical cells (LUTs) occupation, presented in the third column of the
Table 1, was increasing and not linear with N , as can be seen in Figure 14.
This nonlinear growth is caused by the selection module (Subsection 3.2) that
for each j-th module, SMj , there are three N inputs multiplexers (SMMUX1j ,
SMMUX2j and SMMUX3j).

According to [3], each Virtex 7 logical cell can construct four 1-input MUXs,
thus to build a a N -inputs multiplexers , approximately N

4 logical cells are re-

22 Matheus F. Torquato, Marcelo A. C. Fernandes

4 8 16 32 64

Population Size - N

0

1

2

3

4

5

6

N
u
m
b
er

o
f
L
o
g
ic

C
el
ls

×10
4

Fig. 14 FPGA LUTs occupancy varying with N .

quired, totalling approximately 3N
4 cells for each SMj (SMMUX4j , SMMUX5j

and SMMUX6j) have not been considered). Since there are N SM modules,

there are approximately 3N2

4 logical cells for each bit of the input bus of the
MUX. Thus, the exponential growth result from the use of the logical cells is
explained.

In this context, it is important to note that implementation with N = 64
individuals does not reach even one �fth of the FPGA cells (around 16% of
Virtex 7). This is a positive indicator for implementations with larger popu-
lations.

Finally regarding the table, the last two columns show the Clocks and the
number of generations performed in the GA per second for each value of N and
there is speed reduction according to the population growth. Theoretically, if
all the modules were independent (speci�c for each individual) this reduction
should not happen, however, it is observed that in the selection modules,
SMj (Figure 3.2), there is a dependency between the N chromosomes (due
to information sharing) causing a join in the circuit and thus, an increase in
processing time. On the other hand, it is also observed that the reduction rate is
not linear, which favours the implementation. Another important information
to note is that even with the reduction, each GA generation of 64 chromosomes
is generated in Tg ≈ 87 ns, in other words Rg = 11.52 × 103 generations
to every 1ms. This result has a very signi�cant impact and makes the use
of GA possible in several real-time embedded applications such as robotics,
telecommunications and others.

The Figure 15 represents the in�uence of the bit width m on the Clock
for a GA with N = 32. It is noted a decrease of the processing speed with
the increase of the number of bits, however this fall is not signi�cant. The
clock variation is only slightly more than 1MHz when the implementation is
compared using m = 20 with the implementation using m = 28. The results

High-Performance Parallel Implementation of Genetic Algorithm on FPGA 23

shown in the Figure 15 suggests a linear regression expressed as

R̂g = (−0.136m+ 18.87)× 106 (40)

where the variable R̂g is an estimation of Rg. The linear regression R-squared
was of R2 = 0.9314.

20 22 24 26 28

Number of bits - m

14.8

15

15.2

15.4

15.6

15.8

16

16.2

G
en

er
a
ti
o
n
s
p
er

se
co
n
d
-
R

g
(×

1
0
6
)

Fig. 15 Decrease of Rg when varying m.

The last Figure 16 illustrates the relationship between the increase of LUTs
used in the FPGA and the variation of the bit width m for three di�erent
population sizes. A larger di�erence is observed between the quantities of LUTs
used in m = 28, mainly due to the nonlinear growth of these components
comparing to N . However, as already seen in Figure 15 the increase of m is
also a factor responsible for slowing the processing speed, Rg.

20 22 24 26 28

Number of bits - m

0

0.5

1

1.5

2

2.5

N
u
m
b
er

o
f
L
o
g
ic

C
el
ls

×10
5

K = 64

K = 32

K = 16

Fig. 16 Relation between the LUTs usage with the increase of m.

24 Matheus F. Torquato, Marcelo A. C. Fernandes

Analyzing the synthesis results, it was noticed that di�erent �tness func-
tions such as F1, F2 and F3 did not result in signi�cant di�erences in the LUTs
consumption and Registers in the FPGA, as well as no signi�cant di�erences
were observed in Rg. This result was already expected, since the only varia-
tion that occurs when changing the �tness function is the content of the FFM
LUTs. Thus, it is possible to extend this thinking and assert that the values
of the Table 1 are true for any other function, in the parameters of Equation
11, using m = 20 bits.

5 Comparisons with state of the art works

Following, comparisons of the results obtained by the proposed implementa-
tion with equivalent results found in works belonging to the state of the art are
presented. The comparisons which will be shown below and which are sum-
marized in the Table 2 were made with the greatest similarity of parameters
as possible. The table presents a column that presents the comparative refer-
ences, the next two columns show the parameters of the GAs compared, then
the times obtained by the works of the state of the art are shown and, �nally,
the results obtained by the implementation presented here and the respective
speedups are displayed.

Table 2 Comparative table with state of the art works.

Reference N K Reference time Obtained time Speedup
[31] 32 100 2.19ms 6.18µs 354
[5] 32 60 1.702ms 3.71µs 459
[6,7] 32 32 7.29ms 1.98µs 3683
[33] 64 500 0.8 s 43.40µs 18432
[17] 64 500 941.17µs 29.7µs 31

[22,32] 64 1024 1ms 58.48µs 17
[18] 16 256 0.8ms 19.45µs 41
[21] 64 500 7.47 s 43.40µs 172119
[20] 64 1000 1.45 s 92µs 15760
[10] 32 1000000 8 s 68.49ms 116
[2] 20 380 74ms 22.76µs 3251
[24] 20 60 793.23µs 3.6µs 220

The system presented by [31], a high-speed implementation of GA on
FPGA, demonstrated a run-time of 2.19ms for a GA implemented on FPGA
with K = 100 generations and a population of size N = 32. For the same
settings, the system proposed here achieved a time of ≈ 6.18µs, which proves
to be ≈ 354× faster.

Similarly, the implementation presented by [5] also presented an GA on
FPGA with population size N = 32, chromosome size of m = 16 and K =
60 generations. The implementation validated its proposal with the traveling
salesman problem and resulted in a running time of 1.702ms. Although a test
in the same parameters of [5] has not been performed here, a comparison can

High-Performance Parallel Implementation of Genetic Algorithm on FPGA 25

still be made due to the versatility of problems solved by di�erent LUT as
shown in the FFM. A GA with K = 60 generations, N = 32 chromosomes
andm = 20 bits can be solved in ≈ 3.71µs in the work presented here, meaning
a time ≈ 459× faster than in [5].

In similar fashion, the work of [6,7] presented a highly programmable GA
IP core on FPGA. For a setting of K = 32 and N = 32 the authors stated a
speedup of 5.16× over an equivalent software implementation which achieved
a running time of 37.615ms. In a comparison, the implementation presented
here performed the equivalent situation in a time of ≈ 1.98µs, which represents
a speedup of ≈ 19007× over the serial implementation shown in [6,7]. In
other words, a time ≈ 3683× less than the GA IP core proposed by [6,7].
The �exibility proposed by [6,7] decreases the parallelization on the hardware
implementation and reduces the speedup.

The clock achieved in the work proposed in [17] was about 1
9.8 ns = 102MHz

with m = 15 bits. However, the hardware implementation needs to read and
write the RAMs, sequentially, for saving GA variables. In other words, the
implementation is similar to Algorithm 1, and for N individuals it is needed
to execute three times the N -sized loop (Lines 3-5, 6-8 and 9-11). Based on the
architecture proposed in [17], the value of Rg = 102

3N = 531.25×103 generations
per second for N = 64. In [22,32] the GA executes K = 1024 generations at
1ms with a clock frequency of 40MHz (Rg = 1× 106 generations per second),
N = 64 chromosomes andm = 10 bits. Using Equation 15, the implementation
presented here can perform the equivalent of R̂g = 16.83×106 generations per

second and R̂g = 17.51× 106 for m = 15 and m = 10 bits, respectively.

The work [18] presented a real-time GA for adaptive �ltering application
with all modules implemented in hardware. The implementation achieved a
rate of Rg = 320 × 103 generations per second for a population of N = 16
and m = 42 bits (seven parameters with 6 bits). Using Equation 40, it can be
estimated that the implementation, proposed here, has about R̂g = 13.158 ×
106 generations per second for N = 32 and m = 42 bits. Similarly to the
architecture shows in work [17], the research [21] achieved about Rg = 67
generations per second (189000 clock pulses at 12.5MHz).

The implementation here proposed can also be compared to the work pub-
lished in [33]. As already mentioned in Section 1.1, this article presents the
OIMGA, an implementation of a monogenetic FPGA algorithm that retains
only the best chromosome of the generation. In one of the tests performed to
validate the implementation, the authors optimized a one variable function
with a population of N = 64 chromosomes in ≈ 0.8 seconds. In a scenario
where the proposed parallel GA take this time to solve the same function it
would process K = 9.2×106 generations. Of course, this value is unreasonable
for that function. As shown previously in the results, K = 100 generations was
the default value to optimize functions of one or two variables, thus, even if
the number of generations needed to optimize the same function was K = 500
(a generous estimate), the time resulting from the implementation proposed
by [33] would still be ≈ 18432× higher.

26 Matheus F. Torquato, Marcelo A. C. Fernandes

The architecture shown in [20] executes K = 1000 generations in 1.45 s
with a clock frequency of 50MHz, N = 20 chromosomes, m = 16 bits and this
corresponds to the Rg = 689.65 generations per second (72740 clock cycles
per generation). In [10], K = 1 × 106 generations are processed in about 8 s
(Rg = 125 × 103 generations per second) with N = 32 chromosomes and,
m = 32 bits. With similar parameters and using Equation 15, the work here
proposed can achieve R̂g = 14.5 × 106 generations per second. A comparison
among several metaheuristics algorithms on hardware is studied in [2], and
the GA performed Rg = 5.13× 103 generations per second (9740 clock cycles
per generation) for K = 380, N = 20, m = 16, and a clock of 50MHz. Lastly,
a fully customizable hardware implementation is proposed in [24]. This work
uses the same strategy of the works presented in [6,7,10,2], where it allows the
setup of several GA parameters on hardware after the FPGA synthesis. For
the same parameters used in [10] (N = 20, m = 16, and a clock of 50MHz),
and K = 60 the work [24] archived Rg = 75.64 × 103 generations per second
(661 clock cycles per generation). The GA implementation here proposed can
execute R̂g = 16.69× 106 generations per second for N = 32 and m = 16.

6 Conclusion

After the presentation of the results in Section 4 it can be a�rmed that the
implementation proposal was in fact validated and ful�lled with its objective
of being a parallel implementation of high-performance of a GA. The synthesis
results con�rmed that the present proposed parallel implementation of GA on
FPGA is able to optimize a wide range of functions in a viable time for critical
applications that require short time constraints or a large amount of data to
be processed in a short interval.

Comparisons with other implementations found in the literature in Section
5 reinforce the high speed achieved by the implementation developed. This
enables the use of this system in a commercial context for applications such as
tactile internet, robotics, real-time applications and medical applications. In
addition, this system has proven to be an acceleration tool for any hardware
system that makes use of genetic algorithms.

As well as the high-performance achieved, the small area consumption of
the implementation developed here is a notorious feature. This makes it pos-
sible for other systems to also be embedded in the FPGA, since the on-board
GA occupies less than 1

5 of the Virtex 7 logic cells used as a test. This logical
cells low consumption feature is essential for applications where the area is the
biggest constraint as spatial applications, for example.

The experiments carried out proved that the sizes of N tested are su�cient
to solve most of the practical problems as the literature con�rms. It has been
found that the duration in iterations (k) of GA does not need to be greater
than a few hundred. It has been proven that a few hundred generations or even
k = 100 is a reasonable number of generations for a GA. The parameter m
proved to be of great importance, since it directly a�ects the GA convergence

High-Performance Parallel Implementation of Genetic Algorithm on FPGA 27

speed, the area occupied on the FPGA, the response precision, as well as the
achieved Rg.

Acknowledgements This study was �nanced in part by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior (CAPES) - Finance Code 001.

References

1. Alinodehi, S.P.H., Moshfe, S., Zaeimian, M.S., Khoei, A., Hadidi, K.: High-speed general
purpose genetic algorithm processor. IEEE transactions on cybernetics 46(7), 1551�
1565 (2016)

2. Ameur, M.S.B., Sakly, A.: Fpga based hardware implementation of bat algorithm. Ap-
plied Soft Computing 58, 378�387 (2017)

3. Chapman, K.: Multiplexer design techniques for datapath performance with minimized
routing resources. Application Note: Spartan-6 Family, Virtex-6 Family, 7 Series FPGAs
(2014)

4. Chen, Y., Wu, Q.: Design and implementation of pid controller based on fpga and genetic
algorithm. In: Electronics and Optoelectronics (ICEOE), 2011 International Conference
on, vol. 4, pp. V4�308. IEEE (2011)

5. Deliparaschos, K., Doyamis, G., Tzafestas, S.: A parameterised genetic algorithm ip
core: Fpga design, implementation and performance evaluation. International Journal
of Electronics 95(11), 1149�1166 (2008)

6. Fernando, P., Sankaran, H., Katkoori, S., Keymeulen, D., Stoica, A., Zebulum, R.,
Rajeshuni, R.: A customizable fpga ip core implementation of a general purpose genetic
algorithm engine. In: Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on, pp. 1�8. IEEE (2008)

7. Fernando, P.R., Katkoori, S., Keymeulen, D., Zebulum, R., Stoica, A.: Customizable
fpga ip core implementation of a general-purpose genetic algorithm engine. IEEE Trans-
actions on Evolutionary Computation 14(1), 133�149 (2010). DOI 10.1109/TEVC.2009.
2025032

8. Goresky, M., Klapper, A.: Pseudonoise sequences based on algebraic feedback shift
registers. IEEE Transactions on Information Theory 52(4), 1649�1662 (2006)

9. Guo, L., Funie, A.I., Thomas, D.B., Fu, H., Luk, W.: Parallel genetic algorithms on
multiple fpgas. ACM SIGARCH Computer Architecture News 43(4), 86�93 (2016)

10. Guo, L., Funie, A.I., Xie, Z., Thomas, D., Luk, W.: A general-purpose framework for
fpga-accelerated genetic algorithms. International Journal of Bio-Inspired Computation
7(6), 361�375 (2015)

11. Holland, J.H.: Adaptation in natural and arti�cial systems: an introductory analysis
with applications to biology, control, and arti�cial intelligence. U Michigan Press (1975)

12. Instruments, N.: Understanding parallel hardware: Multiprocessors, hyperthreading,
dual-core, multicore and fpgas (2011). URL http://www.ni.com/tutorial/6097/en/

13. Ionescu, L.M., Mazare, A., Lita, A.I., Serban, G.: Fully integrated arti�cial intelligence
solution for real time route tracking. In: 2015 38th International Spring Seminar on
Electronics Technology (ISSE), pp. 536�540. IEEE (2015)

14. Jewajinda, Y., Chongstitvatana, P.: Hardware architecture and fpga implementation
of a parallel elitism-based compact genetic algorihm. In: TENCON 2009-2009 IEEE
Region 10 Conference, pp. 1�6. IEEE (2009)

15. Koza, J.R.: Genetic evolution and co-evolution of computer programs. Arti�cial life II
10, 603�629 (1991)

16. Lot�, A., Rahimi, A., Yazdanbakhsh, A., Esmaeilzadeh, H., Gupta, R.K.: Grater: An
approximation work�ow for exploiting data-level parallelism in fpga acceleration. In:
2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp.
1279�1284. IEEE (2016)

17. Mengxu, F., Bin, T.: Fpga implementation of an adaptive genetic algorithm. In: 2015
12th International Conference on Service Systems and Service Management (ICSSSM),
pp. 1�5. IEEE (2015)

28 Matheus F. Torquato, Marcelo A. C. Fernandes

18. Merabti, H., Massicotte, D.: Hardware implementation of a real-time genetic algorithm
for adaptive �ltering applications. In: Electrical and Computer Engineering (CCECE),
2014 IEEE 27th Canadian Conference on, pp. 1�5. IEEE (2014)

19. Mingas, G., Tsardoulias, E., Petrou, L.: An fpga implementation of the smg-slam algo-
rithm. Microprocessors and Microsystems 36(3), 190�204 (2012)

20. Nambiar, V.P., Balakrishnan, S., Khalil-Hani, M., Marsono, M.N.: Hw/sw co-design
of recon�gurable hardware-based genetic algorithm in fpgas applicable to a variety of
problems. Computing 95(9), 863�896 (2013)

21. Nedjah, N., de Macedo Mourelle, L.: An e�cient problem-independent hardware imple-
mentation of genetic algorithms. Neurocomputing 71(1), 88�94 (2007)

22. Noraini, M.R., Geraghty, J.: Genetic algorithm performance with di�erent selection
strategies in solving tsp. World Congress on Engineering 2011 Vol II (2011)

23. Oliveira, T.C., Júnior, V.P.: An implementation of compact genetic algorithm on fpga
for extrinsic evolvable hardware. In: Programmable Logic, 2008 4th Southern Conference
on, pp. 187�190. IEEE (2008)

24. Peker, M.: A fully customizable hardware implementation for general purpose genetic
algorithms. Applied Soft Computing 62, 1066�1076 (2018)

25. Qu, H., Xing, K., Alexander, T.: An improved genetic algorithm with co-evolutionary
strategy for global path planning of multiple mobile robots. Neurocomputing 120,
509�517 (2013)

26. Rodriguez, A., Moreno, F.: Evolutionary computing and particle �ltering: A hardware-
based motion estimation system. IEEE Transactions on Computers 64(11), 3140�3152
(2015)

27. Scott, S.D., Samal, A., Seth, S.: Hga: A hardware-based genetic algorithm. In: Third
International ACM Symposium on Field-Programmable Gate Arrays, pp. 53�59 (1995).
DOI 10.1109/FPGA.1995.241945

28. Sehatbakhsh, N., Aliasgari, M., Fakhraie, S.M.: Fpga implementation of genetic algo-
rithm for dynamic �lter-bank-based multicarrier systems. In: Design & Technology of
Integrated Systems in Nanoscale Era (dtis), 2013 8th International Conference on, pp.
72�77. IEEE (2013)

29. Tirumalai, V., Ricks, K.G., Woodbury, K.A.: Using parallelization and hardware con-
currency to improve the performance of a genetic algorithm. Concurrency and Compu-
tation: Practice and Experience 19(4), 443�462 (2007)

30. Uyemura, J.P.: Introduction to VLSI circuits and systems. Wiley India (2002)
31. Vavouras, M., Papadimitriou, K., Papaefstathiou, I.: High-speed fpga-based implemen-

tations of a genetic algorithm. In: Systems, Architectures, Modeling, and Simulation,
2009. SAMOS'09. International Symposium on, pp. 9�16. IEEE (2009)

32. Yan-cong, Z., Jun-hua, G., Yong-feng, D., Huan-ping, H.: Implementation of genetic
algorithm for tsp based on fpga. In: Control and Decision Conference (CCDC), 2011
Chinese, pp. 2226�2231. IEEE (2011)

33. Zhu, Z., Mulvaney, D.J., Chouliaras, V.A.: Hardware implementation of a novel genetic
algorithm. Neurocomputing 71(1), 95�106 (2007)

